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Abstract
By analogy with Carleson's observation on Cardy's formula describing crossing probabilities
for the scaling limit of critical percolation, we exhibit �privileged geometries� for Stochas-
tic Loewner Evolutions with various parameters, for which certain hitting distributions are
uniformly distributed. We then examine consequences for limiting probabilities of events con-
cerning various critical plane discrete models.

1 Introduction

It had been conjectured that many critical two-dimensional models from statistical physics are
conformally invariant in the scaling limit; for instance, percolation, Ising/Potts models, FK
percolation or dimers. The Stochastic Loewner Evolution (SLE) introduced by Oded Schramm
in [Sch00] is a one-parameter family of random paths in simply connected planar domains.
These processes are the only possible candidates for conformally invariant continuous limits of
the aforementioned discrete models. See [RohSch01] for a discussion of explicit conjectures.
Cardy [Ca92] used conformal �eld theory techniques to predict an explicit formula (involving
a hypergeometric function) that should describe crossing probabilities of conformal rectangles
for critical percolation as a function of the aspect ratio of the rectangle. Carleson pointed out
that Cardy's formula could be expressed in a much simpler way by choosing another geometric
setup, speci�cally by mapping the rectangle onto an equilateral triangle ABC. The formula
can then be simply described by saying that the probability of a crossing (in the triangle)
between AC and BX for X ∈ [BC] is BX/BC. Smirnov [Smi01] proved rigorously Cardy's
formula for critical site percolation on the triangular lattice and his proof uses the global
geometry of the equilateral triangle (more than the local geometry of the triangular lattice).
In the present paper, we show that each SLEκ is in some sense naturally associated to some
geometrical normalization in that the formulas corresponding to Cardy's formula can again
be expressed in a simple way. Combining this with the conjectures on continuous limits of
various discrete models, this yields precise simple conjectures on some asymptotics for these
models in particular geometric setups. Just as percolation may be associated with equilateral
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triangles, it turns that, for instance, the critical 2d Ising model (and the FK percolation with
parameter q = 2) seems to be associated with right-angled isosceles triangles (because SLE16/3

hitting probabilities in such triangles are �uniform�). Other isosceles triangles correspond to
FK percolation with di�erent values of the q parameter. In particular, q = 3 corresponds
to isosceles triangle with angle 2π/3. Similarly, double dimer-models or q = 4 Potts models
(conjectured to correspond to κ = 4) seem to be best expressed in strips (i.e., domains like
R× [0, 1]), and half-strips (i.e., [0,∞)× [0, 1]) are a favorable geometry for uniform spanning
trees.
Acknowledgments. I wish to thank Wendelin Werner for his help and advice, as well as
Richard Kenyon for useful insight on domino tilings and FK percolation models. I also wish
to thank the referee for numerous corrections and comments.

2 Chordal SLE

We �rst brie�y recall the de�nition of chordal SLE in the upper half-plane H going from 0 to
∞ (see for instance [LawSchWer01, RohSch01] for more details). For any z ∈ H, t ≥ 0, de�ne
gt(z) by g0(z) = z and

∂tgt(z) =
2

gt(z)−Wt

where (Wt/
√

κ, t ≥ 0) is a standard Brownian motion on R, starting from 0. Let τz be the
�rst time of explosion of this ODE. De�ne the hull Kt as

Kt = {z ∈ H : τz < t}

The family (Kt)t≥0 is an increasing family of compact sets in H; furthermore, gt is a conformal
equivalence of H\Kt onto H. It has been proved ([RohSch01], see [LawSchWer02] for the case
κ = 8) that there exists a continuous process (γt)t≥0 with values in H such that H\Kt is the
unbounded connected component of H \ γ[0,t], a.s. This process is the trace of the SLE and it
can recovered from gt (and therefore from Wt) by

γt = lim
z∈H→Wt

g−1
t (z)

For any simply connected domain D with two boundary points (or prime ends) a and b, chordal
SLEκ in D from a to b is de�ned as K

(D,a,b)
t = h−1(K(H,0,∞)

t ), where K
(H,0,∞)
t is as above, and

h is a conformal equivalence of (D, a, b) onto (H, 0,∞). This de�nition is unambiguous up to
a linear time change thanks to the scaling property of SLE in the upper half-plane (inherited
from the scaling property of the driving process Wt).

