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Abstract. We study the behavior of shocks in the asymmetric simple exclusion process on Z

whose initial distribution is a product measure with a finite number of shocks. We prove that
if the particle hopping rates of this process are in a particular relation with the densities of the
initial measure then the distribution of this process at any time t ≥ 0 is a linear combination
of shock measures of the structure similar to that of the initial distribution. The structure of
this linear combination allows us to interpret this result by saying that the shocks of the initial
distribution perform continuous time random walks on Z interacting by the exclusion rule. We
give explicit expressions for the hopping rates of these random walks. The result is derived
with a help of quantum algebra technique. We made the presentation self-contained for the
benefit of readers not acquainted with this approach, but interested in applying it in the study
of interacting particle systems.
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1 Introduction

The Asymmetric Simple Exclusion Process (ASEP, for short) on Z is the name for the evolution
of identical particles on Z that obey the following rules: (1) each particle performs a continuous
time simple random walk on Z; (2) when a particle hops to a site occupied by another particle,
the former is immediately returned to the position from where it hopped (this property is usually
called “the exclusion rule”, another way of phrasing this rule is to say that a hopping attempt
is rejected when the site where the particles tries to move is occupied.); (3) all the particles
have the same hopping rate to the left (resp., right) which we denote by c` (resp., cr). A formal
definition of ASEP will be given in Section 3, where it is needed. More details in respect to the
construction of the ASEP may be found in [L1, L2].

We study the evolution of shocks in the ASEP on Z that starts from a measure with a finite
number of shocks (the shock measures considered here are explicitly defined in the statements
of the theorems). We state (Theorems 1 and 2) that at any time t ≥ 0, the distribution of this
process is a linear combination of shock measures of a structure similar to that of the initial
one. The probabilistic interpretation of the weights in this linear combinations allows us to say
that the shocks (or better, the shock positions) perform continuous time random walks on Z

interacting by the exclusion rule; the hopping rates of these random walks are given by (3) and
(6) below. This phenomenon has been observed in Monte-Carlo simulations [BCFG, KSKS] for
the case of a single shock.

We derive our results from the quantum algebra symmetry of the generator of the ASEP which
arises from the integrability of the related six-vertex model in statistical mechanics (see [KR],
[PS]). This approach is rarely used by probabilists who usually employ the technique based
on the second class particle for studying shocks in ASEP (see [F1], [FKS], [FF] and references
therein). In fact, this technique has been applied in [FFV] to the case of multiple shocks. The
results from [FFV] have an asymptotic form (time → ∞) and involve certain space/time change,
while our results provide exact information for any t ≥ 0 and for all finite lattice distances (for
the second class particle to provide a detailed information on the shock measure, one usually
needs that the process starts from its steady state, as one may see for example in [DJLS, DLS];
another advantage of our approach is that it applies to a multi-shock case as easily as to a single-
shock). The results from [FFV] and ours complement one another in a manner that is worth
being mentioned. Namely, if we apply the appropriate time-space rescaling to our results then
we recover those from [FFV], and, moreover, the character of the interaction between shocks
revealed in the present paper allows one to explain the phenomena observed in [FFV] through
the time-space re-scale lenses. Note however, that our results require the particle hopping rates
to be in a particular relation to the initial particle densities (the assumptions (1) and (4) from
our theorems) while the phenomena observed in [FFV] do not depend on the initial conditions.
This independence suggests that some basic features of the interaction between shocks that are
described in our paper, persist also in general. Unfortunately, we can’t state rigorously the
counterpart of our results for the general case.

We feel that the study of ASEP could benefit from a popularization among probabilists of the
quantum algebra technique (Remark 4 from this section justifies this statement). One of the
objectives of our paper is, thus, to give a self contained presentation of this technique. In Note 3
(after (34)) we indicate why this technique works efficiently, at least in our case.

From a physical viewpoint a shock may be considered as a collective dynamical mode which
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describes the motion of many particles by just a single coordinate, viz. the ‘shock position’.
Macroscopically this position marks the sudden increase of the local density in space, as seen
e.g. at the end of a traffic jam. Generally, such a description of a many-body system by just
a few characteristic quantities (in this case: the shock positions) is an obvious necessity as one
cannot possibly measure or handle the huge amount of data specifying the state of each particle
in a macroscopic system. The art is the identification of the relevant collective modes and
the description of their mutual interdependence in terms of mathematical equations (physical
laws). These equations cannot normally be derived from the microscopic dynamics but have
to be guessed and verified experimentally. Moreover, such a reduced description is usually not
exact, but only approximately true to various degrees of accuracy. The ASEP is a nice and
rare exception from this rule. The main results of our paper, the following two theorems, show
that for certain families of shock densities the collective description is not an approximation,
but actually exact. This feature, combined with the importance of shocks in non-equilibrium
systems, provides a major physical motivation for our study.

Below in the text, we use the commonly accepted identification of the set {0, 1}Z with the set
of all configurations of particles on Z, satisfying the constraint “at most one particle per site”,
namely, an element η ∈ {0, 1}Z is called a configuration of particles and η(i) is interpreted by
saying that the site i ∈ Z is either occupied by a particle or empty.

Theorem 1. (The evolution of the shock in ASEP starting from a single-shock measure.)
For k ∈ Z, let µk denote the product measure on {0, 1}Z with the density ρ1 to the left of the
site k (including k) and with the density ρ2 elsewhere where ρ1, ρ2 are two arbitrary numbers
from (0, 1). We call µk a shock measure with the shock at k. Consider the ASEP on Z with the
particle hopping rates c` and cr to the left and to the right respectively, satisfying

ρ2(1 − ρ1)
ρ1(1 − ρ2)

=
cr

c`
(1)

Let µk(t) denote the distribution at time t of this ASEP, starting from µk. Then, for any k ∈ Z,

µk(t) =
+∞∑

i=−∞
pt(i | k)µi (2)

where pt(i | k) is the probability that a particle that performs a continuous-time simple random
walk on Z with the hopping rates

δ1 =
1 − ρ1

1 − ρ2
c` and δ2 =

1 − ρ2

1 − ρ1
cr (3)

to the left and to the right respectively, is at the site i at time t, starting from the site k.

Remark 1. The numerical value of pt(i | k) is known:

pt(i | k) = e−(δ1+δ2)t

(
δ1

δ2

)(k−i)/2

Ik−i(2
√

δ1δ2 t)

where Ij(·) denotes the modified Bessel function.
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Theorem 2. (The evolution of the shocks in ASEP starting from a measure with several shocks
and extra particles at the shock positions.)
Let n be a positive integer and let ρ1, . . . , ρn+1 be n + 1 real numbers from (0, 1) that satisfy
the following relations

for some q,
ρi+1(1 − ρi)
ρi(1 − ρi+1)

= q2, for all i = 1, . . . , n (4)

For arbitrary integers k1 < k2 < · · · < kn, let µk1···kn denote the product measure on {0, 1}Z
with

the density ρ1 on (∞, k1);
the density ρi on (ki−1, ki), i = 2, . . . , n;
the density ρn+1 on (kn,+∞);
the density 1 on the set {k1, . . . , kn}.

