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Abstract

A random walk on Zd is excited if the first time it visits a vertex there is a bias in one direction,
but on subsequent visits to that vertex the walker picks a neighbor uniformly at random. We
show that excited random walk on Zd is transient iff d > 1.

1. Excited Random Walk

A random walk on Zd is excited (with bias ε/d) if the first time it visits a vertex it steps
right with probability (1 + ε)/(2d) (ε > 0), left with probability (1 − ε)/(2d), and in other
directions with probability 1/(2d), while on subsequent visits to that vertex the walker picks a
neighbor uniformly at random. This model was studied heavily in the framework of perturbing
1-dimensional Brownian motion, see for instance [5, 14] and reference therein. Excited random
walk falls into the notorious wide category of self-interacting random walks, such as reinforced
random walk, or self-avoiding walks. These models are difficult to analyze in general. The
reader should consult [4, 11, 16, 15, 1], and especially the survey paper [13] for examples.
Simple coupling and an additional neat observation allow us to prove that excited random
walk is recurrent only in dimension 1. The proof uses and studies a special set of points (“tan
points”) for the simple random walk.

2. Recurrence in Z1

It is already known that excited random walk in Z1 is recurrent, indeed, a great deal more is
known about it [6]. But for the reader’s convenience we provide a short proof.
On the first visit to a vertex there is probability p > 1/2 of going right and 1− p of going left,
while on subsequent visits the probabilities are 1/2. Suppose that the walker is at x > 0 for
the first time, and that all vertices between 0 and x have been visited. The probability that
the walker goes to x+ 1 before going to 0 is p+ (1− p)(1− 2/(x+ 1)) = 1− 2(1− p)/(x+ 1).
Multiplying over the x’s, we see that the random walk returns to 0 with probability 1.
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3. Transience in Z2

The simple random walk (SRW) in Z2 visits about n/ log n points by time n, and if the excited
random walk (ERW) gets pushed to the right n/ log n times, it would very quickly depart its
start location and never return. But it is not clear what effect that the perturbations have
on the number of visited points, and it is not obvious that the excited random walk will visit
n/ log n distinct points by time n.
To lower bound the number of points that the excited random walk visits, we couple it with
the SRW in the straightforward way, and count the number of “tan points” visited by the
SRW. We define the coupling as follows: if the SRW moves up, down, or right, then so does
the ERW. If the SRW moves left, then the ERW moves left if it is at a previously visited point,
and if the ERW is at a new point, it moves either left or right with suitable probabilities. At
all times, the y-coordinates of the SRW and ERW are identical.
To explain the concept of a “tan point”, we imagine that the simple random walker leaves
behind an opaque trail, and that the sun is shining from infinitely far away in the positive
x-direction. If the SRW visits a point (x, y) such that no point (x′, y) with x′ > x has been
visited, then the sun shines upon (x, y), and this point becomes tanned. Formally, we define
a tan point for the SRW to be a vertex (x, y) that is visited by the SRW before any point of
the form (x′, y) with x′ > x. If the sun shines upon the simple random walker the first time
it is at (x, y), it is straightforward to check that ERW is at a new point. We will show that
with high probability there are many tan points (so the ERW visits many new points), and
that this implies that the ERW is transient.
The probability that a point (x, y) will be tan follows from some enumerative work of Bousquet-
Mélou and Schaeffer on random walks in the slit plane [3].

Lemma 1. Let r and θ be the polar coordinates of the point (x, y), i.e. r ≥ 0, 0 ≤ θ < 2π,
x = r cos θ, and y = r sin θ. Then

Pr[(x, y) is tan] = (1 + o(1))

√

1 +
√
2

2π

sin(θ/2)√
r

, (1)

where the o(1) term goes to 0 as r tends to ∞.

This equation does not explicitly appear in [3], but all the real work that goes into proving it
is in [3]. In the interest of completeness, we explain how this equation follows from explicit
results in [3]:

Proof. Let an be the number of walks of length n that start from (0, 0), and avoid the non-
negative real axis at all subsequent times, and let px,y,n denote the probability that a random
such walk ends at the point (x, y). By reversibility of the random walks,

Pr

[

SRW started from the point (x, y) first hits the

nonnegative real axis at the point (0, 0) and at time n

]

=
an
4n
× px,y,n.