3 A normalization of SLE

The construction of SLE relies on the conformal equivalence gt of H\Kt onto H. As H has
non-trivial conformal automorphisms, one can choose other conformal mappings. The original
gt is natural as all points of the real line seen from in�nity play the same role (hence the
driving process (Wt) is a Brownian motion). Other normalizations, such as the one used in
[LawSchWer01] may prove useful for di�erent points of view.
A by-product of Smirnov's results ([Smi01]) is the following: let κ = 6, and F be the conformal
mapping of (H, 0, 1,∞) onto an equilateral triangle (T, a, b, c). Let ht be the conformal auto-
morphism of (T, a, b, c) such that ht(F (Wt)) = a, ht(F (gt(1))) = b, ht(c) = c. Then, for any
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z ∈ H, ht(F (gt(z))) is a local martingale. Our goal in this section is to �nd similar functions
F for other values of κ.
Recall the de�nitions and notations of section 2. For t < τ1, consider the conformal mapping
of H\Kt onto H de�ned as:

g̃t(z) =
gt(z)−Wt

gt(1)−Wt

so that g̃t(∞) = ∞, g̃t(1) = 1 and g̃t(γt) = 0, where γt is the SLE trace.
Notice that if F is an holomorphic map D → C and (Yt)t≥0 is a D-valued semimartingale,
then (the bivariate real version of) Itô's formula yields:

dF (Yt) =
dF

dz
dYt +

1
2

d2F

dz2
d〈Yt〉

where the quadratic covariation 〈., .〉 for real semimartingales is extended in a C-bilinear fashion
to complex semimartingales:

〈Y1, Y2〉 = (〈<Y1,<Y2〉 − 〈=Y1,=Y2〉) + i(〈<Y1,=Y2〉+ 〈=Y1,<Y2〉)

so that d〈Ct〉 = 0 for an isotropic complex Brownian motion (Ct). The setup here is slightly
di�erent from conformal martingales as described in [RevYor94].
In the present case, one gets:

dg̃t(z) =
[

2
g̃t(z)

− 2g̃t(z) + κ(g̃t(z)− 1)
]

dt

(gt(1)−Wt)2
+ (g̃t(z)− 1)

dWt

gt(1)−Wt

For notational convenience, de�ne wt = g̃t(z). After performing the time change

u(t) =
∫ t

0

ds

(gs(1)−Ws)2

one gets the autonomous SDE:

dwu = (wu − 1)
[
κ− 2

wu
(1 + wu)

]
du + (wu − 1)dW̃u

where (W̃u/
√

κ)u≥0 is a standard Brownian motion.
Let us take a closer look at the time change. Let Yt = gt(1)−Wt; then, dYt = −dWt +2dt/Yt,
so that (Yt/

√
κ)t≥0 is a Bessel process of dimension (1+4/κ). For κ ≤ 4, this dimension is not

smaller than 2, so that Y almost surely never vanishes (see e.g. [RevYor94]); moreover, a.s.,∫ ∞

0

dt

Y 2
t

= ∞

Indeed, let Tn = inf{t > 0 : Yt = 2n}. Then, the positive random variables (
∫ Tn+1

Tn
dt/Y 2

t , n ≥
1) are i.i.d. (using the Markov and scaling properties of Bessel processes). Hence:∫ ∞

0

dt

Y 2
t

≥
∞∑

n=1

∫ Tn+1

Tn

dt

Y 2
t

= ∞ a.s.