We call µk1···kn shock measure with the shocks at k1, . . . , kn. Consider the ASEP on Z with the
particle hopping rates c` and cr to the left and to the right respectively, that satisfy

cr

c`
= q2 for q from (4)

Let µk1···kn(t) denote the distribution of this ASEP at time t, starting from µk1···kn . Then,

µk1···kn(t) =
∑

i1<i2<···<in

pt

(
(i1, . . . , in)

∣∣ (k1, . . . , kn)
)

µi1···in (5)

where pt

(
(i1, . . . , in)

∣∣ (k1, . . . , kn)
)

has the following probabilistic interpretation: Consider n
particles that perform continuous time random walks on Z and interact by the exclusion rule,
where the hopping rates of the j-th particle (counting from the left) are

δj` =
1 − ρj

1 − ρj+1
c` and δjr =

1 − ρj+1

1 − ρj
cr (6)

to the left and to the right respectively. Then, pt

(
(i1, . . . , in)

∣∣ (k1, . . . , kn)
)

is the probability of
finding these particles at the sites i1, . . . , in at time t, when their initial positions are k1, . . . , kn,
respectively.

Remark 2. The particles that are put at the shock positions of µk1···kn (that is, at the sites
k1, . . . , kn) are not the second class particles in the sense of [FKS] and [FFV].

Remark 3. The numerical values of the transition probabilities

pt

(
(i1, . . . , in)

∣∣ (k1, . . . , kn)
)

can be calculated using the Bethe ansatz along the lines indicated in [S3].
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Remark 4. We note that a result similar to Theorems 1 and 2 can be obtained for the ASEP
on a finite lattice with open boundary conditions where particles enter and exit the system with
appropriately chosen rates [K]. The relationship (1) has also appeared in [DLS] where it was
observed that for this choice of densities the steady state measures to the right and left resp.
of a second-class particle are Bernoulli at all finite lattice distances, not just asymptotically.
Our result relates the origin of this relation to the quantum algebra symmetry and furthermore
suggests that a similar statement is true for all times and could be extended to a system with
several second-class particles with intermediate densities of first-class particles given by (4). In
order to prove this conjecture one would have to prove the analog of Theorem 2 with first-class
particles on sites k1 · · · kn replaced by second-class particles. We do not know whether an analog
of Theorem 2 would hold, if µk1···kn were a shock measure without extra particles situated at
the shock positions.

Let us now indicate the main steps of the proof of Theorem 1 and the technique employed in
each of these steps.
Step 1. We fix arbitrarily m ∈ N and we consider the ASEP on the finite lattice M :=
{−m + 1,−m + 2, . . . ,m} with the particle hopping rates c` and cr to the left and to the right,
respectively; in this process the particles are prohibited to exit from M. For k ∈ M, let µm

k

denote the product measure on {0, 1}M with the density ρ1 on the sites −m + 1, . . . , k and the
density ρ2 on the sites k +1, . . . ,m, and let µm

k (t) denote the distribution of the ASEP on M at
time t, starting from µm

k . In Step 1, we derive a system of differential-difference equations (see
(8) below) that involve the functions from the family {µm

k (s), s ≥ 0}k∈M. This system is almost
closed with respect to these functions, but not completely. This incompleteness is caused by the
“boundary effect”, that is the prohibition of the particle jumps outside of M.
In Step 2, we consider the m → ∞ limit of the system of equations obtained in Step 1. We show
that in this limit, the boundary effect disappears and that the system “tends” to a particular
system of differential-difference equations. This system has the same structure as the system
of the differential-difference equations involving the functions {p·(i

∣∣ k), k, i ∈ Z} defined above.
This equivalence leads then to the desired result.

The proofs of Step 2 use some basic facts from the theory of differential equations and certain
classical tools from the field of Interacting Particle Systems (exactly to say, the coupling and
the convergence theorems) which one may find in [L1]. The proofs of Step 1 use a quantum
algebra symmetry ([KR]) of the generator of the ASEP which follows from its relationship to a
Heisenberg-type quantum spin chain. The description of this technique and its application to
the interacting particle systems may be found in [S2]; the present paper contains a short review.
In our arguments, we combine the classical tools with a recent result of Schütz (see (29) below
or eq. (3.8) in [S1]) which suggested to us that the distribution of ASEP, starting from a shock
measure, may be calculated explicitly for any time t ≥ 0. We also note that (29) is established
in [S1] using the assumption (1); we could not extend our results to the cases that violate this
assumption.

The proof of Theorem 2 is very similar to that of Theorem 1. There, certain generalizations
of the relation (29) are used in the place of (29). These generalizations have been derived by
Schütz in [S1] (see eq. (3.10) there).
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2 Proof of Theorem 1

2.1. Notations. Column vectors are denoted by |·〉 and row vectors are denoted by 〈·|. ”T”
means the transposition operation on both vectors and matrices. The tensor product is denoted
by ⊗, and A⊗k denotes the k-fold tensor product of A.

2.2. The vector representation of the space {0, 1}M and the measures on it. Recall
M := {−m + 1, . . . ,m − 1,m}. A configuration η ∈ {0, 1}M will be represented by the vector
|η〉 ∈ R

22m
which is defined in the following manner

|η〉 = |v−m+1〉 ⊗ |v−m+2〉 ⊗ · · · ⊗ |vm〉 (7)

where for each i = −m+1, . . . ,m, |vi〉 = (0, 1)T , if the i-th site in the configuration η contains a
particle, and |vi〉 = (1, 0)T , otherwise. Observe that for any configuration η, the corresponding
vector |η〉 has 1 at one of its coordinates and 0 at all others. We use this fact to enumerate the
elements of {0, 1}M: for i = 1, 2, . . . , 22m, ηi will denote the configuration such that |ηi〉 has 1
at the i-the coordinate. A measure µ on {0, 1}M will be then represented by the column vector
|µ〉 := (µ1, . . . , µ22m)T ∈ R

22m
, such that µi is the µ-measure of the configuration ηi. (Here,

and only here, µi means the i-th component of the vector |µ〉, and should not be confused with
µk from Theorem 1.) We remark that in the vector formalism set up here it is often useful to
embed R

22m
in IC22m

and hence consider vectors as elements of the complex vector space [S2].
In the present context, however, only the real vector space will be used.

2.3. Lemma 1. (The main relation that yields the proof of Thm. 1) Let m be
an arbitrarily fixed natural number and let M := {−m + 1,−m + 2, . . . ,m}. For a measure
µ on {0, 1}M, let µ̄ denote the measure that coincides with µ on {0, 1}M\{−m+1} and that
is concentrated on the configurations that have a particle at the site −m + 1 (that is, µ̄

[
η ∈

{0, 1}M : η(−m + 1) = 1
]

= 1); also let µ̂ denote the measure that coincides with µ on

{0, 1}M\{m} and that is concentrated on the configurations that have a particle at the site m.
Let c` and cr be two arbitrarily fixed positive real numbers. For a measure µ on {0, 1}M let µ(t)
denote the distribution at time t of ASEP on M with the particle hopping rates c` and cr to the
left and to the right, respectively, given that the initial distribution is µ. Let ρ1, ρ2 relate to c`, cr

by (1). For k = −m, . . . ,m, let µm
k denote the product measure on {0, 1}M with the density

ρ1 on the sites −m + 1, . . . , k and the density ρ2 on the sites k + 1, . . . ,m (to avoid possible
confusions, let us state explicitly that µm−m (resp., µm

m) is the product measure on {0, 1}M with
the density ρ2 (resp., ρ1)). Then

d

dt
|µm

−m(t)〉 = −ρ2(cr − c`)
(|µ̄m

−m(t)〉 − |µ̂m
−m(t)〉) (8a)

d

dt
|µm

k (t)〉 = δ1|µm
k−1(t)〉 + δ2|µm

k+1(t)〉 − (cr + c`)|µm
k (t)〉

− (cr − c`) (ρ1|µ̄m
k (t)〉 − ρ2|µ̂m

k (t)〉) , k = −m + 1, . . . ,m − 1 (8b)
d

dt
|µm

m(t)〉 = −ρ1(cr − c`) (|µ̄m
m(t)〉 − |µ̂m

m(t)〉) (8c)

where the constants δ1 and δ2 have been defined in (3).

