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Abstract
Fill, Machida, Murdoch, and Rosenthal (2000) presented their algorithm and its variants to
extend the perfect sampling algorithm of Fill (1998) to chains on continuous state spaces. We
consider their algorithm for absolutely continuous stochastically monotone kernels, and show
the correctness of the algorithm under a set of certain regularity conditions. These conditions
succeed in relaxing the previously known hypotheses sufficient for their algorithm to apply.

1 Introduction

1.1 An extension of Fill’s algorithm

In Markov chain Monte Carlo (MCMC) a Markov kernel K is devised in an attempt to sample
approximately from its stationary distribution π. Then the rate of convergence to stationarity
could determine the Markov chain steps t to gain a desired approximation; however, such
analysis is often found too difficult in practice. A perfect sampling algorithm, if applicable,
not only eliminates the necessity of such analysis but also enables us to simulate exactly from π.
The recent paper by Fill, Machida, Murdoch, and Rosenthal [3] laid down a framework for
an extension of Fill’s perfect sampling algorithm [1] to generic chains on general state spaces.
We will call the extension of Fill’s algorithm (and its variants) in [3] FMMR algorithms. The
original form of this algorithm was proposed by Fill [1] for finite-state stochastically monotone
chains, and was later extended by Thönnes [12] to the penetrable spheres mixture models, and
by Møller and Schladitz [8] to general repulsive models. Their extensions were then considered
in the context of FMMR algorithms (see Remark 7.4 in [3]).
In this paper we discuss the FMMR algorithm when a monotone case obtains, that is, when
(a) a state space X is partially ordered with minimum element 0̂ and maximum element 1̂
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Fill’s algorithm for continuous monotone kernels 142

(i.e., 0̂ ≤ x ≤ 1̂ for every x ∈ X ), (b) the Markov kernel K is stochastically monotone (see
Section 2.1 for a definition), and (c) there exists a collection {Mx,y : x ≤ y} of upward Markov
kernels satisfying for every x ≤ y,

K(y, ·) =
∫

K(x, dx′)Mx,y(x′, ·). (1.1)

[We call a kernel L an upward kernel if the probability measure L(x′, ·) is, for every x′ ∈ X ,
supported on the set {y′ : y′ ≥ x′}.] Given a collection of such upward kernels, the FMMR
algorithm is a form of rejection sampling to simulate exactly from π.

Algorithm 1.1. In the first phase, we use the kernel K̃ (called the time-reversed kernel)
satisfying π(dx)K(x, dy) = π(dy)K̃(y, dx). Fix a positive integer t, and run a chain for t
steps from the time-reversed kernel K̃, starting from Xt = 0̂, and obtaining Xt−1, . . . , X0

in succession. In the second phase, generate a chain (Y 0, . . . , Y t), starting from Y 0 = 1̂,
and obtaining Y s inductively for s = 1, . . . , t from the distribution Mxs−1,ys−1(xs, ·) given
Xs−1 = xs−1, Y s−1 = ys−1 and Xs = xs. Finally check whether Y t = 0̂. If so, the value X0

is accepted as an observation from the stationary distribution π. If not, we start the routine
again with an independent simulation (and possibly with a fresh choice of t).

The framework of FMMR algorithm indicates that Algorithm 1.1 runs correctly if the station-
ary distribution π is atomic at 0̂ [i.e., π({0̂}) > 0]; see Section 7 of [3]. In Section 1.2 we will
present a simple example, and demonstrate that Algorithm 1.1 can fail without this “atomic-
ity” condition, but runs correctly when different upward kernels are chosen. This illustrates
our motive for studying the FMMR algorithm when a Markov kernel K is absolutely contin-
uous, that is, when it has a kernel density k and a stationary distribution π (which is now a
density). After making a short discussion on the issue of technical assumptions in Section 2.1,
we propose a set of regularity conditions [namely, (R1)–(R3) in Section 2.2]. In simple terms,
they are (R1) an everywhere positiveness and continuity at 0̂ for the stationary density π,
(R2) an equicontinuity at 0̂ for the kernel density k(x, ·) [see Remark 2.1(a)], and (R3) a (sort
of) continuity property at (0̂, {0̂}) for the upward kernel Mx,y [see Remark 2.1(b)]. Then our
objective of the present paper is to show the correctness of Algorithm 1.1 under the regularity
conditions, namely the following theorem.

