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Abstract

We propose a new definition for tameness within the model of security prices as Itô processes
that is risk-aware. We give a new definition for arbitrage and characterize it. We then prove a
theorem that can be seen as an extension of the second fundamental theorem of asset pricing,
and a theorem for valuation of contingent claims of the American type. The valuation of
European contingent claims and American contingent claims that we obtain does not require
the full range of the volatility matrix. The technique used to prove the theorem on valuation
of American contingent claims does not depend on the Doob-Meyer decomposition of super-
martingales; its proof is constructive and suggest and alternative way to find approximations
of stopping times that are close to optimal.

1 Introduction

In a continuous time setting, where security prices are modeled as Itô processes, the concept
of tameness has been introduced as a credit constrain in order to offset the so called “doubling
strategies”. Harrison and Pliska (1981) and Dybvig and Huang (1988) study the role of this
constrain in ruling out doubling strategies. Generally speaking, tameness limits the credit that
an agent may have, that is used to offset intermediate losses from trade and consumption. This
credit is established in advance in terms of the value of money. Namely, the credit limit is
resettled every time to reflect the changes in a bank account. This model is a standard one in
financial economics. See Karatzas and Shreve (1998), Karatzas (1996), and Duffie (1996) for
some discussion about it. Nonetheless, in order to obtain characterizations of non-arbitrage
and completeness, strong technical conditions are made that do not hold for very interesting
models in financial economics; see Kreps (1981), Duffie and Huang (1986), Back and Pliska
(1991) and Hindy (1995) and more recently Fernholz, Karatzas, and Kardaras (2004). Several
approaches have been taken to generalize this model. For example, Levental and Skorohod
(1995) study notions of “arbitrage in tame portfolios” and “approximate arbitrage”; Kreps
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(1981) and Delbaen and Schachermayer (1994, 1995a, 1995b, 1996, 1997b, 1997a, 1997c, 1998)
propose a notion of arbitrage called a “free lunch”. However these notions are usually criticized
by their lack of economic justification. Loewenstein and Willard (2000) revisit the standard
model of security prices as Itô processes, and show that the standard assumptions of positive
state prices and existence of an equivalent martingale measure exclude prices which are viable
models of competitive equilibrium and are potentially useful for modeling actual financial
markets. They propose the concept of “free snacks” for admissible trading strategies. Other
references are Stricker (1990), Ansel and Stricker (1992), Delbaen (1992), Schweizer (1992),
Clark (1993), Schachermayer (1993), Lakner (1993) and Willard and Dybvig (1999).

In this paper we propose a new definition for tameness. We call it state tameness (see Definition
3.1). Loosely speaking, we call a portfolio π(t) a state tame portfolio if the value of its gain
process discounted by the so called “state price density process” is bounded below. For a
definition of state price density process see equation (2.8). In financial terms, this definition
for tameness accounts for constrains on an agent credit that are resettled at all times to reflect
the changes in the state of the economy. Let us establish an analogy. In a Poker game, it is
natural to assume that the players have credit constrains, depending on the ability of each
of them to eventually cover losses. If we think of a particular game for which one player has
exhausted his credit, but his stakes of winning are high, it is likely that someone would be
willing to take over his risk. If the rules of the game allowed it, this could increase his ability
to obtain credit.
We define state arbitrage, see Definition 3.2, and characterize it. As a consequence of Theorem
3.1, our definition of non-arbitrage is an extension of non-arbitrage in the context of standard
financial markets. See Karatzas and Shreve (1998). Moreover, whenever equation (2.7) holds
and the volatility matrix is invertible, the existence of an equivalent martingale measure implies
the non existence of arbitrage opportunities that are state tame, but not conversely; see Remark
3.3. Our definition is weaker that the one proposed by Levental and Skorohod (1995) under the
condition that equation (2.7) holds. See Levental and Skorohod (1995)[Theorem 1 and Corol-
lary 1], and Loewenstein and Willard (2000) for the economic meaning of equation (2.7). Our
definition of non-state arbitrage is weaker than the one proposed by Delbaen and Schacher-
mayer (1995b); see Remark 3.4. Our definition admits the existence of “free snacks”, see
e.g., Remark 3.3 and Loewenstein and Willard (2000)[Corollary 2]. See also Loewenstein and
Willard (2000)[Corollary 2] and Loewenstein and Willard (2000)[Example 5.3] for the economic
viability of those portfolios.
Next, we try to show the usefulness of the concept introduced. This is done by proving two
extensions of the second fundamental theorem of asset pricing and a theorem for valuation of
contingent claims of the American type suitable for the current context.