2.4. How Theorem 1 follows from Lemma 1. For m ∈ N, let us consider the follow-
ing system of differential-difference equations involving vector-functions {|νm

k (t)〉, t ≥ 0}k∈M
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(|νm
k (t)〉 ∈ R

22m
, ∀ k,m, t):

d

dt
|νm

−m(t)〉 = δ2|νm
−m+1(t)〉 − δ1|νm

−m(t)〉 (9a)

d

dt
|νm

k (t)〉 = δ1|νm
k−1(t)〉 + δ2|νm

k+1(t)〉 − (δ1 + δ2)|νm
k (t)〉,

k = −m + 1, . . . ,m − 1 (9b)
d

dt
|νm

m(t)〉 = δ1|νm
m−1(t)〉 − δ2|νm

m(t)〉 (9c)

with the initial conditions
|νm

k (0)〉 = |µm
k 〉, k = −m, . . . ,m (10)

Let us look for the solution of (9),(10) in the form

|νm
k (t)〉 =

m∑
i=−m

ym
t (k | i)|µm

i 〉, k = −m, . . . ,m (11)

Plugging (11) in (9), we obtain a system of (2m + 1)2 equations involving the scalar functions
{ym

t (k | i), t ≥ 0}i,k=−m···m. These equations may be separated into (2m + 1) mutually indepen-
dent systems (this means that any scalar function appears solely in one of these 2m+1 systems).
These systems are indexed by i = −m, . . . ,m and the i-th of them has the following form:

d

dt
ym

t (−m | i) = δ2y
m
t (−m + 1 | i) − δ1y

m
t (−m | i) (12a)

d

dt
ym

t (k | i) = δ1y
m
t (k − 1 | i) + δ2y

m
t (k + 1 | i) − (δ1 + δ2)ym

t (k | i),
k = −m + 1, . . . ,m − 1 (12b)

d

dt
ym

t (m | i) = δ1y
m
t (m − 1 | i) − δ2y

m
t (m | i) (12c)

The initial condition for the i-th system is easily obtained from (10) and (11). It has the following
form:

ym
0 (i | i) = 1, ym

0 (k | i) = 0, when k 6= i (13)

ym
t (k | i) that satisfies (12) and (13) is known to have the following probabilistic interpretation

([F], Chapter XVIII, §5): it is the probability that a particle that performs a continuous time
simple random walk on −m, . . . ,m with the hopping rates δ1 and δ2 to the right and to the left,
respectively, will be at the site k at time t, starting from the site i. Let pt(i | k) be as defined
in Theorem 1. Clearly, ym

t (k | i) → pt(i | k) as m → ∞, while t, i and k are arbitrary but fixed.
Thus, from (11), we conclude that

Var

(
νm

k (t) ,
m∑

i=−m

pt(i | k)µm
i

)
→ 0 as m → ∞ for any fixed k and t (14)

where Var means the variational distance between measures that correspond to the vectors
|νm

k (t)〉 and
∑m

i=−m pt(i | k)|µm
i 〉.

The rest of our argument is not rigorous but may be made so by a standard technique. We
believe that a reader acquainted with the classical methods used in the field of interacting
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particle systems has a clear idea of how it may be made. However, for the sake of completeness
of our proofs, we shall present the formalization of this argument in a separate section (see
Section 4).

Suppose that µm
k (t) has a limit measure on {0, 1}Z (as m → ∞ while k and t are kept fixed)

that we denote by µ∞
k (t). Intuitively, the family {µ∞

k (·)}k∈Z must then satisfy the system of
differential-difference equations obtained by taking the m → ∞ limit of (8). Let us “derive” this
limit system. Since Z “has no boundaries” then (i) both µ̂∞

k (·) and µ̄∞
k (·) must be substituted

by µ∞
k (·); and (ii) the equations (8a) and (8c) should not exist while the equations (8b) should

hold for all k ∈ Z. Moreover, due to (i) and because (cr + c`) + (cr − c`)(ρ1 − ρ2) = δ1 + δ2, the
equation (8b) acquires the following form:

d

dt
|µ∞

k (t)〉 = δ1|µ∞
k−1(t)〉 + δ2|µ∞

k+1(t)〉 − (δ1 + δ2)|µ∞
k (t)〉 (15)

Thus, the limit system consists of the equations (15) indexed by k ∈ Z.

By analogy with µ∞
k (t), let us now define ν∞

k (t) := limm→∞ νm
k (t). A similar reasoning shows

that {ν∞
k (·)}k∈Z satisfies (15) for any k ∈ Z, with µ being substituted by ν throughout. Since

also ν∞
k (0) = µ∞

k (0),∀k (as it follows directly from our constructions) then ν∞
k (t) = µ∞

k (t),∀k
and ∀t ≥ 0. Thus, Var

(
µ∞

k (t) ,
∑∞

i=−∞ pt(i | k)µ∞
i

)
= Var

(
ν∞

k (t) ,
∑∞

i=−∞ pt(i | k)µ∞
i

)
. But the

latter is 0 due to (14). Thus, (2) follows.

2.5. Preparing for the proof of Lemma 1. More notations. Let |η| denote the number
of particles in η ∈ {0, 1}M. For n = 0, 1, . . . , 2m, we define

|n〉 :=
∑

η : |η|=n

|η〉 ∈ R
22m

(16)

|n〉 is the (vector) sum of all (vector) configurations that have exactly n particles. One particular
case of the above definition will be frequently used. It is the vector |0〉 = (1, 0, 0, . . . , 0)T that
corresponds to the configuration η1 that has no particles. We draw the reader attention to the
fact that |1〉 should be distinguished from 1I; the latter is a 2 by 2 matrix defined in (22) below.
We also define the vector |s〉 by the first equality in (17) below; the alternative expressions of
|s〉 given in (17) will be used in our arguments.

|s〉 := (1, 1, . . . , 1)T =
(

1
1

)⊗2m

=
∑

η∈{0,1}M
|η〉 =

2m∑
n=0

|n〉 ∈ R
22m

(17)

By uppercase Latin letters we shall denote 22m-by-22m matrices with real entries. The matrices
that appear in our arguments will be usually written as a tensor product of 2-by-2 matrices. A
2-by-2 matrix will be denoted by a lower-case Latin letter. We shall usually refer to matrices as
operators.

2.6. Preparing for the proof of Lemma 1. An example. Let M = {0, 1}. The vector
(1, 0)T ⊗(1, 0)T = (1, 0, 0, 0)T represents the configuration in which both sites 0 and 1 are empty.
This vector is denoted by |0〉 and by |η1〉, in our notations. The vector (1, 0)T ⊗ (0, 1)T =
(0, 1, 0, 0)T represents the configuration η in which the site 1 contains a particle and the site 0
does not. Interchanging the values of η at 0 and 1 gives the configuration which is represented
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by the vector (0, 0, 1, 0)T . Thus, |1〉 = (0, 1, 1, 0)T , while |2〉 = (0, 0, 0, 1)T ; the latter is also the
vector corresponding to the configuration in which both sites of M are occupied by particles.
The product measure with the density ρ1 at the site 0 and the density ρ2 at the site 1, is then
represented by the vector

(1 − ρ1, ρ1)T ⊗ (1 − ρ2, ρ2)T = ((1 − ρ1)(1 − ρ2), (1 − ρ1)ρ2, ρ1(1 − ρ2), ρ1ρ2)
T (18)

For two arbitrary positive numbers z and q, let us introduce

Q1 :=
(

1 0
0 q−2

)
⊗
(

1 0
0 1

)
, and Z :=

(
1 0
0 z

)⊗2

It may be checked straightforwardly that Q1Z|s〉 ≡ Q1 Z (1, 1, 1, 1)T = (1, zq−2)T ⊗ (1, z)T .
Thus, there exists a constant c = c(ρ1, ρ2, z, q) such that (18) = c−1Q1 Z |s〉. The last equality
is an illustration of the general relation (21) to be defined and used below.