Thus Pr[(x, y) is tan] =
∑∞

n=0 an/4
n × px,y,n. Theorem 1 of [3] gives

an
4n

= (1 + o(1))

√

1 +
√
2

2Γ(3/4)
n−1/4.

Theorem 21 of [3] considers the endpoint (Xn, Yn) of a random walk started from (0, 0) which
avoids the nonnegative real axis, and gives the limiting distribution of (Xn/

√
n, Yn/

√
n). This

limiting distribution morally determines the asymptotics of px,y,n — a local limit theorem
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would determine the asymptotics — and the authors prove a local limit theorem for Yn/
√
n

but not Xn/
√
n let alone the joint distribution (Xn/

√
n, Yn/

√
n). However, since the ordinary

random walk has a local limit theorem (on vertices such that x+ y ≡ n mod 2), one can take
the limiting distribution of X(1−ε)n, Y(1−ε)n and then run the walk another εn steps; upon
sending ε to 0 sufficiently slowly, one can obtain a local limit theorem version of Theorem 21
of [3]:

px,y,n = (1 + o(1))
2

Γ(1/4)

r1/2

n5/4
e−r

2/n sin(θ/2)×
{

2 x+ y ≡ n mod 2

0 x+ y 6≡ n mod 2

when r = Θ(
√
n) and θ is bounded away from 0 and 2π. Thus we obtain
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Next we check that the terms when n ¿ r2 or n À r2 contribute negligibly. We may bound
an

4n × px,y,n by the probability that the walk survives the first n/2 steps (O(1/n1/4)) times the
probability that ordinary SRW for the remaining n/2 steps ends at the point (x, y) (O(1/n)).
Thus

∑

nÀr2

an
4n
× px,y,n ≤

∑

nÀr2

O(1/n5/4)¿ 1/r1/2

When n ¿ r2 we bound an

4n × px,y,n by the probability that the walk makes it out to radius

r/2 without hitting the line (which is O(1/r1/2) by [11, Eqn 2.40]) times the probability that
the walk ends up at (x, y) (distance s ≥ r/2 away) at the end of the remaining m < n steps.

This latter probability is at most 1+o(1)πm e−s
2/(2m), and assuming n ≤ r2/8, it is upper bounded

by 1+o(1)
πn e−r

2/(8n). Thus
∑

n¿r2

an
4n
× px,y,n ≤ O(1/r1/2)×

∑

n¿r2

O(n−1e−r
2/(8n))¿ 1/r1/2

Hence when θ is bounded away from 0 and 2π and r is large, the terms when n¿ r2 or nÀ r2

contribute negligibly, so the formula follows in this case. But the formula in the limiting case
when θ approaches 0 or 2π follows from the case when θ is bounded away from 0 and 2π, so
the formula is valid simply when r is large enough. ¤

We will use the notation introduced by Knuth where Θ(f) denotes an expression which is
upper-bounded by C × f and lower-bounded by c× f , where c and C are positive constants.
(By contrast, O(f) denotes an expression for which there is an upper bound of C × f , but not
necessarily any lower bound.) Using this notation, we may crudely approximate Equation (1)
with

Pr[(x, y) is tan] =

{

Θ(1/r1/2) when x ≥ 0

Θ(|y|/r3/2) when x ≤ 0.
(2)

Equation (2) is useful, but we need two modifications. For our purposes, it would be better to
have the probability that a point is tan and that it is reached by time n. Then we would have
the expected number of tan points by time n, which would lower-bound the expected number
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of times that the ERW is pushed to the right. But a lower bound on the expected number is
not quite what we need to prove transience of the ERW; what we’d really like to know is that
with very high probability, the number of tan points by time n is large.
In order to get the “with very high probability” part of the statement, it would be convenient
to be working with independent events. To get this independence, we divide the plane into
bands of height h = h(n) to be determined later, and we will focus on every other band, say
the even ones. When the SRW first arrives at an even band, let us count the tan points within
the band that are encountered before the random walk reaches a different even band. These
counts are independent for the different bands. After n steps it is likely that order

√
n/h even

bands have been crossed, so it is likely that the number of tan points dominates a sum of
Θ(
√
n/h) independent random variables.

