
Elect. Comm. in Probab. 8 (2003), 17–27 ELECTRONIC

COMMUNICATIONS

in PROBABILITY

TREES AND MATCHINGS FROM POINT PROCESSES

ALEXANDER E. HOLROYD1

Department of Mathematics, UC Berkeley, CA 94720-3840, USA
email: holroyd@math.berkeley.edu

YUVAL PERES2

Departments of Statistics and Mathematics, UC Berkeley, CA 94720-3860, USA
email: peres@stat.berkeley.edu

Submitted 29 November 2002 , accepted in final form 5 February 2003

AMS 2000 Subject classification: Primary 60G55; Secondary 60K35
Keywords: Poisson process, point process, random tree, random matching, minimal spanning
forest

Abstract

A factor graph of a point process is a graph whose vertices are the points of the process, and
which is constructed from the process in a deterministic isometry-invariant way. We prove that
the d-dimensional Poisson process has a one-ended tree as a factor graph. This implies that
the Poisson points can be given an ordering isomorphic to the usual ordering of the integers
in a deterministic isometry-invariant way. For d ≥ 4 our result answers a question posed by
Ferrari, Landim and Thorisson [7]. We prove also that any isometry-invariant ergodic point
process of finite intensity in Euclidean or hyperbolic space has a perfect matching as a factor
graph provided all the inter-point distances are distinct.

1 Introduction

Let M be an isometry-invariant point process on Rd, viewed as a random Borel measure. We
assume throughout that all point processes are simple and of finite intensity. The support of
M is [M ] = {x ∈ Rd : M({x}) = 1}, and (random) elements of [M ] are called M -points. By
a factor graph of M we mean a random (directed or undirected) graph G whose vertex set
equals [M ], such that G is a deterministic function of M , and such that the joint distribution
of M and G is invariant under isometries of Rd. (We give a more formal definition at the end
of the introduction).

A graph is locally finite if no vertex has infinite degree. A graph is a tree if it is connected
and has no cycles. The number of ends of a tree is the number of distinct singly infinite
self-avoiding paths from any one vertex. A directed doubly infinite path is a directed
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graph isomorphic to the graph with vertex set Z and a directed edge from n to n+ 1 for each
n.

Theorem 1 Let M be a Poisson point process on Rd.

(i) M has a factor graph which is almost surely a locally finite one-ended tree.

(ii) M has a factor graph which is almost surely a directed doubly infinite path.

Let ‖ · ‖ denote the Euclidean norm, and let B(r) = {x ∈ Rd : ‖x‖ < r} be the ball of radius
r. A point process M is said to be non-equidistant if there do not exist M -points w, x, y, z
with {w, x} 6= {y, z} and ‖w−x‖ = ‖y−z‖ > 0. A graph is called a matching if every vertex
has degree 0 or 1, and a perfect matching if every vertex has degree 1.

Theorem 2 Let M be a non-equidistant point process in Rd which is invariant and ergodic
under isometries.

(i) M has a factor graph in which almost surely each component is a locally finite one-
ended tree.

(ii) M has a factor graph in which almost surely each component is a directed doubly
infinite path.

(iii) M has a factor graph which is almost surely a perfect matching.