Theorem 1.2. Suppose that a monotone case obtains, and that a Markov kernel K is abso-
lutely continuous. Then if the regularity conditions hold, then Algorithm 1.1 generates a sample
exactly from stationary density π with success probability kt(1̂, 0̂)/π(0̂), where kt denotes the
t-step transition kernel density.

In the rest of Section 2 (that is, Sections 2.3–2.5), we will present several key properties of
the kernel density k and the upward kernel Mx,y, which leads to our proof of Theorem 1.2 in
Section 3.1. In Section 3.2 we will discuss how we can construct a particular upward kernel
having the continuity property in (R3). Finally in Section 3.3 we will introduce a quasi-
monotone case toward possible extensions of Theorem 1.2, and discuss the applicability of
FMMR algorithm for this quasi-monotone case. The present paper is what has become of the
reference listed as [31] in [3].

1.2 A simple example

We present a simple example constructed on the state space X := [0, 1] with the usual
Euclidean metric and with the usual linear order having the minimum element 0 and the
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maximum element 1. Let ν denote the Lebesgue measure on [0, 1], and let δx denote the Dirac
measure at x. Then we can define a probability measure πα(·) on [0, 1] with parameter α ∈
[0, 1/2) by

πα(·) := αδ0(·) + αδ1(·) + (1 − 2α)ν(·),
and a Markov kernel K (with parameter α) by

K(x, ·) :=

{
3
2πα(· ∩ [0, 1/2)) + 1

2πα(· ∩ [1/2, 1]) if x < 1/2;
1
2πα(· ∩ [0, 1/2)) + 3

2πα(· ∩ [1/2, 1]) if x ≥ 1/2.

It can be easily checked that the Markov kernel K is stochastically monotone, and satisfies
πα(dx)K(x, dy) = πα(dy)K(y, dx). Thus, K is a time-reversible Markov kernel with stationary
distribution πα.
Let U be a uniform random variable on [0, 1], and let

φ(x, U) := inf{y ∈ X : U ≤ K(x, [0, y])} (1.2)

be the inverse probability transformation of K(x, ·). Then we call φ a transition rule for K
because of the property that K(x, ·) = P (φ(x, U) ∈ ·) for every x ∈ X . Furthermore, φ is said
to be monotone in the sense that φ(x, U) ≤ φ(y, U) whenever x ≤ y. Therefore, we find that
the conditional probability

Mx,y(x′, ·) := P (φ(y, U) ∈ · | φ(x, U) = x′) (1.3)

yields a desired upward kernel satisfying (1.1) for every x ≤ y. Now that the monotone case
has obtained, we can apply Algorithm 1.1 with the choice of t = 1. In the first phase we
generate a sample X0 = z from the distribution K̃(0, ·) which equals K(0, ·) by reversibility,
and in the second phase we accept the value z with probability Mz,1(0, {0}).
We first assume that α > 0. Then we can easily compute