Lemma 2. Consider a band of height h, i.e., Z× [y0, y0+h− 1]. After the SRW first reaches

this band, with probability Θ(1) the SRW hits Θ(h3/2) tan points within the band before leaving

the enclosing band Z× [y0 − h, y0 + 2h− 1].

For the Θ(1) part of this lemma, the following proposition is useful.

Proposition 3. If X is a real-valued random variable and E[X] ≥ 0, then

Pr
[

X ≥ 1
2E[X]

]

≥ E[X]2

4E[X2]
.

This proposition is essentially exercise 1.3.8 of Durrett [8].

Proof of Lemma 2. Consider a point (x, y) within the band, and the ray [x,∞)× y with (x, y)
at its tip. Consider the largest circle contained within the enclosing band and centered at the
tip, and also a small enough disk centered at the tip. From Equation (2) it follows that we
can take the ratios of the two radii to be Θ(1) and have the property that for any point p in
the left half of the small disk and any point q on the outer circle,

Pr[SRWp hits ray at tip] ≥ 2Pr[SRWq hits ray at tip],

where SRWp denotes the simple random walk started at point p, and by “hits ray at tip” we
mean that the first time the walker hits the ray (x+, y) is at the tip (x, y). Now

Pr[SRWp hits ray at tip] = Pr

[

SRWp hits ray at tip

before leaving circle

]

+ Pr

[

SRWp leaves circle and

then hits ray at tip

]

Pr[SRWp hits ray at tip] ≤ Pr

[

SRWp hits ray at tip

before leaving circle

]

+max
q

Pr[SRWq hits ray at tip]

Pr[SRWp hits ray at tip] ≤ Pr

[

SRWp hits ray at tip

before leaving circle

]

+
1

2
Pr[SRWp hits ray at tip]

Pr

[

SRWp hits ray at tip

before leaving circle

]

≥ 1

2
Pr[SRWp hits ray at tip] = Θ(1/dist(p, tip)1/2)

The point where the random walk first enters the band will lie within the left half of the small
disk surrounding Θ(h2) such points (x, y). In fact, there are Θ(h2) such points (x, y) within
radius h of where the SRW first hits the band. Thus

E
[

# tan points within band before SRW departs enclosing band

and within radius h from where SRW arrives in band

]

≥ Θ(h2)×Θ(1/h1/2) = Θ(h3/2).
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Next we need a second moment estimate:

E

[

(

# tan points within band before SRW departs enclosing band

and within radius h from where SRW arrives in band

)2
]

≤ E
[

(# tan points within radius h from where SRW arrives in band)
2
]

=
∑

x1,y1,x2,y2 within radius h

Pr[(x1, y1) and (x2, y2) tan]

≤ 2
∑

x1,y1,x2,y2 within radius h

Pr[(x1, y1) tan and (x2, y2) tan after (x1, y1)]

where by “after” we include the possibility that (x2, y2) = (x1, y1)

= 2
∑

Pr[(x1, y1) tan]× Pr[(x2, y2) after (x1, y1)|(x1, y1) tan]×
Pr[(x2, y2) tan|(x2, y2) after (x1, y1) and (x1, y1) tan]

≤ 2
∑

Pr[(x1, y1) tan]× Pr

[

after (x1, y1), (x2, y2) visited before (x2+, y2)|
(x2, y2) after (x1, y1) and (x1, y1) tan

]

= 2
∑

Pr[(x1, y1) tan] Pr[(x2 − x1, y2 − y1) tan in SRW0]

= Θ(h3)

Combining these estimates with Proposition 3, we see that with at least Θ(1) probability there
are at least Θ(h3/2) tan points in the band before the SRW departs the enclosing band. ¤

Theorem 4. With probability 1, for all but finitely n ∈ N, the excited random walk has drifted

right by a distance of at least Θ(n3/4/ log5/4 n) at time n. In particular, it is transient.