Ferrari, Landim and Thorisson [7] proved by a different method that the d-dimensional Pois-
son process has a one-ended tree as a translation-invariant factor graph for d ≤ 3, and asked
whether this holds for d ≥ 4. Theorem 1 (i) establishes the stronger isometry-invariant state-
ment for all d. We will deduce the (ii) part of Theorem 1 from the (i) part. This implication
was also noted in [7]. Theorem 1 (ii) is clearly equivalent to the assertion that the M -points
can be given an ordering isomorphic to the usual ordering of Z in a deterministic isometry-
invariant way. Such orderings have connections with the notion of point-stationarity, while the
construction of perfect matchings as in Theorem 2 (iii) has connections with Palm processes.
See [7],[13] for more details.
The main novelty of Theorem 2 lies in the generality of the point process. For the Poisson
process, Theorem 2 may be proved by relatively simple constructions, including one which we
discuss in Section 4.
The minimal spanning forest is a natural factor graph. However, in general it is unknown
how many components it has, and how many ends the components have. (Partial answers are
provided in [3],[4]).
Not every isometry-invariant ergodic point process on Rd has a tree as a graph factor. For
example, consider the point set obtained by applying a uniform random translation and a
uniform random rotation to Zd. This process has no perfect matching as a factor graph, and
no factor graph in which every component is an infinite tree if d ≥ 2.
The condition of non-equidistance in Theorem 2 may be relaxed to the condition that the
symmetry group of [M ] is almost surely trivial. This is explained at the end of Section 3.
Theorems 1 extends to other amenable spaces in place of Rd, with the same proof. In non-
amenable spaces, no invariant one-ended tree exists [1],[5], and in certain spaces no invariant
tree exists [2],[11]. Theorem 2 extends to other spaces as follows.

Theorem 3 Let Λ be a locally compact metric space and let Γ be a transitive unimodular group
of isometries of Λ. Let ν be a Γ-invariant Borel measure on Λ which is finite on bounded sets.
Let M be a non-equidistant point process of finite intensity with respect to ν, which is invariant
and ergodic under Γ. Then statements (i)–(iii) of Theorem 2 hold.
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The proof of Theorem 2 extends directly to Theorem 3 in the case of amenable spaces, but
breaks down for non-amenable spaces such as hyperbolic space. We therefore give a different
argument which is valid in amenable and non-amenable settings. The argument is based on
the simple and appealing idea of iteratively matching mutually nearest neighbors, and is of
interest even in the case of Rd. For the Poisson process, the resulting matching is the unique
stable matching in the sense of Gale and Shapley [8] - see Section 4 for the definition.
Theorems 1,2,3 are proved Sections 2,3,4 respectively.

Formal definition of a factor graph. A factor graph of a point process M on Rd is
a mapping, commuting with isometries, that assigns to a countable set V ⊆ Rd a graph
G = G(V ) with vertex set V , defined for almost all V with respect to the law of [M ]. Recall
that the law of M is a probability distribution on the space M of Borel measures on Rd with
the corresponding completed Borel σ-algebra B. We will show that the events considered in
Theorems 1–3 contain Borel events of probability one, hence they are B-measurable. Similar
remarks apply to clumpings as defined in Section 2.

2 Poisson Trees

Lemma 4 Let M be an isometry-invariant point process on Rd, and let G be a factor graph
all of whose components are trees with at most r ends for some constant r < ∞. Then G is
locally finite almost surely.

In this section we will need only the special case r = 1. The proof of Lemma 4 uses a version of
the “mass transport principle”, Lemma 5. See [5],[6],[9] for background. A mass transport

is a non-negative measurable function T (x, y,M) on Rd × Rd ×M (where M is the space of
Borel measures on Rd) which is non-zero only when x, y are M -points, and which is isometry-
invariant in the sense that T (θx, θy, θM) = T (x, y,M) for any isometry θ of Rd. We think of
T (x, y,M) as the mass sent from x to y when the point configuration is M . For Borel sets
A,B ⊆ Rd we write

t(A,B) = E
∑

x∈A∩[M ],

y∈B∩[M ]

T (x, y,M)

for the expected total mass sent from A to B, and we write K = [0, 1)d ⊆ Rd for the unit
cube.

Lemma 5 Let M be an isometry-invariant point process on Rd, and let t be a mass transport.
We have

t(K,Rd) = t(Rd,K).

Proof. The isometry-invariance of T implies isometry-invariance of t. Hence, using mono-
tone convergence to exchange expectations and sums, we have

t(K,Rd) =
∑

z∈Zd

t(K,K + z) =
∑

z∈Zd

t(K − z,K) = t(Rd,K).