The question of completeness is about the ability to replicate or access certain cash flows and
not about how these cash flows are valued. Hence, the appropriate measure for formulating the
question of completeness is the true statistical probability measure, and not some presumed to
exist equivalent martingale probability measure. Jarrow and Madan (1999) elaborate further
on this point. We propose a valuation technique that does not require the existence of an
equivalent martingale measure and allows for pricing contingent claims, even when the range
of the volatility matrix is not maximal. See Theorem 4.1. The standard approach relates the
notion of market completeness to uniqueness of the equivalent martingale measure; see Harrison
and Kreps (1979), Harrison and Pliska (1981), and Jarrow and Madan (1991). Delbaen (1992)
extends the second fundamental theorem for asset prices with continuous sample paths for
the case of infinitely many assets. Other extension are Jarrow and Madan (1999), Bättig
(1999), and Bättig and Jarrow(1999). The recent paper Fernholz, Karatzas, and Kardaras
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(2004) also extends valuation theory, when an equivalent martingale measures fails to exists;
they are motivated by considerations of “diversity”; see Remark 4.1 for a discussion about the
connections with this paper.

Last, we formulate an extension of the American contingent claim valuation theory. See
Theorem 5.1. We provide a valuation technique of the contingent claims of the American
type in a setting that does not require the full range of the volatility matrix. See Theorem
5.1 in conjunction with Theorem 4.1. Our approach is closer in spirit to a computational
approach. See Karatzas (1988) and Bensoussan (1984) to review the formal theory of valuation
of American contingent claims with unconstrained portfolios; see the survey paper by Myneni
(1992) as well as Karatzas and Shreve (1998). Closed form solutions are typically not available
for pricing American Options on finite-horizons. Although an extensive literature exist on their
numerical computation; interested readers are referred to several survey papers and books
such as Broadie and Detemple (1996), Boyle, Broadie, and Glasserman (1997), Carverhill and
Webber (1990), Hull (1993), Wilmott, Dewynne, and Howison (1993) for a partial list of fairly
recent numerical work on American Options and comparisons of efficiency.

2 The model

In what follows we try to follow as closely as possible the notation in Karatzas and Shreve
(1998), and Karatzas(1996). For the sake of completeness we explicitly state all the hy-
potheses usually used for financial market models with a finite set of continuous assets de-
fined on a Brownian filtration. We assume a d-dimensional Brownian Motion starting at 0
{W (t),Ft; 0 ≤ t ≤ T} defined on a complete probability space (Ω,F ,P) where {Ft}0≤t≤T is
the P augmentation by the null sets in FW

T of the natural filtration FW
t = σ(W (s), 0 ≤ s ≤ t),

0 ≤ t ≤ T , and F = FT .

We assume a risk-free rate process r(·), a n-dimensional mean rate of return process b(·), a
n-dimensional dividend rate process δ(·), a n× d matrix valued volatility process (σi,j(·)); we
also assume that b(t), δ(t), r(t) and (σi,j(t)) are progressively measurable processes. Moreover
it is assumed that

∫ T

0

(|r(t)|+ ‖b(t)‖+ ‖δ(t)‖+
∑

i,j

σ2ij(t)) dt <∞

As usual we assume a bond price process B(t) that evolves according to the equation

dB(t) = B(t)r(t)dt, B(0) = 1 (2.1)

and n stocks whose evolution of the price-per-share process Pi(t) for the i
th stock at time t, is

given by the stochastic differential equation

dPi(t) = Pi(t)



bi(t)dt+
∑

1≤j≤d

σij(t) dWj(t)