Proof. Say that the SRW deals with a band if it reaches that band and then reaches a different
band of the same parity. Suppose that the random walk starts from an odd band in the middle
of a group of 4k+1 bands of height h. Then the probability that it fails to leave the group of
bands after n = (kh)2t steps is exponentially small in t. We will optimize k and t later, but
we will take t to be large so that with high probability the walk leaves the group of 4k + 1
bands, and in particular deals with at least k even bands.
Rather than run the random walk for exactly n steps, let us run it until it deals with k even
bands. Then the number of early tan points in the different even bands are independent of one
another, and each one has a Θ(1) chance of being at least Θ(h3/2). Except with probability
exp(−Θ(k)), the number of tan points in the k even bands will be Θ(kh3/2).
Since there is only a exp(−Θ(t)) chance that the walk has not dealt with k even bands by
time n, we find that, except with probability exp(−Θ(t)) + exp(−Θ(k)), there are Θ(kh3/2)
tan points by time n. To optimize our parameters we take t = k, and then we have n = k3h2.
Next we consider the location of the perturbed random walk at time n. Typically the random
walk diffuses by Θ(

√
n) = Θ(k3/2h), and drifts right by at least Θ(kh3/2). The probability

that it diffuses by more than k2h is exp(−Θ(k)), and the probability that it drifts less than
Θ(kh3/2) is < exp(−Θ(k)). We take k = Θ(log n), so that the probability of a bad event is

< 1/n2, which gives us h = Θ(n1/2/ log3/2 n). Except with probability < 1/n2, the excited

random walk has drifted right by at least Θ(n3/4/ log5/4 n). In particular this event fails only
finitely often, so the random walk is transient. ¤
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4. Transience in Zd, d > 2

As with ERW in Z2, in Zd we can couple the ERW with SRW, and then (in continuous time)
couple the SRW in Zd with the SRW in Z2. For each tan point of the SRW in Z2 there is a
tan point of the SRW in Zd, so as before the ERW is transient.

5. Speed

We have seen that the excited random walk on Zd is transient for d ≥ 2, but does it have
positive speed?

Theorem 5. Let Xn denote the x-coordinate at time n of the excited random walk on Zd with

bias ε/d. If d ≥ 4, then almost surely lim infn→∞Xn/n ≥ 0.659ε/d; in particular the speed is

positive.

Proof. Project down the x-coordinate of the ERW and d − 4 additional coordinates, and
consider the resulting SRW on Z3. Let Rn be the range of the SRW on Z3 by time n, i.e. the
number of points visited by time n. Since the SRW is transient, E[Rn]/n → c where c is the
escape probability of the SRW. Glasser and Zucker [10] (see also [7]) determined this escape
probability c to be

c =
32π3√

6Γ(1/24)Γ(5/24)Γ(7/24)Γ(11/24)
= 0.65946 . . . .

For our purposes it is not enough to know E[Rn], what we need is the strong law of large
numbers for Rn that was proved by Dvoretzky and Erdős [9]: a.s. Rn/n → c (see also [2] for
even stronger results on Rn). Thus for any δ > 0, a.s. there are only finitely many n for which
the ERW has not had (c− δ)n pushes to the right by time n. The theorem then follows from
the ordinary strong law of large numbers. ¤

It seems intuitive that excited random walk in Z3 also has positive speed, but we do not see
a proof. Excited random walk in Z2 is more delicate, and it is not clear even at an intuitive
level whether or not the speed is positive, though we believe that by time n it has traveled
distance at least Θ(n/ log n).
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[9] A. Dvoretzky and P. Erdős. Some problems on random walk in space. Proc. 2nd Berkeley Symp., pp.

353–367, 1951.

[10] M. L. Glasser and I. J. Zucker. Extended Watson integrals for the cubic lattice. Proc. Natl. Acad. Sci.,

USA 74:1800-1801, 1977.

[11] G. F. Lawler. Intersections of Random Walks. Probability and its Applications. Birkhäuser, Boston,
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