2.7. Preparing for the proof of Lemma 1. The vector representation of a shock
measure. We define the constants

q :=
√

cr

c`
, z := ρ2/(1 − ρ2), α :=

1 + z

1 + zq−2
, β := (1 + z)−m(1 + zq−2)−m (19)

and the operators

Z :=
(

1 0
0 z

)⊗2m

, Qk :=
(

1 0
0 q−2

)⊗(k+m)

⊗
(

1 0
0 1

)⊗(m−k)

, k = −m, . . . ,m. (20)

It is straightforward to verify that

|µm
k 〉 = βαkQkZ|s〉, k = −m, . . . ,m (21)

where µm
k has been defined in the formulation of Lemma 1.

2.8. Preparing for the proof of Lemma 1. The matrix representation of the dynamics
of ASEP. We introduce four matrices

s+ :=
(

0 1
0 0

)
, s− :=

(
0 0
1 0

)
, p :=

(
0 0
0 1

)
, 1I :=

(
1 0
0 1

)
(22)

and then, for each k = −m + 1,−m + 2, . . . ,m, we introduce

S±
k := 1I ⊗ · · · ⊗ 1I ⊗ s± ⊗ 1I ⊗ · · · ⊗ 1I, and Pk := 1I ⊗ · · · ⊗ 1I ⊗ p ⊗ 1I ⊗ · · · ⊗ 1I

where a non-identity matrix appears at the (m+k)-th position, counting from the left to the right.
Notice that (1, 0)s+ = (0, 1)p = (0, 1), (0, 1)s− = (1, 0), (1, 0)p = (1, 0)s− = (0, 1)s+ = (0, 0);
and analogously, s+(0, 1)T = (1, 0)T , s−(1, 0)T = p(0, 1)T = (0, 1)T , p(1, 0)T = s+(1, 0)T =
s−(0, 1)T = (0, 0). These equations and the representation (7) yield the following properties
of S±

k and Pk: If a configuration η does not have a particle at the site k then |η′〉 := S−
k |η〉

corresponds to the configuration that coincides with η on M \ {k} and has a particle at k;
if to the contrary η has a particle at k then S−

k |η〉 = 0 (the latter means the vector with all
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components equal to 0; it is not |0〉). If a configuration η has a particle at the site k then
|η∗〉 := S+

k |η〉 corresponds to the configuration that coincides with η on M\ {k} and does not
have a particle at k; if to the contrary η does not have a particle at k then S+

k |η〉 = 0. Using the
equality (S+

k )T = S−
k and the above notations, we have that if η does not have a particle at k

then 〈η|S+
k = 〈η′| and 〈η|S−

k = 0, while if η has a particle at k then 〈η|S+
k = 0 and 〈η|S−

k = 〈η∗|.
Accordingly, S−

k and S+
k are called the particle creating/annihilating operators. The operator

Pk is called the number operator; when applied to |η〉, it returns |η〉, if there was a particle at
the site k, and results in 0 otherwise.

Let I := 1I⊗2m denote the identity matrix. Let us now define (everywhere below, c(`) ≡ c` and
c(r) ≡ cr)

Hc(`),c(r) := −
[

m−1∑
i=−m+1

cr

{
S+

i S−
i+1 − Pi(I − Pi+1)

}
+ c`

{
S−

i S+
i+1 − (I − Pi)Pi+1

}]
(23)

Let µ(0) be an arbitrary distribution on {0, 1}M and let |µ(0)〉 be its vector representation as
defined above. Denote then by |µ(t)〉 the vector representation of the distribution of ASEP at
time t, starting from µ(0). Using a standard argument (see for example Chpt. XVII of Feller
[F]), one finds that for all t ≥ 0,

d

dt
|µ(t)〉 = −Hc(`),c(r)|µ(t)〉 and consequently |µ(t)〉 = e−tHc(`),c(r) |µ(0)〉 (24)

The equations (24) express the relation of Hc(`),c(r) to the dynamics of ASEP. The operator
Hc(`),c(r) is called the Hamiltonian of ASEP on M.

2.9. Lemma 2. (An auxiliary result to be used in the proof of Lemma 1.)(
Hc(`),c(r)

)T = Hc(r),c(`) + (cr − c`) (P−m+1 − Pm) for all cr, c` > 0 and all m ∈ N.

Proof. It follows from the definitions that ∀k ∈ M,
(
S±

k

)T = S∓
k , and (Pk)

T = Pk. Using these
relations, an explicit expression for

(
Hc(`),c(r)

)T is easily obtained from (23). The lemma follows
then by straightforward calculations. �

2.10. Proof of Lemma 1. Let us define the following operators

S+
k (q) :=

(
1 0
0 q

)⊗k+m−1

⊗ s+ ⊗
(

1 0
0 q−1

)⊗m−k

, k ∈ M (25)

and introduce the following shorthand notations

D+
k :=

k∑
j=−m+1

S+
j (q), k ∈ M (26)

Let us now state three properties (eqs. (28), (27) and (29) below) that will be used in our
arguments. The first of them is the following commutation relation (27):

D+
mHc(r),c(`) = Hc(r),c(`)D

+
m (27)

10



The proof of (27) may be found in [S1] (see eq. 2.12 there). It was noted there that this relation
had been known before in a slightly different form [KR]. This relation (together with one for an
analogous operator D−

m not used here) and particle number conservation of the process reflects
a non-abelian invariance property of Hc(r),c(`) which is known as quantum algebra symmetry.
In the limit q → 1 of symmetric hopping, this becomes the well-known symmetry under the Lie
algebra SU(2) of the symmetric exclusion process. This symmetry is the algebraic origin [S2]
for the probabilistic duality relations [L1] in symmetric exclusion.

To state the second property, we need more definitions: for q > 0 and n ∈ Z
+, we define

[n]q := (qn − q−n)/(q − q−1) and [n]q! := [n]q[n − 1]q · · · [1]q; we also set [0]q! := 1. Using these
definitions and the creating/annihilating properties of s± (see the text above the equation (23))
one can derive by straightforward calculations that

〈n| =
1[

n
]
q
!
〈0|(D+

m)n, for all n = 0, 1, . . . , 2m (28)

The third property has been established in [S1] (see eq. 3.8 there). It has been used there to
derive certain duality relations for the ASEP, generalizing those for symmetric exclusion. It
states that

1[
n
]
q
!

[
(D+

m)n, Qk

]
=

q−n+1(q−2 − 1)[
n − 1

]
q
!

QkD
+
k (D+

m)n−1, for all k ∈ M, n = 1, . . . , 2m (29)

where
[
A,B

]
:= AB − BA is the commutator of the operators A and B.

Note 1. It is because of the form of the relation (29) that we shall first calculate
−〈µm

k |HT
c(r),c(`) and then pass to −Hc(`),c(r)|µm

k 〉 with the aid of Lemma 2. An alternative
way would be to derive the expression for

[
Qk, (D−

m)n
]

from (29) and then use it in the direct
calculation of −Hc(`),c(r)|µm

k 〉.
Note 2. Since (26) and consequently (29) are not defined for k = −m, the argument employed
in the derivation of (8a) will differ from that of (8b) and (8c).