So the time change is a.s. a bijection from R+ onto R+ if κ ≤ 4.
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When κ > 4, the dimension of the Bessel process Y is smaller than 2, so that τ1 < ∞ almost
surely. In this case, using a similar argument with the stopping times Tn for n < 0, one sees
that ∫ τ1

0

dt

Y 2
t

= ∞

Hence, if κ > 4, the time change is a.s. a bijection [0, τ1) → R+.
We conclude that for all κ > 0, the stochastic �ow (g̃u)u≥0 does almost surely not explode in
�nite time.
We now look for holomorphic functions F such that (F (wu))u≥0 are local martingales. As
before, one gets:

dF (wu) =
[
F ′(wu)(κ− 2

wu
(1 + wu)) +

κ

2
F ′′(wu)(wu − 1)

]
(wu − 1)du + F ′(wu)(wu − 1)dW̃u

Hence we have to �nd holomorphic functions de�ned on H satisfying the following equation:

F ′(w)
[
κ− 2

w
(1 + w)

]
+ F ′′(w)

κ

2
(w − 1) = 0

The solutions are such that
F ′(w) ∝ wα−1(w − 1)β−1,

where {
α = 1− 4

κ
β = 8

κ − 1

For κ = 4, F (w) = log(w) is a solution.

4 Privileged geometries

In this section we attempt to identify the holomorphic map F depending on the value of the
κ parameter.

• Case 4 < κ < 8

Using the Schwarz-Christo�el formula [Ahl79], one can identify F as the conformal equiv-
alence of (H, 0, 1,∞) onto an isosceles triangle (Tκ, a, b, c) with angles â = ĉ = απ =
(1 − 4

κ )π and b̂ = βπ = ( 8
κ − 1)π. Special triangles turn out to correspond to spe-

cial values of κ. Thus, for κ = 6, one gets an equilateral triangle, as was foreseeable
from Smirnov's work ([Smi01]). For κ = 16

3 , a value conjectured to correspond to FK
percolation with q = 2 and to the Ising model, one gets an isorectangle triangle.

Since F (H) is bounded, the local martingales F (g̃t∧τ1(z)) are bounded (complex-valued)
martingales, so that one can apply the optional stopping theorem. We therefore study
what happens at the stopping time τ1,z = τ1 ∧ τz. There are three possible cases, each
having positive probability: τ1 < τz, τ1 = τz and τ1 > τz. Clearly, limt↗τz

(gt(z)−Wt) =
0, and on the other hand (gt(z) − Wt) is bounded away from zero if t stays bounded
away from τz. Recall that

g̃t(z) =
gt(z)−Wt

gt(1)−Wt
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So, as t ↗ τ1,z, g̃t(z) →∞ if τ1 < τz and g̃t(z) → 0 if τz < τ1. In the case τ1 = τz = τ ,
the points 1 and z are disconnected at the same moment, with γτ ∈ ∂H. As t ↗ τ ,
the harmonic measure of (−∞, 0) seen from z tends to 0; indeed, to reach (−∞, 0), a
Brownian motion starting from z has to go through the straits [γt, γτ ] the width of which
tends to zero. At the same time, the harmonic measures of (0, 1) and (1,∞) seen from
z stay bounded away from 0. This implies that g̃t(z) tends to 1, as is easily seen by
mapping H to strips.

Now one can apply the optional stopping theorem to the martingales F (g̃t∧τ1,z (z)). The
mapping F has a continuous extension to H, hence:

F (z) = F (0)P(τz < τ1) + F (1)P(τz = τ1) + F (∞)P(τz > τ1)

Thus:

Proposition 1.
The barycentric coordinates of w = F (z) in the triangle Tκ are the probabilities of the
events τz < τ1, τz = τ1, τz > τ1.

De�ne T 0 = {w ∈ Tκ : τz < τ1}, T 1 = {w ∈ Tκ : τz = τ1}, T∞ = {w ∈ Tκ : τz > τ1},
which is a random partition of Tκ. These three sets are a.s. borelian; indeed, T∞ =
F (H\Kτ1) is a.s. open, and T 0 =

⋃
t<τ1

Kt is a.s. an Fσ borelian. The integral of the
above formula with respect to the Lebesgue measure on Tκ yields:

Corollary 1.
The following relation holds:

E(A(T 0)) = E(A(T 1)) = E(A(T∞)) =
A(Tκ)

3

where A designates the area.