Mz,1(0, {0}) = P (φ(1, U) = 0 | φ(z, U) = 0) =

{
1/3 if z < 1/2;
1 if z ≥ 1/2,

(1.4)

and P (X0 ∈ dz | accept) = K(0, dz)Mz,1(0, {0})/(1/2) = πα(dz). Thus, we have seen that
Algorithm 1.1 works as desired when πα is atomic at 0. We now suppose, however, that α = 0.
This is the case when K has the kernel density

k(x, y) :=

{
3/2 if x, y < 1/2 or x, y ≥ 1/2;
1/2 otherwise,

and the uniform stationary density π0(·) ≡ 1 on [0, 1]. Since φ(z, U) = 0 in (1.2) uniquely
implies φ(1, U) = 0, Algorithm 1.1 always accepts the value z [i.e., Mz,1(0, {0}) ≡ 1] in the
second phase, and incorrectly generates a sample from the density k(0, ·).
Here we consider the multigamma coupler, introduced by Murdoch and Green [9], and con-
struct different upward kernels particularly for α = 0. Let U ≡ (V, W ) be a random vector
with a Bernoulli random variable V having success probability 1/2 and, independently, with a
uniform random variable W on [0, 1]. Then we can define a monotone transition rule φ0 for K
by

φ0(x, U) =




W if V = 0;
W/2 if V = 1 and x < 1/2;
(1 + W )/2 if V = 1 and x ≥ 1/2.

(1.5)
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Therefore, we can similarly obtain the upward kernel Mx,y(x, ·) via (1.3) with φ0 substituted
for φ. Since P (V = 0 | φ0(z, U) = 0) equals 1/3 or 1 accordingly as z < 1/2 or z ≥ 1/2, we
can compute the acceptance probability Mz,1(0, {0}) which coincides exactly with (1.4). This
immediately implies that Algorithm 1.1 runs correctly even when π0 is not atomic at 0.

2 Regularity conditions and their properties

2.1 The monotone case

In what follows we assume that the state space X is a Polish space (i.e., a complete separable
metric space), and is equipped with a closed partial ordering [i.e., {(x, y) : x ≤ y} is closed in
X × X ]. The Polish space assumption provides a sufficient condition for existence of regular
conditional probabilities (see, e.g., Dudley [4]), and was used implicitly in Section 1.2. In
a typical application the state space can be chosen as a connected region of some Euclidean
space Rn with the usual (coordinate-wise) partial order. Additional technical assumptions will
be made about the monotone case throughout this paper, as described below.
Measure space. A subset G of X is called a down-set if it implies y ∈ G whenever y ≤ x for
some x ∈ G, and D will denote the collection of non-empty open down-sets. Then we assume
that D is a base of neighborhoods of 0̂, that is, that

{G′ ∈ D : G′ ⊆ G} 6= ∅ for every neighborhood G of 0̂. (2.1)

Let B(0̂, r) denote the open ball of radius r from 0̂. Then C := {B(0̂, 1/n) : n ∈ N} is a
countable base for neighborhoods of 0̂. In the usual (coordinate-wise) partial order on some
Euclidean space, every open ball B(0̂, r) is a down-set, and therefore, (2.1) holds. Although
an open ball B(0̂, r) is not necessarily a down-set in general, (2.1) still holds if X is compact
(see Theorem 5 on page 48 of [10]).
Let (X ,B, ν) be a measure space with Borel σ-field B and σ-finite measure ν. Then we assume
that

ν(G) > 0 for every neighborhood G of 0̂. (2.2)

We note that (2.2) is equivalently characterized by every nonnegative measurable function g
for which

∫
g(x) ν(dx) > 0 whenever g is strictly positive and continuous at 0̂. The measure

ν will be used as a “reference” measure to introduce density functions (i.e., Radon–Nykodym
derivatives with respect to ν). For this reason we will simply write dz for ν(dz) as a shorthand
notation. Lebesgue measure is the usual choice for reference measure ν when X is a connected
region of some Euclidean space. But note that (2.2) implies ν({0̂}) > 0 if the singleton {0̂}
itself is a neighborhood of 0̂, and that this is clearly the case when X is discrete, or 0̂ is an
isolated point in X .
Monotone coupling. The notion of stochastic monotonicity is closely related to Nachbin–
Strassen theorem on stochastic ordering, introduced by Kamae, Krengel, and O’Brien [6].
Among several equivalent definitions, stochastic ordering can be defined in terms of the col-
lection D of non-empty open down-sets. Let P1 and P2 be probability measures on (X ,B).
Then P1 is said to be stochastically smaller than P2, denoted by P1 � P2, if P1(G) ≥ P2(G)
for all G ∈ D. The Nachbin–Strassen theorem (Theorem 1 in [6]) shows that P1 � P2 if and
only if there exists an upward kernel L satisfying P2(·) =

