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Abstract

The Airy process τ → Aτ is characterized by its finite-dimensional distribution functions

Pr (Aτ1 < ξ1, . . . , Aτm
< ξm) .

For m = 1 it is known that Pr (Aτ < ξ) is expressible in terms of a solution to Painlevé II. We
show that each finite-dimensional distribution function is expressible in terms of a solution to
a system of differential equations.

I. Introduction

The Airy process τ → Aτ , introduced by Prähofer and Spohn [6], is the limiting stationary
process for a certain 1 + 1-dimensional local random growth model called the polynuclear
growth model (PNG). It is conjectured that the Airy process is, in fact, the limiting process
for a wide class of random growth models. (This class is called the 1 + 1-dimensional KPZ
universality class in the physics literature [5].) The PNG model is closely related to the
length of the longest increasing subsequence in a random permutation [2]. This fact together
with the result of Baik, Deift and Johansson [3] on the limiting distribution of the length
of the longest increasing subsequence in a random permutation shows that the distribution
function Pr (Aτ < ξ) equals the limiting distribution function, F2(ξ), of the largest eigenvalue
in the Gaussian Unitary Ensemble [7]. F2 is expressible either as a Fredholm determinant of a
certain trace-class operator (the Airy kernel) or in terms of a solution to a nonlinear differential
equation (Painlevé II). The finite-dimensional distribution functions

Pr (Aτ1 < ξ1, . . . , Aτm
< ξm)
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are expressible as a Fredholm determinant of a trace-class operator (the extended Airy ker-
nel) [4, 6]. It is natural to conjecture [4, 6] that these distribution functions are also expressible
in terms of a solution to a system of differential equations. It is this last conjecture which we
prove.

II. Statement

The Airy process is characterized by the probabilities

Pr
(

Aτ1 < ξ1, . . . , Aτm
< ξm

)

= det (I −K),

where K is the operator with m×m matrix kernel having entries

Kij(x, y) = Lij(x, y)χ(ξj ,∞)(y)

and

Lij(x, y) =























∫ ∞

0

e−z (τi−τj) Ai(x+ z)Ai(y + z) dz if i ≥ j,

−

∫ 0

−∞

e−z (τi−τj) Ai(x+ z)Ai(y + z) dz if i < j.

We assume throughout that τ1 < · · · < τm, and think of K as acting on the m-fold direct sum
of L2(α, ∞) where α < min ξj .
To state the result we let R = K (I −K)−1 and let A(x) denote the m ×m diagonal matrix
diag (Ai(x)) and χ(x) the diagonal matrix diag (χj(x)), where χj = χ(ξj ,∞). Then we define

the matrix functions Q(x) and Q̃(x) by

Q = (I −K)−1A, Q̃ = Aχ (I −K)−1

(where for Q̃ the operators act on the right). These and R(x, y) are functions of the ξj as well
as x and y. We define the matrix functions q, q̃ and r of the ξj only by

qij = Qij(ξi), q̃ij = Q̃ij(ξj), rij = Rij(ξi, ξj).
3

Finally we let τ denote the diagonal matrix diag (τj).
Our differential operator is D =

∑

j ∂j , where ∂j = ∂/∂ξj , and the system of equations is

D
2 q = ξ q + 2 q q̃ q − 2 [τ, r] q, (1)

D
2 q̃ = q̃ ξ + 2 q̃ q q̃ − 2 q̃ [τ, r], (2)

D r = −q q̃ + [τ, r]. (3)

Here the brackets denote commutator and ξ denotes the diagonal matrix diag (ξj).
This can be interpreted as a system of ordinary differential equations if we replace the variables
ξ1, . . . , ξm by ξ1 + ξ, . . . , ξm + ξ, where ξ1, . . . , ξm are fixed and ξ variable. Then D = d/dξ,
and the ξj are regarded as parameters.
To get a representation for det (I −K) observe that

∂j K = −Lδj , (4)

3We always interpret Rij(x, ξj) as the limit Rij(x, ξj+). These quantities are independent of our choice of
α.
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where the last factor denotes multiplication by the diagonal matrix with all entries zero except
for the jth, which equals δ(x− ξj). We deduce that

∂j log det(I −K) = −Tr (I −K)−1 ∂jK = Rjj(ξj , ξj).