απαπ

T 1

T∞

βπ

1

F (γτ1)

T 0

∞0

Figure 1: The random partition

Another easy consequence is a Cardy's formula for SLE.
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Corollary 2 (Cardy's Formula).
Let γ be the trace of a chordal SLEκ going from a to c in the isosceles triangle Tκ,
4 < κ < 8. Let τ be the �rst time γ hits (b, c). Then γτ has uniform distribution on
(b, c).

One can translate this result on the usual half-plane setup.

Corollary 3. Let γ be the trace of a chordal SLEκ going from 0 to ∞ in the half-plane,
and γτ1 be the �rst hit of the half-line [1,∞) by γ. Then, if 4 < κ < 8, the law of 1/γτ1

is that of the beta distribution B(1− 4
κ , 8

κ − 1).

It is easy to see that, the law of γτ1 converges weakly to δ1 when κ ↗ 8. This is not
surprising as for κ ≥ 8, the SLE trace γ is a.s. a Peano curve, and γτ1 = 1 a.s.

• Case κ = 4

In this case, F (w) = log(w) is a solution. One can choose a determination of the
logarithm such that =(log(H)) = (0, π). Then =(log(g̃t(z))) = arg(g̃t(z)) is a bounded
local martingale. Let Hr (resp. Hl) be the points in H left on the right (resp. on the
left) by the SLE trace (a precise de�nition is to be found in [Sch01]). If z ∈ Hl, the
harmonic measure of g−1

t ((Wt,∞)) seen from z in H\γ[0,t] tends to 0 as t → ∞ = τz.
This implies that the argument of g̃t(z) tends to π. For z ∈ Hr, an argument similar to
the case 4 < κ < 8 shows that g̃t(z) → 1. Hence, applying the optional stopping theorem
to the bounded martingale arg(g̃t(z)), one gets:

arg(z) = 0× P(z ∈ Hr) + πP(z ∈ Hl)

or P(z ∈ Hl) = arg(z)/π, in accordance with [Sch01].

1

0 ∞

Figure 2: F (H), case κ = 4: slit

• Case κ = 8

Let F (z) =
∫

w−
1
2 (w − 1)−1dw; F maps (H, 0, 1,∞) onto a half-strip (D, a,∞, b). One

may choose F so that F (H) = {z : 0 < <z < 1,=z > 0}. Then F (∞) = 0 and
F (0) = 1. Moreover, <F (g̃t(z)) is a bounded martingale. In the case κ ≥ 8, it is known
that τ1 < ∞, τz < ∞, and τ1 6= τz a.s. if z 6= 1 (see [RohSch01]). Hence, if τ = τ1 ∧ τz,
g̃τ (z) equals 0 or ∞, depending on whether τz < τ1 or τz > τ1. Applying the optional
stopping theorem to the bounded martingale <F (g̃t(z)), one gets:

P(τz < τ1) = <F (z)
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0

1

∞

Figure 3: F (H), case κ = 8: half-strip

• Case κ > 8

In this case, one can choose F so that it maps (H, 0, 1,∞) onto (D, 1,∞, 0) where

D =
{

z : =z > 0, 0 < arg(z) <

(
1− 4

κ

)
π,

4
κ

π < arg(z − 1) < π

}
Then F (H) is not bounded in any direction, preventing us from using the optional
stopping theorem.