∫
P1(dx)L(x, ·). (See [6] for other

characterizations of stochastic ordering.) A Markov kernel K is said to be stochastically mono-
tone if K(x, ·) � K(y, ·) whenever x ≤ y. By the Nachbin–Strassen theorem the stochastic
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monotonicity of K is equivalent to existence of a collection {Mx,y : x ≤ y} of upward kernels
satisfying (1.1).
Let V denote the closed subset {(x, y) : x ≤ y} of X×X . Then we will assume that the function
Mx,y(x′, A) of (x, y, x′) is jointly measurable on V × X for every A ∈ B, and call Mx,y(x′, ·)
a monotone coupling. As we have demonstrated in Section 1.2, it is often the case that a
monotone transition rule φ exists and that a monotone coupling Mx,y(x′, ·) can be constructed
via (1.3). We note, however, that such monotone transition rule φ does not necessarily exist
for stochastically monotone kernel K when X is not a linearly ordered state space. (For the
precise statement in the case of a finite state space, consult [2].)

2.2 Regularity conditions

We define the essential supremum for a measurable function f on a measurable set G by

ess.sup
x∈G

|f(x)| := inf {α ≥ 0 : ν ({x ∈ G : |f(x)| > α}) = 0} .

We will say that a sequence {Gn}∞n=1 of neighborhoods of 0̂ is shrinking if there is a se-
quence {B(0̂, rn)}∞n=1 of open balls with limn→∞ rn = 0 such that Gn ⊆ B(0̂, rn). Now
assume that the Markov kernel K has a kernel density k and a stationary density π. Then
we can introduce the following conditions (R1)–(R3) for the monotone case, and call them
collectively regularity conditions:

(R1) The stationary density π is continuous at 0̂, and satisfies π(x) > 0 for all x ∈ X .

(R2) The kernel density k satisfies for every sequence {yn}∞n=1 converging to 0̂,

lim
n→∞ sup

x∈X
|k(x, yn) − k(x, 0̂)| = 0.

(R3) If k(x, 0̂) > 0, then each upward kernel Mx,y satisfies for every shrinking sequence
{Gn}∞n=1 of neighborhoods of 0̂,

lim
n→∞ ess.sup

x′∈Gn

|Mx,y(x′, Gn) − Mx,y(0̂, {0̂})| = 0.

Recall the example discussed in Section 1.2. Here we examine the regularity conditions when
the Markov kernel K is absolutely continuous, that is, when α = 0. Clearly the stationary
density π0 and the kernel density k satisfy (R1) and (R2), respectively. But the upward
kernel (1.3) with transition rule (1.2) does not satisfy (R3). Indeed one can show that the
limit in (R3) becomes unity by choosing x < 1/2 ≤ y and the shrinking sequence {Gn}∞n=1

with Gn = [0, 1/n). In Section 1.2 we then obtained a successful monotone coupling by using
another transition rule (1.5). We will see in Remark 2.1(b) that (R3) holds for this monotone
coupling.
Remark 2.1. (a) Since X is a metric space, (R2) holds if and only if for any ε > 0 there exists
some neighborhood G of 0̂ such that

|k(x, y) − k(x, 0̂)| < ε for all x ∈ X and all y ∈ G. (2.3)