 , Pi(0) = pi ∈ (0,∞)

i = 1, · · · , n. (2.2)

Let τ ∈ S be a stopping time, where S denotes the set of stopping times τ : Ω 7→ [0, T ] relative
to the filtration (Ft). We shall say that a stochastic process X(t), t ∈ [0, τ ] is (Ft)-adapted if
X(t∧ τ) is (Ft)-adapted, where s∧ t = min {s, t}, for s, t ∈ R. We consider a portfolio process
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(π0(t), π(t)), t ∈ [0, τ ] to be a (Ft)-progressively measurable R×Rn valued process, such that
∫ τ

0

|
∑

0≤i≤n

πi(t)||r(t)| dt +
∫ τ

0
|π′(t)(b(t) + δ(t)− r(t)1n)| dt

+
∫ τ

0
‖σ′(t)π(t)‖

2
dt <∞ (2.3)

holds almost surely, with ‖x‖ = (x21 + · · · + x2d)
1/2 for x ∈ Rd, and 1′n = (1, · · · , 1) ∈ Rn.

A (Ft)-adapted process {C(t), 0 ≤ t ≤ τ} with increasing , right continuous paths, C(0) = 0,
and C(τ) <∞ almost surely (a.s.) is called a cumulative consumption process. Following the
standard literature (see e.g.: Karatzas and Shreve (1998), Karatzas(1996)) for a given x ∈ R

and (π0, π, C) as above, the process X(t) ≡ Xx,π,C(t), 0 ≤ t ≤ τ given by the equation

γ(t)X(t) = x−

∫

(0,t]

γ(s) dC(s)

+

∫ t

0

γ(s)π′(s) [σ(s) dW (s) + (b(s) + δ(s)− r(s)1n)) ds] (2.4)

where γ(t) is defined as

γ(t)
∆
=

1

B(t)
= exp

(

−

∫ t

0

r(s) ds

)

, (2.5)

is the wealth process associated with the initial capital x, portfolio π, and cumulative con-
sumption process C.

Remark 2.1. Let us observe that the condition defined by equation (2.3) is slightly different
from the condition that defines a portfolio in the standard setting where the terminal time is
not random. In fact, only the former condition is needed in order to obtain a well defined
wealth process as defined by equation (2.4).

We define a progressively measurable market price of risk process θ(t) = (θ1(t), · · · , θd(t)) with
values in Rd for t ∈ [0, T ] as the unique process θ(t) ∈ ker⊥(σ(t)) , the orthogonal complement
of the kernel of σ(t), such that

b(t) + δ(t)− r(t)1n − projker(σ′(t))(b(t) + δ(t)− r(t)1n) = σ(t)θ(t) a.s. (2.6)

(See Karatzas and Shreve (1998) for a proof that θ(·) is progressively measurable.) Moreover,
we assume that θ(·) satisfies the mild condition

∫ T

0

‖θ(t)‖
2
dt <∞ a.s. (2.7)

We define a state price density process by

H0(t) = γ(t)Z0(t) (2.8)

where

Z0(t) = exp

{

−

∫ t

0

θ′(s) dW (s) −
1

2

∫ t

0

‖θ(s)‖
2
ds

}

. (2.9)

The name “state price density process” is usually given to the process defined by equation (2.8)
when the market is a standard financial market; see Karatzas and Shreve (1998). In that case
the process Z0(t) is a martingale and Z0(T ) is indeed a state price density. However, in our
setting we allow the possibility that EZ0(T ) < 1.
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3 State tameness and state arbitrage. Characterization

We propose the following definition for tameness.

Definition 3.1. Given a stopping time τ ∈ S, a self-financed portfolio process (π0(t), π(t)),
t ∈ [0, τ ] is said to be state-tame, if the discounted gain process H0(t)G(t), t ∈ [0, τ ] is bounded
below, where G(t) = Gπ(t) is the gain process defined as

G(t) = γ−1(t)

∫ t

0

γ(s)π′(s) [σ(s) dW (s) + (b(s) + δ(s)− r(s)1n)) ds] . (3.1)

Definition 3.2. A self finance state-tame portfolio π(t), t ∈ [0, T ] is said to be a state
arbitrage opportunity if

P [H0(T )G(T ) ≥ 0] = 1, and P [H0(T )G(T ) > 0] > 0 (3.2)

where G(t) is the gain process that corresponds to π(t). We say that a market M is state-
arbitrage-free if no such portfolios exist in it.

