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Abstract

Consider independent long range percolation on Zd, where edges of length n are open with
probability pn. We show that if lim supn→∞ pn > 0, then there exists an integer N such that
PN (0↔∞) > 0, where PN is the truncated measure obtained by taking pN,n = pn for n ≤ N
and pN,n = 0 for all n > N .

We consider independent long range percolation on the graph G = (V, E), where G = Zd,
d ≥ 2, and E = {〈x, y〉 ⊂ V × V : x 6= y}. For a given sequence (pn)n∈N, pn ∈ [0, 1], we
consider the long range percolation process (Ω,F , P ), where Ω = {0, 1}E , P =

∏

〈x,y〉∈E µ〈x,y〉,

and µ〈x,y〉{ω〈x,y〉 = 1} = p‖x−y‖ is a Bernoulli measure, independent of the state of other
edges. Here we use the distance ‖x− y‖ = maxi=1,...,d |xi − yi|. Given an integer N ∈ N, we
define a truncated sequence (pN,n)n∈N by

pN,n =

{

pn if n ≤ N ,

0 if n > N,
(1)

and a truncated percolation process (Ω,F , PN ) by taking PN =
∏

〈x,y〉∈E µN,〈x,y〉, where

µN,〈x,y〉{ω〈x,y〉 = 1} = pN,‖x−y‖.
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In this note we address the following question: given a sequence (pn)n∈N for which P (0 ↔
∞) > 0, does there always exists some large enough N such that PN (0 ↔ ∞) > 0? In other
words, given a system with infinite range translation invariant interactions which exhibits a
phase transition, we ask if the infiniteness of the range is really crucial for this transition to
occur. It is known, for instance, that infinite range is essential in one dimensional systems (cf.
[FS], [NS]), but it is believed that in dimensions d ≥ 2, occurrence (if so) of phase transitions
for translation invariant interactions is always determined by a bounded part of the interaction
(excluding cases when interactions are of intrinsically one dimensional structure). Returning
to the percolation case, rapid (say, exponential) decay or summability of the pn’s indicates that
long range connections may not be necessary for the existence of an infinite cluster. This is
the setup of [MS] and partially [B]. On the other hand, heavy tail interactions are still poorly
understood, and the only existing studies, [SSV] and [B], rely heavily on asymptotic mono-
tonicity assumptions which are a key ingredient for the use of rather laborious coarse-graining
techniques. Although the approach we present here relies on deep and highly nontrivial facts
([GM], [K]), it leads to a much shorter (not to say elementary) proof, which is less sensitive
to the geometry of the interactions, and allows to consider a rather general class of systems
with connections of irregular, in particular lacunary structure.

Theorem. If lim supn→∞ pn > 0, then

PN (0↔∞) > 0 (2)

for some large enough N .

Proof. It is sufficient to consider the case d = 2. Define ε > 0 by 2ε = lim supn→∞ pn. By
[K], Theorem 1 p. 220, there exists some dimension dε ≥ 3 such that

pc(Z
dε) < ε/2 ,

where pc(Z
dε) denotes the critical threshold of independent Bernoulli percolation on the

nearest-neighbour lattice Zdε . By [GM], Theorem A p. 447, there exists some integer Kε

such that
pc
(

{0, 1, . . . ,Kε − 1}dε−2 × Z2
)

< pc(Z
dε) + ε/2 < ε . (3)

Let n0 = 0. For j ∈ {1, 2, . . . , dε − 1}, define recursively

nj = min{` > (Kε + 1)nj−1 : p` ≥ ε} .

For x ∈ Z2 and B ⊆ Z2, define TxB = {z + x, z ∈ B}. Set B0 = {(0, 0)}. For j ∈
{1, 2, . . . , dε − 2}, define recursively Bj = ∪

Kε−1
m=0 Tm(nj ,0)Bj−1. Then, let

Vdε−1 =
⋃

(k,m)∈Z2

T(kndε−1,mn1)Bdε−2 ,

and

Edε−1 = {〈x, y〉 ⊂ Vdε−1 × Vdε−1 : |x1 − y1| = nj for some 1 ≤ j ≤ dε − 1

and x2 = y2, or x1 = y1 and |x2 − y2| = n1} .

It is straightforward that the subgraph Gdε−1 =
(

Vdε−1, Edε−1

)

⊂ G is isomorphic to
{0, 1, . . . ,Kε − 1}dε−2 × Z2. An isomorphism ϕ : {0, 1, . . . ,Kε − 1}dε−2 × Z2 → Vdε−1 is

given by ϕ(x1, . . . , xdε) :=
(
∑dε−1

i=1 xini, xdεn1

)

.
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Moreover, by our choice of nj , 1 ≤ j ≤ dε − 1, we have that each edge of Gdε−1 is open with
probability at least ε, and using (3) we get (2) with N = ndε−1.

Remark. For further applications of this method to percolation and interacting spin systems
see [FL].
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