∞

1

0

(1− 4/κ)π

1

Figure 4: F (H), case κ > 8

• Case κ < 4

If κ ≥ 8/3, one can choose F so that it maps (H, 0, 1,∞) onto (D,∞, 0,∞), where

D =
{

z : =z < 1,−
(

4
κ
− 1

)
π < arg(z) <

4
κ

π

}
For κ = 8/3, one gets a slit half-plane. For κ < 8/3, the map F ceases to be univalent.
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0 ∞

1

(8/κ− 1)π

Figure 5: F (H), case 8
3 ≤ κ ≤ 4

5 Radial SLE

Let D be the unit disk. Radial SLE in D starting from 1 is de�ned by g0(z) = z, z ∈ D and
the ODEs:

∂tgt(z) = −gt(z)
gt(z) + ξ(t)
gt(z)− ξ(t)

where ξ(t) = exp(iWt) and Wt/
√

κ is a real standard Brownian motion. The hulls (Kt) and
the trace (γt) are de�ned as in the chordal case ([RohSch01]). De�ne g̃t(z) = gt(z)ξ−1

t , so that
g̃t(0) = 0, g̃(γt) = 1, where (γt) is the SLE trace. One may compute:

dg̃t(z) = −g̃t(z)
g̃t(z) + 1
g̃t(z)− 1

dt + g̃t(z)(−idWt −
1
2
κdt)

The above SDE is autonomous. As before, one looks for holomorphic functions F such that
(F (g̃t(z)))t≥0 are local martingales. A su�cient condition is:

F ′(z)
(
−z

z + 1
z − 1

− κ

2
z

)
− κ

2
F ′′(z)z2 = 0

i.e.,
F ′′(z)
F ′(z)

=
(

2
κ
− 1

)
1
z
− 4

κ

1
z − 1

.

Meromorphic solutions of this equation de�ned on D exist for κ = 2/n, n ∈ N∗. For κ = 2,
F (z) = (z − 1)−1 is an (unbounded) solution.

6 Related conjectures

In this section we formulate various conjectures pertaining to continuous limits of discrete
critical models using the privileged geometries for SLE described above.

6.1 FK percolation in isosceles triangles

For a survey of FK percolation, also called random-cluster model, see [Gri97]. We build on a
conjecture stated in [RohSch01] (Conjecture 9.7), according to which the discrete exploration
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process for critical FK percolation with parameter q converges weakly to the trace of SLEκ

for q ∈ (0, 4), where the following relation holds:

κ =
4π

cos−1(−√q/2)

Then the associated isosceles triangle Tκ has angles â = ĉ = cos−1(
√

q/2), b̂ = π − 2â. Let Γn

be a discrete approximation of the triangle Tκ on the square lattice with mesh 1
n ; all vertices

on the edges (a, b] and [b, c) are identi�ed. Let Γ†n be the dual graph. The discrete exploration
process β runs between the opened connected component of (a, b]∪ [b, c) in Γn and the closed
connected component of (a, c) in Γ†n.

Conjecture 1. Cardy's Formula
Let τ be the �rst time β hits (b, c). Then, as n tends to in�nity (i.e. as the mesh tends to
zero), the law of βτ converges weakly towards the uniform law on (b, c).

Kenyon [Ken02] has proposed an FK percolation model for any isoradial lattice, in particular
for any rectangular lattice. Let κ, q and α be as above, i.e. 4 < κ < 8, 4π

κ = cos−1(−√q/2)
and α = 1− 4

κ . Consider the rectangular lattice Z cos απ + iZ sinαπ. Then isosceles triangles
homothetic to Tκ naturally �t in the lattice (see �gure 6). Let Γ = (V,E) be the �nite graph
resulting from the restriction of the lattice to a (large) Tκ triangle, with appropriate boundary
conditions. A con�guration ω ∈ {0, 1}E of open edges has probability:

pΓ(ω) ∝ qk(ω)ν
eh(ω)
h νev(ω)

v

where k(ω) is the number of connected components in the con�guration, and eh (resp. ev)
is the number of open horizontal (resp. vertical) edges. The weights νh, νv are given by the
formulas:

νv =
√

q
sin(2α2π)

sin(α(1− 2α)π)

νh =
q

νv

απ

Figure 6: Rectangle lattice, dual graph and associated isosceles triangle

For this model, one may conjecture Cardy's formula as stated above. Note that for q = 2,
κ = 16

3 , one retrieves the usual critical FK percolation on the square lattice.
Let us now focus on the integral values of the q parameter. It is known that for these values
there exists a stochastic coupling between FK percolation and the Potts model (with parameter
q) (see [Gri97]).
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• q = 1
In this case FK percolation is simply percolation, κ = 6, and the privileged geometry is
the equilateral triangle. This corresponds to Carleson's observation on Cardy's formula.