¤

Proof of Lemma 4. Consider the mass transport in which T (x, y,M) = 1 whenever G has
a singly infinite self-avoiding path from x which includes the edge (x, y), and T (x, y,M) = 0
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otherwise. Thus each vertex sends one unit of mass to each of at most r of its neighbors, while
for every edge (x, y) in an infinite component, either x sends one unit to y or y sends one unit
to x, or both. Applying Lemma 5, the assumption of finite intensity implies that the expected
total mass received by all M -points in K is finite, so in particular it follows that no vertex can
have infinite degree. ¤

A clumping of a point processM is a sequence P1,P2, . . . of successively coarser partitions of
[M ], defined from M in a deterministic isometry-invariant way. (More precisely, a clumping is
a mapping, commuting with isometries, that assigns to a countable set V ⊆ Rd a sequence of
successively coarser partitions of V , defined for almost all V with respect to the law of [M ]).
We call the elements of the partitions clumps, and we call the clumping locally finite if all
clumps are finite. A component of a clumping is subset of [M ] which is the limit of some
increasing sequence of clumps A1, A2, . . ., where Ak ∈ Pk. A clumping is connected if it has
only one component.

Lemma 6 Let M be a non-equidistant isometry-invariant point process on Rd. If M has a
clumping which is almost surely connected and locally finite then it has a factor graph which
is a almost surely a locally finite one-ended tree.

Proof. Let P1,P2, . . . be a connected locally finite clumping. We will define for each clump
A a distinguished element x ∈ A called the leader of A, and we will construct a factor graph
G. We do this inductively as follows. First consider a clump A ∈ P1. Choose the leader x
of A as follows. If |A| = 1, let x be the unique element. Otherwise, let x′, x′′ be the unique
pair of M -points in A whose Euclidean distance is minimum. Then let x be the one of x′, x′′

which minimizes min{‖x−y‖ : y ∈ [M ]\{x′, x′′}}. The fact thatM is a non-equidistant point
process ensures that all the minima involved are unique almost surely. Let G have an edge
from x to each of the other elements of A. Apply the same construction to every A ∈ P1.
Now suppose that leaders have been defined for all clumps in the partitions P1, . . . ,Pk−1.
Consider a clump A ∈ Pk, let B1, . . . , Bm be the clumps of Pk−1 which are subsets of A, and
let y1, . . . , yk be their respective leaders. Choose the leader x of A from among y1, . . . , yk in
a deterministic isometry-invariant way by the same procedure as above. Let G have an edge
from x to each yi 6= x. Apply the same construction to every A ∈ Pk.
By the construction G is clearly a factor graph. Also, if A is any clump, then the subgraph of
G induced by A is a finite tree, and only the leader of A has any edges to vertices outside A.
This implies immediately that all components of G are one-ended trees or finite trees. But G
is connected since the clumping is connected, hence G is a one-ended tree. Finally G is locally
finite by Lemma 4. ¤

Lemma 7 Let M be a non-equidistant isometry-invariant point process on Rd. If M has a
factor graph which is almost surely a locally finite one-ended tree then it has a factor graph
which is almost surely a directed doubly infinite path.

Proof. Let G be such a one-ended tree. The parent of a vertex x is the unique neighbor of
x which lies on the infinite self-avoiding path from x. If y is the parent of x then x is a child of
y. Vertices are siblings if they have the same parent, and x is a descendant of y if the infinite
self-avoiding path from x passes through y. First order the children of each vertex in order of
distance to the parent. Then order all the vertices G according to depth-first search; that is,
each vertex precedes all its children, while if x precedes its sibling y then all descendants of x
precede all descendants of y. (See [7] for another description of this construction). ¤
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Figure 1: An illustration of the proof of Theorem 1: seeds, cutters and blobs.