Hence D log det(I −K) = Tr r, and so it follows from (3) that

D
2 log det(I −K) = −Tr q q̃

since the trace of [τ, r] equals zero. This gives the representation

det(I −K) = exp

{

−

∫ ∞

0

ηTr q(ξ + η) q̃(ξ + η) dη

}

.

Here the determinant is evaluated at (ξ1, . . . , ξm) and in the integral ξ + η is shorthand for
(ξ1 + η, . . . , ξm + η).
If m = 1 the commutators drop out, q = q̃, equations (1) and (2) are Painlevé II and these are
the previously known results.
Note Added in Proof: After the submission of this manuscript, Adler and van Moerbeke [1]
found a PDE involving different quantitites than ours for the case m = 2.

III. Proof

The proof will follow along the lines of the derivation in [7] for the casem = 1. There the kernel
was “integrable” in the sense that its commutator with M , the operator of multiplication by
x, was of finite rank. The same was then true of the resolvent kernel, which was useful. But
now our kernel is not integrable, so there will necessarily be some differences.
With D = d/dx we compute that

[D, K]ij = −Ai(x)Ai(y)χj(y) + Lij(x, ξj) δ(y − ξj) + (τi − τj)Kij(x, y).

Equivalently,
[D, K] = −A(x) A(y)χ(y) + Lδ + [τ, K],

where δ =
∑

j δj , multiplication by the matrix diag (δ(x − ξj)), and L is the operator with
kernel Lij(x, y). (For clarity we sometimes write the kernel of an operator in place of the
operator itself.) To obtain [D, R] we replace K by K − I in the commutators and left- and
right-multiply by ρ = (I −K)−1. The result is

[D, R] = −Q(x) Q̃(y) +Rδ ρ+ [τ, ρ].4 (5)

We have already defined the matrix functions Q and Q̃ and we define

P = (I −K)−1A′, u = (Q̃, Ai) =

∫

Q̃(x)Ai(x) dx.

It follows from (5) and the fact that τ and A commute that

Q′ = P −Qu+RδQ+ [τ, Q].5 (6)

4Because of the fact ρLχ = R and our interpretation of Rij(x, ξj) as Rij(x, ξj+) we are able to write Rδ ρ
in place of ρL δ ρ.

5The meaning of δ here and later is this: If U and V are matrix functions then U δ V is the matrix with
i, j entry

∑

k
Uik(ξk)Vkj(ξk). Thus RδQ is the matrix function with i, j entry

∑

k
Rik(x, ξk)Qkj(ξk). This

makes it compatible with our use of δ also as a multiplication operator so that, for example, (Rδ ρ) (A) =
Rδ (ρA).
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Next, it follows from (4) that

∂j R = −Rδj ρ, (7)

and it follows from this that ∂jQ = −Rδj Q. Summing over j, adding to (6) and evaluating
at ξk give

DQ(ξk) = P (ξk)−Q(ξk)u+ [τ, Q(ξk)].

If we define pij = Pij(ξi) then we obtain

D q = p− q u+ [τ, q]. (8)

Next we use the facts that D2−M commutes with L and that M commutes with χ. It follows
that

[D2
−M, K] = [D2

−M, Lχ] = L [D2
−M, χ] = L [D2, χ] = L (δ D +D δ).

It follows from this that

[D2
−M, ρ] = ρL δ D ρ+ ρLD δ ρ.

Applying both sides to A and using the fact that (D2 −M)A = 0 we obtain

Q′′(x)− xQ(x) = ρL δ Q′ + ρLD δQ. (9)

The first term on the right equals RδQ′. For the second term observe that

ρLDχ = ρLχD + ρL [D, χ] = RD + ρL δ,

so we can interpret that term as −Ry δ Q (the subscript denotes partial derivative) where
−Ry(x, y) is interpreted as not containing the delta-function summand which arises from the
jumps of R. With this interpretation of Ry we can write the second term on the right as
−Ry δ Q. Thus,

Q′′(x)− xQ(x) = RδQ′ −Ry δ Q.

Using this we obtain from (6)

P ′ = xQ(x) +RδQ′ −Ry δ Q+Q′ u−Rx δ Q− [τ, Q′],

and then from (6) once more

P ′ = xQ(x) +Rδ (P −Qu+RδQ+ [τ, Q])−Ry δ Q

+(P −Qu+RδQ+ [τ, Q])u−Rx δ Q− [τ, P −Qu+RδQ+ [τ, Q] ].