• q = 2

0

1 ∞

w

f

f

Figure 7: Discrete exploration process for FK percolation (q = 2, κ = 16
3 )

Here κ = 16
3 , and Tκ is an isorectangle triangle. As there is a stochastic coupling between

FK percolation with parameter q = 2 and the Ising model (Potts model with q = 2), this
suggests that the isorectangle triangle may be of some signi�cance for the Ising model.

• q = 3
The corresponding geometry is the isosceles triangle T 24

5
, which has angles â = ĉ = π

6 ,
b̂ = 2π

3 . The possible relationship with the q = 3 Potts model is not clear, as this model
is not naturally associated with an exploration process.

6.2 UST in half-strips

It is proved in [LawSchWer02] that the scaling limit of the uniform spanning trees (UST)
Peano curve is the SLE8 chordal path. Let Rn,L be the square lattice [0, n]× [0, nL], with the
following boundaries conditions: the two horizontal arcs as well as the top one are wired, and
the bottom one is free. In fact, as we will consider the limit as L goes to in�nity, one may as
well consider that the top arc is free, which makes the following lemma neater. We consider the
uniform spanning tree in Rn,L. Let w be a point of the half-strip {z : 0 < <z < 1,=z > 0},
and wn an integral approximation of nw. Let a ∈ [0, n] be the unique triple point of the
minimal subtree T containing (0, 0), (n, 0) and wn, and let b be the other triple point of the
minimal subtree containing (0, 0), (n, 0), wn and (0, nL). One can formulate the following easy
consequence of the identi�cation of the scaling limit of the UST:
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Lemma 1. The following limits hold:

lim
n→∞

lim
L→∞

PRn,L
(b belongs to the oriented arc [0, a] ∪ [a,wn] in T ) = <w

lim
L→∞

lim
n→∞

PRn,L
(b belongs to the oriented arc [0, a] ∪ [a,wn] in T ) = <w

Let us clarify the alternative (up to events of negligible probability): either b belongs to the
(oriented) arc [0, a] ∪ [a,wn], or to the (oriented) arc [wn; a] ∪ [a, 1]. Recall that we have
computed P(τF−1(w) > τ1) = <w for a chordal SLE8 going from 0 to 1 in the half-strip (in
accordance with earlier conventions, subscripts refer to points in the half-plane, not in the
half-strip). As this path is identi�ed as the scaling limit of the UST Peano curve (start from
0 and go to 1 with the UST rooted on the bottom always on your right-hand), the event
{τ1 < τF−1(w)} appears as a scaling limit of an event involving only the subtree T . If one
removes the arc joining a to iLn, wn is either on the left connected component or on the right
one depending on whether wn is �visited� by the exploration process before or after the top
arc, up to events of negligible probaility.

a0 n

(0,Ln)

wn

b

a0 n

wn

b

(0,Ln)

Figure 8: The alternative

In fact, one can prove the lemma without using the continuous limit for UST. Indeed, let w†n
be a point on the dual grid standing at distance

√
2

2 from wn. Then, as n tends to in�nity,

PRn,L
(b belongs to the arc [0, a] ∪ [a,wn] in T )

−PR†
n,L

(w†n is connected to the right-hand boundary in the dual tree) → 0

According to Wilson's algorithm [Wil96], the minimal subtree in the dual tree connecting w†n
to the boundary has the law of a loop-erased random walk (LERW) stopped at its �rst hit of
the boundary. The probability of hitting the right-hand boundary or the left-hand boundary
for a LERW equals the corresponding probability for a simple random walk. The continuous
limit for a simple random walk with these boundary conditions is a Brownian motion re�ected
on the bottom of the half-strip; as the harmonic measure of the right-hand boundary of the
whole slit {0 < <z < 1} seen from w†n is <w + o(1), this proves the lemma.
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6.3 Double domino tilings in plane strips