Proof of Theorem 1. Suppose without loss of generality thatM has intensity 1. Through-
out we will use C1, C2, . . . to denote constants in (0,∞) depending only on d. We will construct
a connected clumping of M ; then the theorem follows immediately from Lemmas 4,6,7.
Our argument is based on a construction in [5]. For each k ≥ 1, let ak = exp

[

−k
(

1− 1
2d

)]

.
Call an M -point x a k-seed if there is another M -point within Euclidean distance ak of x.
Clearly, the k-seeds form an isometry-invariant point process of intensity

λk := 1×P [M(B(ak)) ≥ 1] = 1− e−C1a
d
k ≤ C1a

d
k = C1e

−k(d−1/2). (1)

Now let rk = ek, and define a k-cutter to be any subset of Rd of the form {y : ‖y− x‖ = rk},
where x is a k-seed. Let Wk be the union of all k-cutters, and define a k-blob to be any
connected component of Rd \

⋃

j≥kWj . Clearly, every M -point lies in exactly one k-blob for
each k almost surely, and every k-blob is a subset of exactly one (k + 1)-blob. (Note that
k-cutters typically occur in nearly-coincident pairs. This fact makes the pictures rather odd,
but neither helps nor hinders our proof. The anomaly could be avoided at the expense of a
less convenient definition of k-seeds).
For each k, define a partition Pk of [M ] by declaring two M -points to be in the same clump
of Pk if they lie in the same k-blob. Clearly P1,P2, . . . form a clumping; we must check that
it is locally finite and connected.
First we claim that almost surely all blobs are bounded. This will imply immediately that the
clumping is locally finite. It is sufficient to check that almost surely all blobs which intersect
B(1) are bounded. Let

Vk = {B(1) is enclosed by some k-cutter}.

We will show that P [Vk] → 1 as k → ∞. This implies that Vk occurs for infinitely many k
almost surely, and this implies the claim, since any j-blob which intersects B(1) must then be
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enclosed by some k-cutter for some k ≥ j. By the definition of a k-cutter, Vk equals the event
that B(rk − 1) contains some k-seed. Now, we have

P [B(ak/2) contains some k-seed] ≥ P [M(B(ak/2)) = 2]

= e−C2a
d
k(C2a

d
k)

2/2 ≥ C3a
2d
k

Moreover, if A,B ⊆ Rd are sets at distance at least 2ak from each other, then the events
{A contains some k-seed}, {B contains some k-seed} are independent. For k ≥ 2 we may
clearly find dC4(rk/ak)

de balls of radius ak/2 lying in B(rk − 1) and spaced at distance at
least 2ak from each other. Hence

P [Vk] = P [B(rk − 1) contains some k-seed] ≥ 1− (1− C3a
2d
k )C4(rk/ak)d

≥ 1− e−C5a
d
kr

d
k = 1− e−C5e

k/2

→ 1,

establishing the above claim.
To prove that the clumping is connected, it suffices to prove that for every fixed ` > 0, almost
surely all M -points in B(`) lie in the same clump of Pk for some k. By the construction it is
enough to show that all such M -points lie in a single blob, and this in turn follows if almost
surely all of B(`) lies in some blob. Let

Uk = {B(`) intersects some k-cutter}.

We have

∞
∑

k=1

P [Uk] =

∞
∑

k=1

P [B(rk + `) \B(rk − `) contains some k-seed]

≤

∞
∑

k=1

λkC6`r
d−1
k ≤ C7`

∞
∑

k=1

e−k/2 (by (1))

< ∞,

so the Borel-Cantelli lemma implies that P [Uk occurs for infinitely many k] = 0, and hence
B(`) lies in some blob as required. ¤

3 Forests and Matchings

Lemma 8 Let d ≥ 1 and let M be a non-equidistant point process in Rd which is invariant
and ergodic under isometries. The following are equivalent.

(i) M has a clumping which almost surely is locally finite and has each component infinite.

(ii) M has a factor graph in which almost surely each component is a locally finite one-
ended tree.

(iii) M has a factor graph in which almost surely each component is a directed doubly
infinite path.

(iv) M has a factor graph in which almost surely each component is a locally finite one-
ended or two-ended tree.
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Proof. The implications (i)⇒(ii) and (ii)⇒(iii) follow immediately by applying the proofs
of Lemmas 6,7 to each component. The implication (iii)⇒(iv) is a triviality since a doubly
infinite path is a two-ended tree. Therefore it is sufficient to prove (iv)⇒(i).
Suppose G is a factor graph as in (iv). We will treat each component separately. Let C be a
component of G. If C is a one-ended tree, let π be any singly infinite path in C, and define

L(C) = lim sup{‖x− y‖ : (x, y) is an edge of π}.