Theorem 3.1. A market M is state-arbitrage-free if and only if the process θ(t) satisfies

b(t) + δ(t)− r(t)1 = σ(t)θ(t) 0 ≤ t ≤ T a.s. (3.3)

Remark 3.1. We observe that if θ(t) satisfies equation (3.3) then for any initial capital x,
and consumption process C(t),

H0(t)X(t) +

∫

(0,t]

H0(s) dC(s)

= x+
∫ t

0
H0(s)

[

σ′(s)π(s)−X(s)θ(s)
]′
dW (s) . (3.4)

Proof of Theorem 3.1. First, we prove necessity. For 0 ≤ t ≤ T we define

p(t) = projker(σ′(t))(b(t) + δ(t)− r(t)1n)

π(t) =

{

‖p(t)‖
−1
p(t) if p(t) 6= 0,

0 otherwise

and define π0(t) = G(t)−π′(t)1n where G(t) is the gain process defined by equation (2.4) with
zero initial capital, and zero cumulative consumption process. It follows that (π0(t), π(t)) is a
self-financed portfolio with gain process

G(t) = γ−1(t)

∫ t

0

‖p(s)‖ γ(s)1p(s)6=0 ds.

Since H0(t)G(t) ≥ 0, the non-state-arbitrage hypothesis implies the desired result. To prove
sufficiency, assume that θ(t) satisfies equation (3.3), π(t) is a self-financed portfolio and G(t)
is the gain process that corresponds to π(t) as in Definition 3.1. Remark 3.1 implies that
H0(t)G(t) is a local-martingale. By state-tameness it is also bounded below. Fatou’s lemma
implies that H0(t)G(t) is a super-martingale. The result follows.
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Remark 3.2. We can extend the definition of state arbitrage opportunity to state tame
portfolios defined on a random time. It is worth to mentioning that Theorem 3.1 remains true
even with this apparently stronger definition.

Remark 3.3. It is well known that absence of arbitrage opportunities on tame portfolios is
implied by the existence of an equivalent martingale measure under which discounted prices
(by the bond price process) plus discounted cumulative dividends become martingales; see e.g.,
Duffie (1996)[Chapter 6]. If the volatility matrix σ(·) is invertible and equation (2.7) holds,
it is known that the non existence of arbitrage opportunities in tame portfolios is equivalent
to EZ0(T ) = 1., see e.g., Levental and Skorohod (1995)[Corollary 1]. Our framework allows
for the possibility that EZ0(T ) < 1, as is the case of, for instance, Levental and Skorohod
(1995)[Example 1]. Therefore, in the cited example, any arbitrage opportunity that is a tame
portfolio, would not be a state tame portfolio.

Remark 3.4. It is known that the non existence of arbitrage opportunities in tame port-
folios implies that equation (3.3) holds a.s. for Lebesgue-almost-every t ∈ [0, T ]; see e.g.
Karatzas and Shreve (1998)[Theorem 4.2]. At the same time, by Theorem 3.1, non existence
of arbitrage opportunities in state-tame portfolios is equivalent to assuming that equation (3.3)
holds a.s. for Lebesgue-almost-every t ∈ [0, T ]. Under a more general setting, Delbaen and
Schachermayer(1994) have proved that the existence of an equivalent martingale measure is
equivalent to a property called “no free lunch with vanishing risk” (NFLVR). It is also known
that the concept of NFLVR is stronger that the non existence of arbitrage opportunities in
tame portfolios; see e.g., Delbaen and Schachermayer(1995b)[Theorem 1.3]. It follows that
our definition of non-state-arbitrage is weaker that NFLVR.