We shall also need the following two relations that may be verified straightforwardly:

〈0|Qk = 〈0|, for all k = −m, . . . ,m, 〈0|Ha,b = 0, for all a, b > 0 (30)

Using (28), (29) and the first relation from (30), we conclude that for every n = 1, . . . , 2m,

〈n|Qk =
1

[n]q!
〈0| [(D+

m)n, Qk

]
+

1
[n]q!

〈0|Qk(D+
m)n

=
q−n+1(q−2 − 1)

[n − 1]q!
〈0|D+

k (D+
m)n−1 +

1
[n]q!

〈0|(D+
m)n, ∀k ∈ M (31)

Applying −Hc(r),c(`) to (31) and using then (27) and the second relation from (30), we get that
for each n = 1, . . . , 2m and for each k ∈ M,

−〈n|QkHc(r),c(`) = −q−n+1(q−2 − 1)
[n − 1]q!

〈0|D+
k Hc(r),c(`)(D

+
m)n−1 (32)

11



Notice that we have applied −Hc(r),c(`). The passage to Hc(`),c(r) will be then done later with
the help of Lemma 2. For an arbitrarily fixed k ∈ M let us consider separately

−〈0|D+
k Hc(r),c(`) = −

k∑
j=−m+1

〈0|S+
j (q)Hc(r),c(`) (33)

Here 〈0|S+
j (q) is just the row vector that corresponds to the configuration that has a single par-

ticle which occupies the site j; let 〈1j | denote the vector that corresponds to this configuration,
j ∈ M. The result of the action of Hc(r),c(`) from the right on 〈1j | is easily obtained from the
properties of S±

i ’s and Pi’s described in the text right before the equation (23). They are as
follows:

− 〈1−m+1|Hc(r),c(`) = cr〈1−m+2| − c`〈1−m+1| (34a)

− 〈1j |Hc(r),c(`) = c`〈1j−1| + cr〈1j+1| − (cr + c`)〈1j |, j = −m + 2, . . . ,m − 1 (34b)

− 〈1m|Hc(r),c(`) = c`〈1m−1| − cr〈1m| (34c) (1)

Note 3. The relations (34) are the cornerstone in the derivation of the lemma assertion.
The form of these relation suggests the following informal remark on the place and role of the
quantum algebra technique in our arguments: it allows us to deduce the result of the action of
a Hamiltonian on a measure from the result of its action on configurations that contain a single
particle.

From (32), (33), (34), we conclude that when k = −m + 2, . . . ,m − 1, we have for each n =
1, . . . , 2m,

−〈n|QkHc(r),c(`) =
q−n+1(q−2 − 1)

[n − 1]q!
〈0| (c`D

+
k−1 + crD

+
k+1 − (c` + cr)D+

k

)
(D+

m)n−1 (35)

We now add 0 = 1
[n]q! {c` + cr − (c` + cr)} 〈0|(D+

m)n to the right hand side of (35) and using
then (31), derive that for n = 1, . . . , 2m and k = −m + 2, . . . ,m − 1,

−〈n|QkHc(r),c(`) = c`〈n|Qk−1 + cr〈n|Qk+1 − (c` + cr)〈n|Qk (36b)

By a similar reasoning (and using that Q−m is just the identity operator), we have that for each
n = 1, . . . , 2m,

− 〈n|Q−m+1Hc(r),c(`) = cr〈n|Q−m+2 + c`Q−m〈n| − (c` + cr)〈n|Q−m+1 (36a)

− 〈n|QmHc(r),c(`) = 0 (36c)

Notice that we have established (36a-c) for n = 1, 2, . . . , 2m. However, they are true also for
n = 0 which follows directly from (30).

The equations (36) and the following relations (that may be obtained by straightforward calcu-
lations)

QkZ = ZQk, Q
T
k = Qk, ∀ k = −m, . . . ,m; ZT = Z; Ha,bZ = ZHa,b ∀ a, b > 0 (37)
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will be used now to express −〈µm
k |Hc(r),c(`). For k = −m + 1, . . . ,m − 1, we have

−〈µm
k |Hc(r),c(`) = − βαk

{
2m∑
n=0

〈n|QkHc(r),c(`)

}
Z

=c`αβαk−1

{
2m∑
n=0

〈n|Qk−1Z

}

+ crα
−1βαk+1

{
2m∑
n=0

〈n|Qk+1Z

}

− (c` + cr)βαk

{
2m∑
n=0

〈n|QkZ

}

=δ1〈µm
k−1| + δ2〈µm

k+1| − (c` + cr)〈µm
k |

(38)

where we have used (17) and (21) in the first and in the last equation in (38), while the second
equation in (38) is based on (36).

We are now in a position to prove (8b). Indeed, for k 6= −m,m, we have

d/dt|µm
k (t)〉 =e−Hc(`),c(r)t

(−Hc(`),c(r)|µm
k 〉)

=e−Hc(`),c(r)t
{
− (〈µm

k |Hc(r),c(`)

)T − (cr − c`) (P−m+1 − Pm) |µm
k 〉
}

= r.h.s. of (8b)

(zachem)

where the second equality is based on Lemma 2 and the facts that P T−m+1 = P−m+1, P T
m = Pm,

while the last equality follows from (38) and from P−m+1|µm
k 〉 = ρ1|µ̄m

k 〉 and Pm|µm
k 〉 = ρ2|µ̂m

k 〉;
note that both in the first and in the last passages in (39), we employed the relations (24) and
the notational convention |µm

k 〉 = |µm
k (0)〉.

The equation (8c) follows by a similar argument from (36c). To derive (8a), we first note that

−〈µm
−m|Hc(r),c(`) = βαm

(
2m∑
n=0

〈n|
)

Hc(r),c(`) = βαm

(
2m∑
n=0

〈0|(D
+
m)n

[n]q!

)
Hc(r),c(`) = 0

because of the commutation relation (27) and the second relation in (30). Thus, by Lemma 2,

−Hc(`),c(r)|µm
−m〉 = −(cr − c`) (P−m+1 − Pm) |µm

−m〉 = −ρ2(cr − c`)
(|µ̄m

−m〉 − |µ̂m
−m〉)

This leads to (8a) by the argument similar to (39). �

3 Formal Derivation of Theorem 1 from Lemma 1

The definitions of the terms that are used but not defined in the present section, may be found
in [L1].

Let C denote the set of bounded cylinder functions {0, 1}Z → R. Let L denote the operator
defined on C as follows:

(Lf)(η) =
∑
x∈Z

cr

[
f(ηx,x+1) − f(η)

]
+
∑
x∈Z

c`

[
f(ηx−1,x) − f(η)

]
, ∀f ∈ C, ∀η ∈ {0, 1}Z (40)
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where ηx,y denotes the configuration that coincides with η on Z \ {x, y} and ηx,y(x) =
η(y), ηx,y(y) = η(x). For m ∈ N, let Lm be the operator defined on C in the following way:
Lmf is given by the right hand side of (40) with the first sum taken over x = −m+1, . . . ,m− 1
and the second sum taken over x = −m + 2, . . . ,m. The operator L is known to be the pre-
generator of ASEP on Z defined in Section 1. The Markov process with the state space {0, 1}Z
whose pre-generator is Lm will be denoted by ASEPm. Let Sm(t)µ and S(t)µ denote the distri-
bution of respectively, ASEPm and ASEP on Z at time t, when the initial distribution is µ. It
may be verified straightforwardly from the definitions that Lmf → Lf as m → ∞ for any cylin-
der f . Thus, Corollary 3.14 from [L1] implies that limm→∞ Sm(t)µ = S(t)µ for any fixed t and µ.
Consequently, Theorem 1 is established as soon as we prove that Sm(t)µk →∑+∞

i=−∞ pt(i | k)µi

for all t ≥ 0 and k ∈ Z, as m → ∞. By the definition of the weak convergence, the latter is
equivalent to∫

g d (Sm(t)µk) →
∫

g d
(∑+∞

i=−∞ pt(i | k)µi

)
as m → ∞, for all k ∈ Z, t ≥ 0, g ∈ C (41)