Since any two singly infinite paths in C must eventually coalesce, L(C) does not depend on the
choice of π. On the other hand if C is a two-ended tree, then it has a unique doubly infinite
self-avoiding path, which we call the trunk. If the trunk is deleted, only finite components
remain. Define

L(C) = sup{‖x− y‖ : (x, y) is an edge of the trunk}.

Let k be a positive integer. Define for each component C

Lk(C) =

{

L(C)− k−1 if L(C) <∞,
k if L(C) =∞.

Let Gk be the graph obtained from G by deleting every edge (x, y) for which ‖x − y‖ ∈
[Lk(C), L(C)), where C is the component containing (x, y). Let Pk be the partition of [M ]
induced by the components of Gk. Clearly P1,P2, . . . form a clumping; we claim that it is
locally finite and has the same components as G; this will establish (i).
First note that there is no edge (x, y) for which ‖x− y‖ = L(C) where C is the component of
G containing (x, y). To see this, note that by non-equidistance, there can be at most one such
edge in each component of G. But now consider the mass transport in which every vertex
in component C sends one unit of mass to each of x, y if there is such an edge (x, y) in C.
Applying Lemma 5 gives a contradiction since each vertex sends out at most two units, but
such vertices x, y would receive infinite mass.
It follows that if x, y are vertices in the same component C then there exists some k such that
no edge in the path from x to y has length lying in [Lk(C), L(C)), so x, y lie in the same clump
of Pk. Hence the components of the clumping are the components of G.
It remains to show that the all components of Gk are finite, since this will imply that the
clumping is locally finite. If C is a one-ended component of G, the definition of L(C) implies
that every infinite path in G has some edge with length in [Lk(C), L(C)), so all components
of Gk which lie in one-ended components of G are finite. Let H be the graph consisting of all
trunks of two-ended components of G, and let Hk = Gk ∩ H. Clearly all components of Hk

are doubly infinite paths, singly infinite paths, or finite paths. We claim that in fact the first
two possibilities can be ruled out, and this implies that all components of Gk must be finite.
We prove the claim as follows. Firstly, the definition of L(C) for a two-ended component C
of G implies that the trunk of C has some edge with length in [Lk(C), L(C)), so components
of Hk cannot be doubly infinite paths. Secondly, consider the mass transport in which every
vertex in a singly infinite path component of Hk sends one unit of mass to the end point of
the singly infinite path. Each vertex sends out at most one unit, but if singly infinite paths
existed then their end points would receive infinite mass, violating Lemma 5. ¤

Proof of Theorem 2. Theminimal spanning forest S ofM is the factor graph obtained
from the complete graph on [M ] by deleting every edge which is the longest in some cycle. It
is proved in [4] that all components of S are one-ended or two-ended trees almost surely. And
S is locally finite by Lemma 4. Hence Theorem 2 (i),(ii) follow from Lemma 8.
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Let P1,P2, . . . be a clumping as in Lemma 8 (i). We will construct a perfect matching,
establishing Theorem 2 (iii). First, consider a clump A ∈ P1 which has at least two M -points,
match the two closest M -points of A, then remove them and repeat until A has at most one
unmatched M -point. Do this for every clump A ∈ P1. Next apply the same construction
to each clump A ∈ P2 which has at least two unmatched M -points, and so on indefinitely.
It is clear that each component of the clumping contains at most one M -point that is never
matched. We claim that in fact there are no such M -points. To prove this consider the mass
transport in which x sends one unit to y if x, y are in the same component of the clumping
and y is never matched. Since all components of the clumping are infinite, any M -point never
matched would receive infinite mass, contradicting Lemma 5. ¤