It follows from (5) that

Rx +Ry = −Q(x) Q̃(y) +Rδ R+ [τ, ρ].

(We replaced Rδ ρ by Rδ R since, recall, Ry does not contain delta-function summands.) We
use this and also the identity Rδ[τ,Q] − [τ,RδQ] = −[τ,Rδ]Q, and the fact that δ and τ
commute. The result is that
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P ′ = xQ(x) +Rδ P +Q(x) Q̃δQ+ (P −Qu+ [τ, Q])u

−2[τ, R] δ Q− [τ, P −Qu+ [τ, Q] ].

It follows from (7) that ∂jP = −Rδj P . Summing over j, adding to the above and evaluating
at ξk give

D P (ξk) = ξkQ(ξk) +Q(ξk) Q̃δQ+ (P (ξk)−Q(ξk)u+ [τ, Q(ξk)])u

−2 [τ, R(ξk, · )] δ Q− [τ, P (ξk)−Q(ξk)u+ [τ, Q(ξk)] ].

Hence D p is equal to

ξ q + q q̃ q + (p− q u+ [τ, q])u− 2 [τ, r] q − [τ, p− q u+ [τ, q] ].

Equivalently, in view of (8),

D p = ξ q + q q̃ q +D q · u− 2 [τ, r] q − [τ, D q]. (10)

Let us compute D u. We have

uij =

∫ ∫

Ai(x)χi(x) ρij(x, y)Ai(y) dx dy,

and so

∂k uij = −δik

∫

Ai(ξk) ρkj(ξk, y)Ai(y) dy

−

∫ ∫

Ai(x)χi(x) [Rik(x, ξk) ρkj(ξk, y)] Ai(y) dx dy,

where we use (7) again. This is equal to

−δik Ai(ξk)Qkj(ξk)−
(

Q̃ik(ξk)− δik Ai(ξk)
)

Qkj(ξk),

and so
∂k uij = −Q̃ik(ξk)Qkj(ξk). (11)

This gives
D u = −q̃ q. (12)

Next, we find from (7) and (5) that

DR(ξj , ξk) = −Q(ξj) Q̃(ξk) + [τ, R(ξj , ξk)].

This gives D r = −q q̃ + [τ, r], which is equation (3).
To get equation (1) we apply D to (8) and use (10) and (12). We find that

D
2 q = ξ q + q q̃ q +D q · u− 2 [τ, r] q − [τ, D q]−D q · u+ q q̃ q + [τ, D q]

= ξ q + 2 q q̃ q − 2 [τ, r] q,

which is (1).
Finally, to get equation (2) we use the fact that χj(y) ρjk(y, x) is equal to χk(x) times ρ′kj(x, y),
where ρ′ is the resolvent kernel for the matrix kernel with i, j entry Lji(x, y)χj(y). Hence

Q̃jk(x) is equal to χk(x) times the Qkj(x) associated with Lji. Consequently for all the
differentiation formulas we have for the Qkj(ξk), etc., there are analogous formulas for the

Q̃jk(ξk), etc.. The difference is that we have to reverse subscripts and replace r by rt and τ
by −τ . The upshot is that, by computations analogous to those used to derive (1), we derive
another equation which can be obtained from (1) by making the replacements q → q̃t, q̃ → qt,
r → rt, τ → −τ and then taking transposes. The result is equation (2).



98 Electronic Communications in Probability

References

[1] M. Adler and P. van Moerbeke, A PDE for the joint distributions of the Airy process,
preprint, arXiv:math.PR/0302329.

[2] D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sorting to

the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36 (1999), 413–432.

[3] J. Baik, P. Deift and K. Johansson, On the distribution of the length of the longest

increasing subsequence in a random permutation, J. Amer. Math. Soc. 12 (1999), 1119–
1178.

[4] K. Johansson, Discrete polynuclear growth and determinantal processes, preprint,
arXiv:math.PR/0206208.

[5] M. Kardar, G. Parisi and Y. Z. Zhang, Dynamic scaling of growing interfaces, Phys.
Rev. Letts. 56 (1986), 889–892.

[6] M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process,
J. Stat. Phys. 108 (2002), 1071–1106.

[7] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm.
Math. Phys. 159 (1994), 151–174.