4 State European Contingent Claims. Valuation

Throughout the rest of the paper we assume that equation (3.3) is satisfied.
A (Ft)-progressively measurable semi-martingale Γ(t), 0 ≤ t ≤ τ , where τ ∈ S is a stopping
time is called a cumulative income process for the random time interval (0, τ ]. Let X(t) defined
by

γ(t)X(t) = x+

∫

(0,t]

γ(s) dΓ(s) +

∫ t

0

γ(s)π′(s) [σ(s) dW (s) + (b(s) + δ(s)− r(s)1n)) ds] , (4.1)

where π(t), t ∈ [0, τ ], is a Rn valued (Ft)-progressively measurable process such that

∫ τ

0

(

|π′(t)(b(t) + δ(t)− r(t)1n)|+ ‖σ
′(t)π(t)‖

2
)

dt <∞.

It follows thatX(t) defines a wealth associated with the initial capital x and cumulative income
process Γ(t). Namely, if π0(t) = X(t)−π′(t)1n, (π0, π) defines a portfolio process whose wealth
process is X(t) and cumulative income process is Γ(t). Moreover, it follows that

H0(t)X(t)−

∫

(0,t]

H0(s) dΓ(s)

= x+
∫ t

0
H0(s)

[

σ′(s)π(s)−X(s)θ(s)
]′
dW (s) . (4.2)
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We say that the portfolio is state Γ-tame if the process H0(t)X(t) is (uniformly) bounded
below.
We propose to extend the concepts of European contingent claim, financiability and complete-
ness. Let Y (t) t ∈ [0, τ ] be a cumulative income process with Y (0) = 0. Assume that Y
has a decomposition Y (t) = Yloc(t) + Yfv(t), as a sum of a local martingale and a process of
finite variation. Let Yfv(t) = Y +

fv(t)− Y
−
fv(t) be the representation of Yfv(t) as the difference

of two non decreasing RCLL progressively measurable processes with Y +
fv(0) = Y −fv(0) = 0,

where Y +
fv(t) and Y

−
fv(t) are the positive and negative variation of Yfv(t) in the interval [0, t]

respectively. We denote by |Yfv| (t) = Y +
fv +Y

−
fv(t) the total variation of Yfv(t) on the interval

[0, t]. We also denote Y − the process defined as Y −(t) = Yloc(t)− Y
−
fv(t).

Definition 4.1. Given a stopping time τ ∈ S, we shall call state European contingent claim
(SECC) with expiration date τ any progressively measurable semi-martingale Y (t), t ∈ [0, τ ],
with Y (0) = 0, such that −

∫ τ

0
H0(t) dY

−
fv(t) is bounded below and

E

[
∫ τ

0

H2
0 (t) d 〈Y 〉 (t)

]

+E

[
∫ τ

0

H0(t) d |Yfv| (t)

]

<∞. (4.3)

Here 〈Y 〉 (t) stands for the quadratic variation process of the semi-martingale Y (t). We define
ue by the formula

ue = E

∫ τ

0

H0(t) dY. (4.4)

Definition 4.2. A state European contingent claim Y (t) with expiration date τ is called
attainable if there exist a state (−Y )-tame portfolio process π(t), t ∈ [0, τ ] with

Xue,π,−Y (τ−) = Y (τ), a.s. (4.5)

The market model M is called state complete if every state European contingent claim is
attainable. Otherwise it is called state incomplete.

For the following theorem we assume {i1 < · · · < ik} ⊆ {1, · · · , d} is a set of indexes and let
{ik+1 < · · · < id} ⊆ {1, · · · , d} be its complement. Let σi(t), 1 ≤ i ≤ k, be the ith column
process for the matrix valued process (σi,j(t)), 0 ≤ t ≤ T . Namely, σi(t), 1 ≤ i ≤ k, is
the Rn-valued progressively measurable process whose jth, 1 ≤ j ≤ d entry agrees with
σi,j(t), for 0 ≤ t ≤ T . We denote by σi1,··· ,ik(t), 0 ≤ t ≤ T the n × k matrix valued
process whose jth column process agrees with σij (t), 0 ≤ t ≤ T for 1 ≤ j ≤ k. We shall

denote as {F i1,··· ,ik
t , 0 ≤ t ≤ T} the P augmentation by the null sets of the natural filtration

{σ(Wi1(s), · · · ,Wik(s), 0 ≤ s ≤ t), 0 ≤ t ≤ T}.