Extension to more general point processes. As mentioned in the introduction, the
condition of non-equidistance in Theorem 2 may be relaxed to the condition that the symmetry
group of [M ] is almost surely trivial. The proof above goes through once we have defined a
real-valued measurable function ϕ(x, µ) where x ∈ Rd and µ is a realization of M , such that
ϕ(θx, θµ) = ϕ(x, µ) for any isometry θ of Rd, and ϕ(x, µ) 6= ϕ(y, µ) for x 6= y. This function
is used to break ties between equidistant pairs: if ‖x − y‖ = ‖x − w‖ then the pair {x, y}
is preferred to {x,w} provided that ϕ(y, µ) < ϕ(w, µ). Similarly, if ‖x − y‖ = ‖z − w‖
where these points are distinct, then {x, y} is preferred if and only if min{ϕ(x, µ), ϕ(y, µ)} <
min{ϕ(z, µ), ϕ(w, µ)}.
It remains to define ϕ. An open dyadic cube in Rd is a set of the form 2t[z+(0, 1)d] for t ∈ Z
and z ∈ Zd. Let {Qn}n≥1 be an enumeration of all open dyadic cubes (of all scales) in Rd.
Fix µ. Denote by O(d) the collection of isometries preserving the origin, that is, orthogonal
matrices. For ρ ∈ O(d), define ψn(ρ, x) = 1 if µ(x + ρQn) ≥ 1 and ψn(ρ, x) = 0 otherwise.
Each ψn is lower semi-continuous, and hence so is the function

ψ(ρ, x) =
∑

n≥1

3−nψn(ρ, x) .

The assumption on the symmetry group of µ implies that almost surely, for every x 6= y
in Rd and any pair ρ1, ρ2 ∈ O(d), there is an n such that ψn(ρ1, x) 6= ψn(ρ2, y), whence
ψ(ρ1, x) 6= ψn(ρ2, y). Finally, define

ϕ(x, µ) = min
ρ∈O(d)

ψ(ρ, x) .

4 Iterated Nearest Neighbor Matching

In this section we prove Theorem 3. The mass transport principle in Lemma 5 extends to the
more general setting, with any bounded Borel set K in place of the unit cube. In the case
of the hyperbolic plane the result is a special case of Theorem 5.2 in [6], and the proof in [6]
extends to our more general setting. Lemma 8 extends to the general setting with essentially
the same proof. In the case when Γ is amenable, the proof of Theorem 2 also extends, since
all the components of any invariant random forest must have either one or two ends. In the
non-amenable case, this argument breaks down; although it is believed that the components
of the (wired) minimal spanning forest all have at most two ends, this has not been proved.
Thus we use a different construction, which is of interest even in Euclidean space.
Let ρ be the metric on Λ. By a descending chain we mean a sequence of distinct M -points
x1, x2, . . . for which the distances ρ(xi, xi+1) form a (strictly) decreasing sequence. We will
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see that the argument becomes simpler in the case when M has no descending chains, and
in particular we obtain a perfect matching by the natural procedure of iteratively matching
mutually nearest neighbors. In particular it was proved in [10] that Poisson processes have no
descending chains almost surely. On the other hand, there do exist isometry-invariant point
processes with descending chains. For example, start with a Poisson process on Rd, construct
a one-ended tree as a factor graph (Theorem 1), and then add extra points along the edges in
such a way that every singly infinite path becomes a descending chain.

Stable matchings. A perfect matching of [M ] is called stable if for every pair of edges
(x, x′), (y, y′) we have ρ(x, y) ≥ min{ρ(x, x′), ρ(y, y′)}. This definition was made, in a more
general context, by Gale and Shapley [8]. When M has no descending chains, we will see that
iteratively matching mutually nearest neighbors yields the unique stable perfect matching.