For arbitrary g ∈ C and m ∈ N, let gm denote the function {0, 1}M → R (recall M :=
{−m + 1, . . . ,m − 1}) defined in the following manner: Denote by [−N,N ] the support of
g, that is, N is the minimal positive integer such that g(η) = g(ζ) provided η and ζ coincide on
[−N,N ]. Then, if N ≤ m we define gm as the restriction of g to {0, 1}M, while if N > m we
set gm ≡ 0. Define then 〈gm| as the vector which i-th coordinate is gm(ηi), i = 1, 2, . . . , 22m.

Let now |µm
k (t)〉 be as defined in Lemma 1. Notice that the particles in ASEPm evolve on M

by the exclusion rules while the particles outside of M are intact all the time. Thus,∫
g d (Sm(t)µk) = 〈gm, µm

k (t)〉 when m > N (42)

Recall from Section 2.4 the constructions of the measures {|νm
i (·)〉, i = −m, . . . ,m}. The relation

(14) derived there yields

〈gm, νm
k (t)〉 →

∫
g d
(∑+∞

i=−∞ pt(i | k)µi

)
as m → ∞ for all k ∈ Z, t ≥ 0, g ∈ C (43)

Combining (43), (41) and (42), we conclude that Theorem 1 follows from the relation

lim
m→∞〈gm, µm

k (t)〉 = lim
n→∞〈gm, νm

k (t)〉, for all k ∈ Z, t ≥ 0, g ∈ C (44)

A heuristic justification of (44) has been presented in Section 2.4 after (14). Here we shall prove
it rigorously. To this end we shall need the following

Lemma 3. (An auxiliary result for the proof of (44).) Let t ≥ 0 and g ∈ C be arbitrarily
fixed and let N be determined by g as described in the text above. For m ∈ N, let µm

i (·), µ̄m
i (·),

µ̂m
i (·), i = −m, . . . ,m, be as defined in Lemma 1. Define then

ε̄m
g,i(s) := 〈gm, µ̄m

i (s)〉 − 〈gm, µm
i (s)〉 and ε̂m

g,i(s) := 〈gm, µ̂m
i (s)〉 − 〈gm, µm

i (s)〉,
s ≥ 0, i = −m, . . . ,m

(45)
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Then, there is m0 = m0(g, t) such that for appropriate positive constants C = C(g, t) and
c = c(g, t) it holds that

∣∣ε̄m
g,i(s)

∣∣ ≤ C e−cs (cs)m−N

(m − N)!
, and

∣∣ε̂m
g,i(s)

∣∣ ≤ C e−cs (cs)m−N

(m − N)!
, ∀m ≥ m0, s ∈ [0, t] (46)

Proof. We shall prove the first inequality in (46); the other one may be proved analogously.

Let {N r
i (s), s ∈ [0, t]}i∈Z and {N `

i (s), s ∈ [0, t]}i∈Z be two families of independent Poisson point
processes (PPP), such that for each i ∈ Z, the intensities of N r

i (·) and N `
i (·) are respectively,

cr and c` (by “independent” here we mean that all the processes are independent between
themselves and of everything else, in particular, of µm

k ). Let Ω denote the state space of the
realizations of these processes and let IPΩ be the probability measure on Ω.

Let us define the evolution of particles on M by the following rule: The configuration of particles
changes at time τ ∈ [0, t] if and only if either the conditions (a)-(b) or the conditions (a′)-(b′)
are satisfied.

(a) For some j ∈ M \ {m} the process N r
j (·) changes its value at time τ .

(b) There is a particle at j and there is no particle at j + 1 in the configuration at time τ−.

(a′) For some j ∈ M \ {−m + 1} the process N `
j (·) changes its value at time τ .

(b′) There is a particle at j and there is no particle at j − 1 in the configuration at time τ−.

The particle from j will be moved at time τ to j + 1, if (a)-(b) holds, and to j − 1, if (a′)-(b′)
holds. Let ζη

s (ω) denote the configuration of particles that is obtained at time s on the realization
ω ∈ Ω from the initial configuration η ∈ {0, 1}M using the rules introduced above. The measure
IPΩ induces the distribution of ζη

t on {0, 1}Z which is known to coincide with the distribution of
ASEP on M at time t, starting from η. For the justification, see the parts of [L1] related to the
“graphical representation of Interacting Particle Systems”.

For an arbitrary η ∈ {0, 1}Z let η̄ denote the configuration that has a particle at m and coincides
with η on M\ {m}. Take any η that does not have a particle at m, i.e. η(m) = 0. It may be
verified straightforwardly that for each s ∈ [0, t] and each ω, the configurations ζη

s (ω) and ζ η̄
s (ω)

coincide at all but one site. We denote this site by Xs(η, ω). Let us postulate that Xs(η, ω) ≡ m,
if η has a particle at m.

We now construct another process that will be used to estimate Xt(η, ω). Consider a single
particle that moves on (−∞,m] by the following rules: At time 0 it is at m. It jumps from j to
j−1 at time τ if and only if its position at τ− is j and either N r

j (·) or N `
j (·) changes its value at

time τ . Let Ys(ω) denote the position of this particle at time s ∈ [0, t] on the realization ω ∈ Ω.
From our constructions,

Xs(η, ω) ≥ Ys(ω), for all η ∈ {0, 1}Z for all s ∈ [0, t] and all ω ∈ Ω (47)

Notice that the hopping times of the particle that determines the process Y , form a Poisson
Point Process with the intensity cr + c`. Recall that this particles starts from m. Assuming that
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m > N we conclude that for this particle to get to the left of the site N at time s, it is necessary
that this PPP changes its value at least m − N times. Thus,

IP [Ys(ω) ≤ N ] = e−(cr+c`)s
∞∑

j=m−N

((cr + c`)s)j

j!
(48)

Using our constructions, we now can write that for any s ∈ [0, t] and any k = −m, . . . ,m (below
|||gm||| means the sup norm of gm),∣∣∣∣

∫
gmdµ̄m

k (s) −
∫

gmdµm
k (s)

∣∣∣∣ =
∣∣∣∣IEΩ

∫
gm
(
ζ η̄
s (ω)

) − gm (ζη
s (ω)) µm

k (dη)
∣∣∣∣

≤ 2|||gm|||
∫

IPΩ [Xs(η, ω) ∈ [−N,N ]]

≤ 2|||gm||| IPΩ [Ys ≤ N ] ≤ 2|||gm||| e−(cr+c`)s
((cr + c`)s)m−N

(m − N)!

[
1

1 − t/(m − N)

]

when m is such that t
m−N < 1. The last inequality leads to (46). �

We shall now prove (44) which, according to the argument presented above, completes the proof
of Theorem 1.