For an early discussion of the double domino tiling model, see [RagHenAro97]. It is conjectured
that the scaling limit of the path arising in this model is the SLE4 trace (see [RohSch01],
Problem 9.8). Building on Kenyon's work [Ken97, Ken00], we show that the continuous limit
of a particular discrete event is compatible with the SLE4 conjecture.

Figure 9: Double domino tilings and associated path

Consider the rectangle Rn,L = [−nL, nL + 1] × [0, 2n + 1] (it is important that the rectangle
have odd length and width). Remove a unit square at the corner (−nL, 0) or (nL+1, 0) to get
two Temperleyan polyominos (for general background on domino tilings, see [Ken00]). Let γ
be the random path going from (−nL, 0) to (nL + 1, 0), arising from the superposed uniform
domino tilings on the two polyominos. Let w be a point of the strip {z : 0 < =z < 1}, and
wn an integral approximation of 2nw in Rn,L.

Proposition 2.
The following limit holds:

lim
L→∞

lim
n→∞

PRn,L
(wn lies above γ) = =z

Proof. We use a similar argument to the one given in [Ken97], 4.7. Let R1, R2 be the two
polyominos, and h1, h2 the height functions associated with the two polyominos (these random
integer-valued functions are de�ned up to a constant). It is easily seen that one may choose
h1, h2 so that h = h1 − h2 = 0 on the bottom side, and h = 4 on the three other sides. Let x
be an inner lattice point. Then:

E(h(x)) = 4P(x lies above γ)

Indeed, condition on the union of the two dominos tilings. This union consists of the path γ,
doubled dominos and disjoint cycles. Then x is separated from the bottom side by a certain
number of closed cycles, and possibly γ. Conditionally on the union, each closed cycle accounts
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for ±4 with equal probability in h(x). Moreover, crossing γ from below increases h by 4. This
yields the formula.
As n goes to in�nity, the average height functions converge to harmonic functions ([Ken00],
Theorem 23). Then take the limit as L goes to in�nity to conclude (one may map any �nite
rectangle RL to the whole slit, �xing a given point x; the boundary conditions converge to the
appropriate conditions, one concludes with Poisson's formula).

7 SLE(κ, ρ) processes and general triangles

In this section we quickly discuss how any triangle may be associated with a certain SLE
process, in the same way as isoscele triangles were associated with SLEκ processes.

7.1 SLE(κ, ρ) processes

Let us brie�y describe SLE(κ, ρ) processes, de�ned in [LSW02b]. Let (Wt, Ot)t≥0 be a two-
dimensional semimartingale satisfying the following SDEs:{

dWt =
√

κdBt + ρ
Wt−Ot

dt

dOt = 2
Ot−Wt

dt
(1)

where B is a standard Brownian motion, as well as the inequality Wt ≤ Ot valid for all positive
times (the convention here di�ers from the one in [LSW02b]). This process is well de�ned for
κ > 0, ρ > −2. Indeed, one may consider Zt = Ot −Wt. The process (Zt/

√
κ)t≥0 is a Bessel

process in dimension d = 1 + 2ρ+2
κ . Such processes are well de�ned semimartingales if d > 1,

or ρ > −2 (see for instance [RevYor94]). Then Ot = 2
∫ t

0
du
Zu

and Wt = Ot − Zt.
Hence one may de�ne a SLE(κ, ρ) as a stochastic Loewner chain the driving process of which
has the law of the process (Wt) de�ned above. The starting point (or rather state) of the
process is a couple (w, o) with w ≤ o, usually set to (0, 0+). Then Ot represents the image
under the conformal mapping gt of the rightmost point of ∂Kt ∪O0. Obviously, for ρ = 0, one
recovers a standard SLE(κ) process.