Theorem 4.1. Assume that θi(t) = 0 for i /∈ {i1, · · · , ik}, where θ(t) = (θ1(t), · · · , θd(t)) is the
market price of risk. Assume that σi1,··· ,ik(t) is a F

i1,··· ,ik
t -progressively measurable matrix val-

ued process such that Range(σik+1,··· ,id(t)) = Range⊥(σi1,··· ,ik(t)) almost surely for Lebesgue-

almost-every t. In addition assume that the interest rate process γ is F i1,··· ,ik
t -progressively

measurable. Then, any F i1··· ,ik
t -progressively measurable state European contingent claim is

attainable if and only if Rank(σi1,··· ,ik(t)) = k a.s. for Lebesgue-almost-every t. In partic-
ular, a financial market M is state complete if and only if σ(t) has maximal range a.s. for
Lebesgue-almost-every t, 0 ≤ t ≤ T .
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Proof of sufficiency. Let Y (t), t ∈ [0, τ ], be a F i1,··· ,ik(t)-progressively measurable SECC with
τ ∈ S. Define

X(t) = H−10 (t)E

[

∫

(t,τ ]

H0(s) dY (s) | F i1,··· ,ik(t)

]

for t ∈ [0, τ ] . (4.6)

From the representation of Brownian martingales as stochastic integrals it follows that there
exist a progressively measurable Rd-valued process ϕ′(t) = (ϕ1(t), · · · , ϕd(t)), t ∈ [0, τ ], such
that

H0(t)X(t) +

∫

(0,t]

H0(s) dY (s) = ue +

∫ t

0

ϕ′(s) dW (s) (4.7)

where ϕi(t) = 0 for i /∈ {i1, · · · , ik}. Define πe(t), t ∈ [0, τ ], as the unique Rn-valued progres-
sively measurable process such that

σ′(t)πe(t) = H−10 (t)ϕ(t) +X(t)θ(t). (4.8)

The existence and uniqueness of such a portfolio follows from the hypotheses (see Lemma
1.4.7 in Karatzas and Shreve (1998)). Define (πe)0(t) = X(t)− π(t)′1n. It follows using Itô’s
formula that X(t) defines a wealth process with cumulative income process −Y (t), with the
desired characteristics. (To prove the state −Y (t) tameness of the portfolio πe(t), let u

−
e be the

constant defined by the equation (4.4) corresponding to the SECC Y −(t). Let X−(t), ϕ−(t),
and π−e (t) be the processes defined by equations (4.6), (4.7), (4.8) respectively corresponding
to the SECC Y −(t); it follows that X(t) ≥ X−(t), 0 ≤ t ≤ τ . The −Y (t) tameness of πe(t) is
implied by the −Y −(t) tameness of π−e (t). The latter follows by the definition of SECC.)

Proof of necessity. Let us assume that any F i1,··· ,ik
t -progressively measurable SECC is attain-

able. Let f : L(Rk;Rn) 7→ Rk be a bounded measurable function such that: f(σ) ∈ Kernel(σ)
and f(σ) 6= 0 if Kernel(σ) 6= {0}, hold for every σ ∈ L(Rk;Rn). (See Karatzas (1996),
p. 9). Let us define ψ(t) to be the bounded, F i1,··· ,ik

t -progressively measurable process such
that ψi1,··· ,ik = f(σi1,··· ,ik(t)) and ψj(t) = 0 for j /∈ {i1, · · · , ik}. We define the F i1,··· ,ik -
progressively measurable SECC by

Y (t) =

∫ t

0

1

H0(s)
ψ′(s) dW (s) for 0 ≤ t ≤ τ. (4.9)

Let πe be the −Y state tame portfolio with wealth process Xue,πe,−Y as in equation (4.5)
and ue defined by equation (4.4). It follows that

H0(t)X
ue,πe,−Y (t) +

∫

(0,t]