For m ∈ N, let us define
−−−−−−−−→〈gm, µm(s)〉 and

−−−−−−−−→〈gm, νm(s)〉 as (2m+1)-dimensional vectors whose i-th
coordinate is 〈gm, µm

i (s)〉 and 〈gm, νm
i (s)〉 respectively (i = −m, . . . ,m). Then, the equations

(9), (10) yield

d

ds

−−−−−−−−→〈gm, νm(s)〉 = A
−−−−−−−−→〈gm, νm(s)〉, s ≥ 0; 〈gm, νm

i (0)〉 = 〈gm, µm
i 〉, i = −m, . . . ,m (49)

where A is a three-diagonal (2m + 1) × (2m + 1) matrix which has −(δ1 + δ2) on the main
diagonal, δ1above this diagonal and δ2 below it. Similarly, the equations (8) from Lemma 1, the
definitions of µ̄ and µ̂, and the notations introduced in (45) yield

d

ds

−−−−−−−−→〈gm, µm(s)〉 = B
−−−−−−−−→〈gm, µm(s)〉 + ~ε(s), s ≥ 0; 〈gm, µm

i (0)〉 = 〈gm, µm
i 〉, i = −m, . . . ,m (50)

where B is a three-diagonal (2m + 1) × (2m + 1) matrix which coincides with A everywhere
except for the first and the last lines where its entries are 0, and ~ε(s) is a (2m + 1)-dimensional
vector (ε−m(s), . . . , εm(s)) with the following structure

ε−m(s) = −ρ2(cr − c`)(ε̄m
g,−m(s) − ε̂m

g,−m(s))

εi(s) = −ρ1(cr − c`)ε̄m
g,i(s) + ρ2(cr − c`)ε̂m

g,i(s), i = −m + 1, . . . ,m − 1

εm(s) = −ρ1(cr − c`)(ε̄m
g,m(s) − ε̂m

g,m(s))

The solutions of (49) and (50) have the forms eAs
−−−−−−−−→〈gm, νm(0)〉 and eBs

−−−−−−−−→〈gm, µm(0)〉 +∫ s
0 eB(s−u)~ε(u)du respectively. The structure of these solutions, the coincidence of the initial

conditions of both systems, the relation between A and B as indicated above, and the estimate
on ~ε(·) provided by Lemma 3, altogether yield (44). Thus, the proof of Theorem 1 is completed.
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4 Proof of Theorem 2

The proof will be presented for the double shock case (n = 2). Thus, throughout the proof
q, c`, cr, ρ1, ρ2, ρ3 are supposed to be fixed and satisfy the assumptions of the theorem.

First of all, for each k ∈ M \ {−m + 1}, we define

Q̃k :=
Qk − Qk−1

q−2 − 1
=
(

1 0
0 q−2

)⊗(k+m−1)

⊗
(

0 0
0 1

)
⊗
(

1 0
0 1

)⊗(m−k)

(51)

and we also define Q̃−m+1 := p ⊗ 1I⊗(2m−1) (using the notations (22)). Let |2k1k2〉 denote the
vector corresponding to the configuration that has exactly two particles situated at the sites k1

and k2. We shall use the following relation:

〈n|Q̃k1Q̃k2 =
q−n+2

[n − 2]q!
〈2k1k2|

(
D+

m

)n−2
, −m + 1 ≤ k1 < k2 ≤ m, n = 2, . . . , 2m (52)

It is a particular case of a general relation

〈n|Q̃k1 . . . Q̃kj
=

q−j(n−1)

[n − j]q!
〈jk1...kj

| (D+
m

)n−j
, −m + 1 ≤ k1 < . . . < kj ≤ m,n = j, . . . , 2m

where 〈jk1...kj
| denotes the vector that corresponds to the configuration from {0, 1}M that has

exactly j particles located at sites k1, . . . , kj . The latter relation has been established in [S1]
(see eq. (3.10) there). It follows directly from (29) and (28).

Let now µm
k1k2

denote the product measure on {0, 1}M with the density ρ1 at the sites −m +
1, . . . , k1 −1, the density ρ2 at k1 +1, . . . , k2 −1, the density ρ3 at k2 +1, . . . ,m, and the density
1 at k1 and k2. It may be shown straightforwardly that

|µm
k1k2

〉 = (zq−4 + 1)−m+1−k1(zq−2)−1(1 + zq−2)−k2+k1+1z−1(1 + z)m+k2Q̃k1Q̃k2Z|s〉 (53)

where z = ρ3/(1 − ρ3) and Z is defined as in (20). Put α := (1 + zq−2)/(1 + zq−4), γ :=
(1 + z)/(1 + zq−2) and let β∗ be such that αk1γk2β∗ is the coefficient in the right hand side of
the above equality; notice that β∗ does not depend on either k1 or k2. Notice also that |s〉 may
be substituted by

∑m
n=2 |n〉 because Q̃k1Q̃k2 has two projectors and as a consequence of this,

the result of the application of Q̃k1Q̃k2 on |0〉 or |1〉 or |2〉 is 0. These facts will be used in the
calculations below.
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For the case when k1 6= −m + 1, k2 6= m, and k1 and k2 are not two neighboring sites, we have:

− 〈µm
k1k2

|Hc(r),c(`) = −β∗αk1γk2

(
2m∑
n=2

〈n|
)

Q̃T
k1

Q̃T
k2

ZT Hc(r),c(`)

= −β∗αk1γk2

(
2m∑
n=2

〈n|Q̃k1Q̃k2Hc(r),c(`)

)
Z

= −β∗αk1γk2

(
2m∑
n=2

q−n+2

[n − 2]q!
〈2k1k2 |

(
D+

m

)n−2
Hc(r),c(`)

)
Z

= −β∗αk1γk2

2m∑
n=2

{〈2k1k2|Hc(r),c(`)

} q−n+2

[n − 2]q!
(
D+

m

)n−2
Z (54)

= β∗αk1γk2

2m∑
n=2

{c`〈2k1−1,k2| + c`〈2k1,k2−1| + cr〈2k1+1,k2| + cr〈2k1,k2+1|

−(2c` + 2cr)〈2k1,k2|} ×
q−n+2

[n − 2]q!
(D+

m)n−2Z

= β∗αk1γk2

2m∑
n=2

〈n|
(
c`Q̃k1−1Q̃k2Z + c`Q̃k1Q̃k2−1Z + crQ̃k1+1Q̃k2Z + crQ̃k1Q̃k2+1Z

−(2c` + 2cr)Q̃k1Q̃k2Z
)

= c`α〈µm
k1−1,k2

| + c`γ〈µm
k1,k2−1| + crα

−1〈µm
k1+1,k2

| + crγ
−1〈µm

k1,k2+1| − (2c` + 2cr)〈µm
k1k2

| (2)

In the first and the last equalities in (54), we use (53); the second equality is based on (37);
the third and the sixth ones use (52); the fourth equality employs (27). In the fifth equality in
(54), 〈2k1k2 |Hc(r),c(`) is substituted by its expression obtained using the expression of Hc(r),c(`)

via S±
i , Pi, i ∈ M, and the results of action of these operators on 〈2k1k2 |; these results follow

from the properties of these operators as explained in the text before equation (23). Using (54)
and Lemma 2, we get

d/dt|µm
k1k2

(t)〉 =e−Hc(`),c(r)t
(−Hc(`),c(r)|µm

k1k2
〉)

=e−Hc(`),c(r)t
{
− (〈µm

k1k2
|Hc(r),c(`)

)T − (cr − c`) (P−m+1 − Pm) |µm
k1k2

〉
}

=c`α|µm
k1−1,k2

〉 + c`γ|µm
k1,k2−1〉 + crα

−1|µm
k1+1,k2

〉 + crγ
−1|µm

k1,k2+1〉
− (2c` + 2cr)|µm

k1k2
〉 − (cr − c`)

(
ρ1|µ̄m

k1k2
〉 − ρ3|µ̂m

k1k2
〉)

(55)

where the operations ·̄ and ·̂ have been defined in Lemma 1.