In the sense of (2.3) we will say that the functions f(x, ·), x ∈ X , are equicontinuous at 0̂.
(b) It suffices for (R3) to show that for any ε > 0 there exists some neighborhood G of 0̂ such
that

|Mx,y(x′, G′) − Mx,y(0̂, {0̂})| ≤ ε for almost everywhere (a.e.) x′ ∈ G′, (2.4)
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for any neighborhood G′ of 0̂ satisfying G′ ⊆ G. For example, consider the upward kernel (1.3)
constructed from the “multigamma” transition rule (1.5) in Section 1.2. Let G′ be any neigh-
borhood G′ of 0̂ such that G′ ⊆ G := [0, 1/3). Then, for every x′ ∈ G′, we can calculate
Mx,y(x′, G′) = Mx,y(0̂, {0̂}) = 1/3 if x < 1/2 ≤ y; otherwise, Mx,y(x′, G′) = Mx,y(0̂, {0̂}) = 1.
Therefore, (2.4) holds for every x ≤ y.
(c) We can particularly choose a shrinking sequence {Gn}∞n=1 of non-empty open down-sets.
For each n = 1, 2, . . ., by (2.1) we can find some Gn ∈ D such that Gn ⊆ B(0̂, 1/n). Then the
resulting sequence {Gn}∞n=1 is clearly shrinking.

2.3 Kernel density and ergodicity

A kernel density kt exists for the t-step transition kernel Kt for t = 1, 2, . . ., and is constructed
recursively via

kt(x, y) =
∫

kt−1(x, z)k(z, y) dz for t = 2, 3, . . . (2.5)

where k1 ≡ k. From the integral representation (2.5) one easily conclude that the equiconti-
nuity property in (R2) is maintained for the t-step kernel density kt. Recalling Remark 2.1(a),
for any ε > 0 we can find some neighborhood G of 0̂ satisfying (2.3), and apply it to obtain

|kt(x, y) − kt(x, 0̂)| ≤
∫

kt−1(x, z)|k(z, y) − k(z, 0̂)| dz ≤ ε (2.6)

for any y ∈ G, and for every x ∈ X and every t = 1, 2, . . .. Thus, the choice of neighborhood G
of 0̂ does not depend on t. From this observation in (2.6) we derive the following theorem in
connection with ergodicity of the Markov kernel K.

Theorem 2.2. For every x ∈ X we have lim
t→∞ kt(x, 0̂) = π(0̂).

Proof. By (R1) and (2.6), for any ε > 0 we can find a neighborhood G of 0̂ such that

1 − ε <
π(z)
π(0̂)

< 1 + ε and
kt(x, 0̂)
π(0̂)

− ε <
kt(x, z)
π(0̂)

<
kt(x, 0̂)
π(0̂)

+ ε

for all z ∈ G and all t ≥ 1. By combining these two inequalities, we can obtain

kt(x, 0̂) − επ(0̂)
(1 + ε)π(0̂)

π(z) < kt(x, z) <
kt(x, 0̂) + επ(0̂)

(1 − ε)π(0̂)
π(z).

By integrating the above inequality over the neighborhood G, we derive

Kt(x, G)
π(G)

(1 − ε) − ε ≤ kt(x, 0̂)
π(0̂)

≤ Kt(x, G)
π(G)

(1 + ε) + ε for all t ≥ 1,

where we are using the symbol π for both density and distribution. By ergodicity Kt(x, G)
converges to π(G) as t → ∞, and

1 − 2ε ≤ lim
t→∞

kt(x, 0̂)
π(0̂)

≤ 1 + 2ε.

This completes the proof since ε > 0 is arbitrary.
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2.4 Pointwise derivative and upward kernel

Since kt(x, ·) is continuous at 0̂, we can consider the pointwise derivative of Kt(y, ·) with
respect to Kt(x, ·) at 0̂ (see, e.g., [5]). Assuming kt(x, 0̂) > 0, one can easily show that for any
shrinking sequence {Gn}∞n=1 of neighborhoods of 0̂,

lim
n→∞

Kt(y, Gn)
Kt(x, Gn)

=
kt(y, 0̂)
kt(x, 0̂)

. (2.7)

An immediate application of (2.7) comes from the fact that stochastic monotonicity for the
kernel K is preserved for the t-step transition kernel Kt (see, e.g., [7]). Recall in Remark 2.1(c)
that we can choose a shrinking sequence {Gn}∞n=1 of non-empty open down-sets. Since
Kt(x, Gn) ≥ Kt(y, Gn) for every n ≥ 1, by (2.7) we conclude the following corollary.