H0(s) dY (s) = ue +

∫ t

0

ψ′(s) dW (s) (4.10)

is a martingale. Using equation (4.2), and the representation of Brownian martingales as
stochastic integrals we obtain

ψi1,··· ,ik(t) = σ′i1,··· ,ik(t)πe(t)−X(t)θi1,··· ,ik(t)

∈ Kernel⊥(σi1,··· ,ik(t) ∩Kernel(σi1,··· ,ik(t)) = {0} (4.11)

a.s. for Lebesgue-almost-every t, 0 ≤ t ≤ τ . The result follows.
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Remark 4.1. Fernholz, Karatzas, and Kardaras (2004) are able to hedge contingent claims
of European type when a martingale measure fails to exists. The framework of their paper is
the same as ours, namely, the model of security prices as Itô processes. In addition they as-
sume that the eigenvalues of the stochastic n×n-matrix of variation-covariation rate processes
σ(t)σ′(t), t ∈ [0, T ] are uniformly bounded away from zero. This latter condition implies that
equation (3.3) holds; as a consequence their results on valuation are implied by Theorem 4.1.

5 State American Contingent Claims. Valuation.

Definition 5.1. Let (Γ(t), L(t)), 0 ≤ t ≤ τ , a couple of RCLL progressively measurable
semi-martingales where Γ(t), t ∈ [0, τ ], is a cumulative income process with Γ(0) = 0. Assume
that the process

Y (t) =

∫

(0,t]

H0(s) dΓ(s) + L(t)H0(t) for 0 ≤ t ≤ τ, (5.1)

is a continuous semi-martingale such that Y and L(t)H0(t), 0 ≤ t ≤ τ , are uniformly bounded
below. We shall call a state American contingent claim (SACC) a couple of processes as above
such that

ua = sup
τ ′∈S(τ)

E[Y (τ ′)] <∞, (5.2)

where S(τ) = {τ ′ ∈ S; τ ′ ≤ τ}. We shall call the process Y (t) the discounted payoff process,
L(t) the lump-sum settlement process and ua the value of the state American contingent claim.

Theorem 5.1. Let {i1, · · · , ik} ⊆ {1, · · · , d} be a set of indexes. Assume the hypotheses of
theorem 4.1. If (Γ(t), L(t)) is a state American contingent claim where the discounted payoff
process is F i1,··· ,ik

t -progressively measurable then there exist a −Γ(t) state tame portfolio πa
such that

Xua,πa,−Γ(t) ≥ L(t) a.s. for 0 ≤ t ≤ τ. (5.3)

Indeed,

ua = inf{u ∈ R | there exist a − Γ(t) state tame portfolio

π with Xu,π,−Γ(t) ≥ L(t) a.s. for 0 ≤ t ≤ τ}. (5.4)

Lemma 1. Given τ1, τ2 ∈ S (τ), there exist τ ′ ∈ S (τ) with

ua ≥ E [Y (τ ′)] ≥ max {E [Y (τ1)] ,E [Y (τ2)]}

such that

E [Y (τ ′) | Ft] ≥ max {E [Y (τ1) | Ft] ,E [Y (τ2) | Ft]} for all t ∈ [0, τ ].

Proof. Define

τ ′ = τ1 ∧ τ21E[Y (τ1∨τ2)|Ft](τ1∧τ2)<Y (τ1∧τ2)

+ τ1 ∨ τ21E[Y (τ1∨τ2)|Ft](τ1∧τ2)≥Y (τ1∧τ2)

where s ∨ t = max{s, t}, and s ∧ t = min{s, t}. Then τ ′ has the required properties.
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Proof of Theorem 5.1 . Let Y (t), 0 ≤ t ≤ τ , be the discounted payoff process. There exist
a sequence of stopping times (σn) in S (τ) such that E [Y (σn)] ↑ ua, E [Y (σn+1) | Ft] ≥
E [Y (σn) | Ft] for t ∈ [0, τ ], with the property that for any rational q ∈ Q ∩ [0, T ], there exist
Nq ∈ N such that E [Y (σn) | Ft] (q ∧ τ) ≥ Y (q ∧ τ) . The latter follows by lemma 1. By
Doob’s inequality, E [Y (σn) | Ft] is a Cauchy sequence in the sense of uniform convergence in
probability. By completeness of the space of local-martingales, there exist a local-martingale
Y (t), t ∈ [0, τ ], such that E [Y (σn) | Ft]→ Y (t), t ∈ [0, τ ], uniformly in probability. It follows
by continuity that Y (t) ≥ Y (t) for t ∈ [0, τ ], and clearly Y (0) = ua. Define τn to be the
first hitting time of Y (t), t ∈ [0, τ ], to the set [−n, n]