Proposition 3. Let (Wt, Ot) be the driving process of a SLE(κ, ρ) process starting from (0, 1),
and (gt) be the associated conformal equivalences. Let z ∈ H. Then if F is any analytic
function on H, the complex-valued semimartingale

t 7→ F

(
gt(z)−Wt

Ot −Wt

)
is a local martingale if and only if:

F ′(z) ∝ z−
4
κ (1− z)2

ρ−κ+4
κ .

The proof is routine and is omitted. Once again, the conformal mapping F may be identi�ed
using the Schwarz-Christo�el formula.

7.2 A particular case

In [Sch01], Schramm derives expressions of the form

P(z ∈ H lies to the left of γ) = Fκ(arg z)
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where γ is the trace of a SLE(κ) process, for κ ≤ 4. The function Fκ involves hypergeometric
functions, and Fκ(x) ∝ x i� κ = 4 (in this case F ◦arg is a harmonic function). Now it is easily
seen that for any κ > 0, ρ > −2, if δ designates the right boundary of a SLE(κ, ρ) process
starting from (0, 0+), then a simple consequence of scaling is the existence of a function Fκ,ρ

such that:
P(z ∈ H lies to the left of δ) = Fκ,ρ(arg z)

Moreover, this function is not identically zero if ρ ≥ κ/2 − 2. This motivates the following
result:

Proposition 4. Let κ > 4, ρ = κ
2 − 2. Then:

P(z ∈ H lies to the left of δ) = arg z/π

Proof. Lying to the left of the right boundary of the hull is the same thing as being absorbed
if κ > 4. Let (Wt, Ot) be the driving mechanism of the SLE(κ, κ

2 − 2), and let zt = gt(z).
Suppose for now that the starting state of the SLE is (W0, O0) = (0, 1). Let h : H → C be a
holomorphic function. We have seen that a necessary and su�cient condition for h( zt−Wt

Ot−Wt
) to

be a (C-valued) local martingale is the holomorphic di�erential equation:

h′′(z)
h′(z)

= − 4
κ

1
z
− 2

ρ− κ + 4
κ

1
1− z

or h(z) ∝ z−
4
κ (1 − z)2

ρ−κ+4
κ . In the case ρ = κ/2 − 2, using the Schwarz-Christo�el formula

(see [Ahl79]), one sees that h is (up to a constant factor) the conformal equivalence between
(H, 0, 1,∞) and (D, 0, 1,∞), where D is the degenerate triangle de�ned by:

D = {z ∈ H : arg(z) ≤ π(1− 4/κ), arg(z − 1) ≥ π(1− 4/κ)}

Let ϕ(z) = <z− cotan(π(1− 4/κ))=z. Then the image of D under this R-linear form is [0, 1].
Hence ϕ ◦ h( zt−Wt

Ot−Wt
) is a bounded martingale. Moreover, standard convergence arguments

imply that zt−Wt

Ot−Wt
goes to 0 in �nite time if z is absorbed and to 1 in in�nite time in the other

case. A straightforward application of the optional stopping theorem yields:

P(z ∈ H lies to the right of δ) = ϕ

(∫ z

0

w−
4
κ (1− w)

4
κ−1dw

)
/B(1− 4/κ, 4/κ)

Taking the asymptotics of this formula when z = r expiθ goes to in�nity with constant argu-
ment (making use of B(1 − x, x) = π/ sin(πx)), one �nds that for a SLE(κ, κ

2 − 2) starting
from (0, 0+) :

P(z ∈ H lies to the right of δ) = 1− arg z/π

In other words, Fκ,κ/2−2 = F4 for all κ ≥ 4. This raises several questions, such as whether
this still holds for κ < 4, or whether in full generality Fκ,ρ = F2κ/(ρ+2), this last conjecture
being based on the dimension of the Bessel process (Ot −Wt), where (Wt, Ot) designates the
driving process of a SLE(κ, ρ) process.
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