Corollary 2.3. If x ≤ y, then kt(x, 0̂) ≥ kt(y, 0̂).

In the next proposition we will see that the pointwise derivative is also related to the upward
kernel. Then, by combining Proposition 2.4 and (2.7), one can see that for each (x, y) ∈ V ,

Mx,y(0̂, {0̂}) =
k(y, 0̂)
k(x, 0̂)

(2.8)

whenever k(x, 0̂) > 0.

Proposition 2.4. Assuming k(x, 0̂) > 0, we have for any shrinking sequence {Gn}∞n=1 of
non-empty down-sets,

lim
n→∞

K(y, Gn)
K(x, Gn)

= Mx,y(0̂, {0̂}) for (x, y) ∈ V.

Proof. Since Mx,y is upward and Gn is down-set, we have Mx,y(x′, Gn) = 0 for every x′ 6∈ Gn.
By (1.1) we obtain

K(y, Gn) =
∫

Gn

Mx,y(x′, Gn) k(x, x′) dx′.

Therefore, we can derive∣∣∣∣K(y, Gn)
K(x, Gn)

− Mx,y(0̂, {0̂})
∣∣∣∣

=
1

K(x, Gn)

∣∣∣∣
∫

Gn

Mx,y(x′, Gn) k(x, x′) dx′ − Mx,y(0̂, {0̂})
∫

Gn

k(x, x′) dx′
∣∣∣∣

≤ 1
K(x, Gn)

∫
Gn

∣∣Mx,y(x′, Gn) − Mx,y(0̂, {0̂})∣∣ k(x, x′) dx′

≤ ess.sup
x′∈Gn

∣∣Mx,y(x′, Gn) − Mx,y(0̂, {0̂})∣∣ .
Then the limit of the essential supremum must be zero by (R3).
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2.5 The t-fold monotone coupling

In this subsection we discuss the monotone coupling and introduce its t-fold extension under
the regularity conditions. For each fixed (x, y) ∈ V , we first define a measure on V by

K̂((x, y), dx′ × dy′) := Mx,y(x′, dy′)k(x, x′)dx′.

From a simple constructive argument of Lebesgue integration, one can see that (1.1) equiva-
lently implies that ∫

g(y′) k(y, y′) dy′ =
∫ ∫

g(y′) K̂((x, y), dx′ × dy′) (2.9)

for every measurable function g on X , if it is integrable. By the upwardness and the joint
measurability of Mx,y(x′, ·), K̂ is actually a Markov kernel on the state space V . Then we can
establish the following lemma.

Lemma 2.5. Let g(u, v, x′) be a jointly measurable function on V × X . Then

ĝ(x, y, x′) =
∫ ∫

g(u, v, x′) K̂((x, y), du × dv)

is jointly measurable on V × X if it is integrable.

Proof. We can prove it by monotone class argument (see, e.g., Dudley [4]). First let g(u, v, x′) =
1A×B(u, v, x′) be an indicator function on A × B with measurable sets A ⊆ V and B ⊆ X .
Then clearly ĝ(x, y, x′) = K̂((x, y), A)1B(x′) is jointly measurable. We can then pass to finite
disjoint unions of them, and then to any measurable sets on V × X by monotone class theo-
rem. Now g can be replaced by simple functions, nonnegative and general jointly measurable
functions.