Proof of Theorem 3. We start by proving that M has a perfect matching as a factor
graph. Then we will deduce the statements (i),(ii) in Theorem 2.
Call a pair of M -points x, y mutually closest if x is the closest M -point to y and y is the
closest M -point to x. We may construct a (not necessarily perfect) matching G as a factor
graph ofM by the following procedure. First match all mutually closest pairs ofM -points, and
remove such points, then match and remove all mutually closest pairs among the remaining
points, and repeat indefinitely. Let N be the process of all M -points which are never matched
by this procedure (that is, that have degree 0 in G). Clearly N is an isometry-invariant ergodic
point process, so in particular it has almost surely infinitely many points or almost surely no
points. The matching G is perfect if and only if N has no points. (We shall see below that
this indeed holds if M has no descending chains. The above procedure was suggested by Dana
Randall, and is noted in [7]. It has the following informal interpretation. Imagine a growing
ball centered at each M -point, such that at time t each ball has radius t. Every time two balls
meet, they are annihilated and their centers are matched. From the iterative description, one
may verify by induction that every edge of G is present in every stable perfect matching).
Consider the directed factor graph H of N in which there is a directed edge from each N -point
to its closest N -point. It is easy to see that H has no cycles except of size 2 (these being exactly
the mutually closest pairs of N -points), and that every finite component of H contains exactly
one cycle of size 2. We claim that in fact N has no mutually closest pairs, so H has no finite
components. To see this, suppose that x, y are mutually closest N -points. This is equivalent
to the statement that the set J = {z ∈ Λ : ρ(z, x) ≤ ρ(x, y) or ρ(z, y) ≤ ρ(x, y)} contains no
N -points other than x, y. Since J is bounded, it contains only finitely many M -points almost
surely, and hence at some finite (random) stage of the matching procedure above, J contains
no unmatched M -points other than x, y. But then x, y will be matched at the next stage,
which contradicts the assumption that they are N -points.
The above argument shows that if G is not a perfect matching then H is non-empty and every
component of H is an infinite tree. (Note in particular that the latter is possible only ifM has
descending chains). We claim that the components of H are one-ended or two-ended trees.
Once this is established we obtain a perfect matching of M by using Lemma 8 (extended to
Λ) to perfectly match N , and then combining this with G.
To prove the above claim, define the backbone B of H to be the directed subgraph of N
whose edge set is the union of all (not necessarily directed) doubly infinite self-avoiding paths
of H. Note that all vertices incident to B have degree at least 2 in B. The claim is equivalent
to the assertion that B has no vertices of degree greater than 2. Consider the mass transport
in which x sends one unit of mass to y if B has a directed edge from x to y. Note that the
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degree of a vertex in B equals the total mass sent out plus the total mass received. By the
construction of H, each vertex sends out at most one unit. Let K be a fixed bounded Borel
set, let V be the set of N -points in K incident to B, and let D =

∑

x∈V degB(x). Then the
mass transport principle yields

ED ≤ 2E |V |.

On the other hand, if B has vertices of degree greater than 2 then

E [D − 2|V |] > 0,

a contradiction, proving the claim.

The above argument shows that every M satisfying the conditions of Theorem 3 has a perfect
matching as a factor graph. We deduce that statements (i),(ii) of Theorem 2 hold as follows.
Construct a perfect matching, then delete one M -point from each matched pair (choosing
which one as in the choice of leaders in the proof of Lemma 6, for example), then construct a
perfect matching as a factor graph of the process of remaining points, and repeat indefinitely.
This gives a locally finite clumping with all components infinite, so we can apply Lemma 8
(extended to Λ). ¤

5 Open Problems

(i) Consider a perfect matching which is a factor graph of a point process. What can be
said about the lengths of the edges? More specifically, how does the probability that
some point in B(1) is matched to a point outside B(r) behave as r →∞? One may ask
such questions for specific matchings such as those discussed in Section 4, or one may
ask for the optimal tail behavior over all possible perfect matchings. The latter question
is related to problems studied in [12], for example.

(ii) When does the iterated matching construction in the last paragraph of the proof of
Theorem 3 result in a single one-ended tree, as opposed to a forest? In particular, for
which d does the Poisson process on Rd yield a tree? (The case d = 1 is easy).

(iii) Steve Evans suggested the following questions. What other graphs are possible as factor
graphs of point processes? For example, for which d, n does the Poisson process on Rd

have Zn as a factor graph?

(iv) For what other point processes do the conclusions of Theorem 1 hold? In particular, do
they hold for every non-equidistant ergodic point process on Rd?

Remark added in revision: Russ Lyons has informed us that Adam Timar has made
progress on problems (iii),(iv) above.
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