c
. From the representation of Brownian

martingales as stochastic integrals it follows that there exist a progressively measurable Rd-
valued process ϕ′(t) = (ϕ1(t), · · · , ϕd(t)), t ∈ [0, τn], such that

Y (t) = ua +

∫ t

0

ϕ′(s) dW (s) (5.5)

where ϕi(t) = 0 for i /∈ {i1, · · · , ik}. Define X(t), t ∈ [0, τ ], by

H0(t)X(t) +

∫

(0,t]

H0(s) dΓ(s) = Y (t).

Define πa(t), t ∈ [0, τ ], as the unique Rn-valued progressively measurable process such that

σ′(t)πa(t) = H−10 (t)ϕ(t) +X(t)θ(t).

The existence and uniqueness of such a portfolio follows by the hypotheses (see Lemma 1.4.7 in
Karatzas and Shreve (1998)). Define (πa)0(t) = X(t)−πa(t)

′1n. It follows using Itô’s formula
that X(t) defines a wealth process with cumulative income process −Γ(t), t ∈ [0, τ ], with the
desired characteristics. Equation (5.4) is a consequence to the fact that the discounted payoff
process is a super-martingale.

Remark 5.1. Let us observe that it is not possible to obtain optimal stopping times for
the version of the theorem for valuation of American contingent claims that we presented.
Nonetheless, it is worth to point out that the conditions of the Theorem 5.1, are probably the
weakest possible.
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28(3), 375–392.



State Tameness 11

Back, K., and S. Pliska (1991): “On the Fundamental Theorem of Asset Pricing with an
Infinity State Space,” Journal of Mathematical Economics, 20, 1–18.

Bättig, R. (1999): “Completeness of Securities Market Models–An Operator Point of View,”
The Annals of Applied Probability, 9(2), 529–566.

Bättig, R. J., and R. J. Jarrow (1999): “The Second Fundamental Theorem of Asset
Pricing: A New Approach,” The Review of Financial Studies, 12(5), 1219–1235.

Bensoussan, A. (1984): “On the Theory of Option Pricing,” Acta Appllicandae Mathemati-
cae, 2, 139–158.

Boyle, P., M. Broadie, and P. Glasserman (1997): “Monte Carlo Methods for Security
Pricing,” Journal of Economic Dynamics and Control, 21, 1267–1321.

Broadie, M., and J. Detemple (1996): “American Option Valuation: New Bounds, Ap-
proximations, and a Comparison of Existing Methods,” The Review of Financial Studies,
9(4), 1211–1250.

Carverhill, A. P., and N. Webber (1990): American Options: Theory and Numerical
Analysis, Options: Recent Advances in Theory and Practice. Manchester University Press.

Clark, S. A. (1993): “The Valuation Problem in Arbitrage Price Theory,” Journal of Math-
ematical Economics, 22, 463–478.

Delbaen, F. (1992): “Representing Martingale Measures When Asset Prices are Continuous
and Bounded,” Mathematical Finance, 2, 107–130.

Delbaen, F., and W. Schachermayer (1994): “A General Version of the Fundamental
Theorem of Asset Pricing,” Mathematiche Annalen, 300, 463–520.

(1995a): “Arbitrage Possibilities in Bessel Processes and their Relations to Local
Martingales,” Probability Theory and Related Fields, 102, 357–366.

(1995b): “The Existence of Absolutely Continuous Local Martingale Measures,” The
Annals of Applied Probability, 5, 926–945.

(1996): “Attainable Claims with P’th Moments,” Annales de l’Institut Henri Poincaré
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