In order to treat the case when still k1 6= −m + 1 and k2 6= m, but now k1 and k2 are two
neighboring sites of M, we modify appropriately the argument that has been used to get (55).
The only modification necessary is in the fifth equality in (54). There, −〈2k1k2 |Hc(r),c(`) is given
by the expression c`〈2k1−1,k2| + cr〈2k1,k2+1| − (cr + c`)〈2k1k2|. This expression differs from its
counterpart because in the nearest-neighbor case the particle from k1 cannot hop on the particle
at k2 and vice versa. The final result is

d/dt|µm
k1k2

(t)〉 =c`α|µm
k1−1,k2

〉 + crγ
−1|µm

k1,k2+1〉 − (c` + cr)|µm
k1k2

〉
− (cr − c`)

(
ρ1|µ̄m

k1k2
〉 − ρ3|µ̂m

k1k2
〉)} (56)
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The expressions for d/dt|µm
k1k2

(t)〉 provided by (55) and (56) lead to (5) in the same manner as
(8) has led to (2). The main steps of this argument are presented below.
We consider the following system of differential-difference equations involving vector-functions
{|νm

k1k2
(·)〉, −m + 1 ≤ k1 < k2 ≤ m} (below k1 ∼ k2 means that k1 and k2 are two neighboring

sites):

d

dt
|νm

k1k2
(t)〉 = δ1r|νm

k1−1,k2
〉 + δ2r|νm

k1,k2−1〉 + δ1`|νm
k1+1,k2

〉 + δ2`|µm
k1,k2+1〉

− (δ1` + δ1r + δ2` + δ2r)|νm
k1k2

〉, if k1 6∼ k2, k1 6= −m + 1, k2 6= m (57a)
d

dt
|νk1k2(t)〉 = δ1r|νm

k1−1,k2
〉 + δ2`|νm

k1,k2+1〉 − (δ1` + δ2r)|νm
k1k2

〉,
if k1 ∼ k2, k1 6= −m + 1, k2 6= m (57b)

d

dt
|νm

−m+1,k2
(t)〉 = δ1`|νm

−m+2,k2
(t)〉 + δ2`|νm

−m+1,k2+1(t)〉 + δ2r|νm
−m+1,k2−1(t)〉

− (δ2` + δ2r + δ1r)|νm
−m+1,k2

(t)〉, if − m + 1 6∼ k2, k2 6= m (57c)
d

dt
|νm

k1,m(t)〉 = δ1`|νm
k1+1,m(t)〉 + δ1r|νm

k1−1,m(t)〉 + δ2r|νm
k1,m−1(t)〉

− (δ1` + δ1r + δ2`)|νm
k1m(t)〉, if k1 6∼ m,k1 6= −m + 1 (57d)

d

dt
|νm

−m+1,m(t)〉 = δ1`|νm
−m+2,m(t)〉 + δ2r|νm

−m+1,m−1(t)〉 − (δ1r + δ2`)|νm
−m+1,m(t)〉 (57e)

d

dt
|νm

−m+1,−m+2(t)〉 = δ2`|νm
−m+1,−m+3(t)〉 − δ2r|νm

−m+1,−m+2(t)〉 (57f)

d

dt
|νm

m−1,m(t)〉 = δ1r|νm
m−2,m(t)〉 − δ1`|νm

m−2,m(t)〉 (57g)

with the initial conditions

|νm
k1k2

(0)〉 = |µm
k1k2

〉, −m + 1 ≤ k1 < k2 ≤ m (58)

Let us look for the solution of (57),(58) in the form

|νm
k1k2

(t)〉 =
∑

−m+1≤i<j≤m

ym
t (k1, k2 | i, j)|µm

ij 〉,−m + 1 ≤ k1 < k2 ≤ m (59)

The system of differential difference equations involving the functions y which is obtained when
(59) is plugged in (57), may be divided into 2m(2m−1)/2 “independent” systems that we index
by (i, j), −m + 1 ≤ i < j ≤ m. For each (i, j), the system with this index contains solely the
functions from the family {ym· (k1, k2 | i, j),−m + 1 ≤ i < j ≤ m}, and moreover, none of the
functions from this family appears in any other system. This separation of functions y among
systems suggested us to call the systems “independent”. The probabilistic interpretation of the
solution of the (i, j)-th system with the appropriate initial condition (obtained by plugging (59)
into (58)) is known: ym

t (k1, k2 | i, j) is the probability that two particles, starting from i and j,
will be at the sites k1 and k2, respectively, at time t, where the particles interact by the exclusion
rule, and the particle that started at i (resp., j) performs a simple continuous time random walk
on M with reflecting boundaries, and the hopping rates δ1` (resp., δ2`) to the left and δ1r (resp.,
δ2r) to the right. Thus, we have

Var


νm

k1k2
(t) ,

∑
−m+1≤i<j≤m

pt(i, j | k1, k2)µm
ij


→ 0 as m → ∞ for any fixed k1, k2 and t (60)
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which is the analogue of (14). The relation (60) leads to (5) in the same way as (14) led to
(2). The rigorous argument that concludes (5) from (60) will not be presented here because it is
similar to the argument of Section 3 that derived (2) from (14). What we shall present however,
is the heuristics behind this argument. It is very similar to that of Section 2.4. The program is
to show that the families {µ∞

k1k2
(t),−∞ < k1 < k2 < ∞} and {ν∞

k1k2
(t),−∞ < k1 < k2 < ∞}

satisfy the same system of differential-difference equations with the same initial conditions,
where µ∞

k1k2
(t) := limm→∞ µm

k1k2
(t) and ν∞

k1k2
(t) := limm→∞ νm

k1k2
(t), because this would allow

us to substitute ν∞
k1k2

(t) by µ∞
k1k2

(t) in (60). As for the coincidence of the initial conditions, it
is provided by our choice (58). Let us check the coincidence of the limit of the system (55),
(56) with the limit of the system (57). Since the lattice Z, which is the m → ∞ limit of the
lattice M, does not have boundary sites, then the equations (57c-e) disappear. Thus, ν∞ satisfy
(57a-b). Because of the absence of the boundary sites in Z, the equations for d/dt|µm

−m+1,k2
(t)〉,

for d/dt|µm
k1,m(t)〉, and for d/dt|µm−m+1,m(t)〉 do not have any influence on the form of the system

satisfied by µ∞ (for this reason these equations have not even been derived). For the same
reason, limm→∞ µ̄m

k1k2
(t) = µ∞

k1k2
(t) and limm→∞ µ̂m

k1k2
(t) = µ∞

k1k2
(t). Using these relations and

a simple algebra, one easily derives that as m → ∞, the equations (55) and (56) acquire the form
of respectively, (57a) and (57b) with everywhere ν being substituted by µ. This completes our
program. Once more, we draw a reader’s attention to the fact that the argument just presented
may be formalized using the ideas and the technique from Section 3.
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multiple shocks. Ann. Inst. Henri Poincaré, Probabilités et Statistiques 36, 2 (2000) 109-126.

[FKS] P. A. Ferrari, C. Kipnis, S. Saada, Microscopic structure of traveling waves in the asymmetric
simple exclusion process, Ann. Prob., 19, No. 1 (1991), pp. 226-244.

[KR] A. N. Kirillov, N. Yu. Reshetikhin, in: Proceedings of the 1988 Luminy Conference on Infinite-
Dimensional Lie Algebras and Groups, V. G. Kac (ed.), (World Scientific, Singapore, 1988).
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