Now we define the collection {M t
x,y : (x, y) ∈ V} of t-fold upward kernels as follows. We set

M1
x,y(x′, ·) := Mx,y(x′, ·), and for t ≥ 2, we can construct M t

x,y(x′, ·) recursively via

M t
x,y(x′, ·) :=

1
kt(x, x′)

∫ ∫
M t−1

u,v(x′, ·)kt−1(u, x′)K̂((x, y), du × dv) (2.10)

if kt(x, x′) > 0; otherwise, we set M t
x,y(x′, ·) to be an arbitrary upward kernel, say M t

x,y(x′, ·) :=
δx′(·). Then it is an immediate corollary of Lemma 2.5 that the function M t

x,y(x′, ·) of (x, y, x′)
is jointly measurable. Furthermore, it satisfies

Kt(y, ·) =
∫

M t
x,y(x′, ·)kt(x, x′) dx′ for every (x, y) ∈ V , (2.11)

which is verified by the following straightforward induction argument: By applying Fubini’s
theorem and then (2.9), one can show that∫

M t
x,y(x′, ·)kt(x, x′) dx′ =

∫ ∫ [∫
M t−1

u,v(x′, ·)kt−1(u, x′) dx′
]

K̂((x, y), du × dv)

=
∫ ∫

Kt−1(v, ·) K̂((x, y), du × dv) =
∫

Kt−1(v, ·) k(y, v) dv = Kt(y, ·).

The next proposition is the result of another straightforward induction argument, and will be
the most important one in the proof of Theorem 1.2.
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Proposition 2.6. If x ≤ y and kt(x, 0̂) > 0, then we have

M t
x,y(0̂, {0̂}) =

kt(y, 0̂)
kt(x, 0̂)

. (2.12)

Proof. Note that (2.8) is a special case of (2.12) for t = 1. For t ≥ 2, by applying the induction
hypothesis and then (2.9), we derive

M t
x,y(0̂, {0̂}) =

1
kt(x, 0̂)

∫ ∫
M t−1

u,v(0̂, {0̂})kt−1(u, 0̂)K̂((x, y), du × dv)

=
1

kt(x, 0̂)

∫ ∫
kt−1(v, 0̂) K̂((x, y), du × dv)

=
1

kt(x, 0̂)

∫ ∫
kt−1(v, 0̂)k(y, v) dv =

kt(y, 0̂)
kt(x, 0̂)

.

In the sense of (2.11), we will call M t
x,y(x′, ·) a t-fold monotone coupling. Then the last

theorem of this subsection shows that the continuity property of (R3) is maintained for the
t-fold extension of Mx,y(x′, ·). This in turn can be used to provide an alternative proof of
Proposition 2.6 which will be exactly the same as that of Proposition 2.4.

Theorem 2.7. For every t ≥ 1 and for every shrinking sequence {Gn}∞n=1 of neighborhoods
of 0̂, we have

lim
n→∞ ess.sup

x′∈Gn

|M t
x,y(x′, Gn) − M t

x,y(0̂, {0̂})| = 0

if kt(x, 0̂) > 0.

Proof. For each n ≥ 1 define

Bn := {x′ ∈ Gn : |Mx,y(x′, Gn) − Mx,y(0̂, {0̂})| > an},

where an := ess.supx′∈Gn
|Mx,y(x′, Gn) − Mx,y(0̂, {0̂})|. By definition of the essential supre-

mum, we have ν(Bn) = 0 for every n ≥ 1, and therefore, ν (
⋃∞

n=1 Bn) = 0. Let G′
n := Gn \ (

⋃∞
n=1 Bn).

Then if it can be shown that

lim
n→∞ sup

x′∈G′
n

M t
x,y(x′, Gn) = lim

n→∞ inf
x′∈G′

n

M t
x,y(x′, Gn) = M t

x,y(0̂, {0̂}), (2.13)

then the proof will be completed.
We will show (2.13) by induction. By (R3) we can see that (2.13) clearly holds for t = 1. Since
M t−1

u,v(x′, Gn) ≤ 1 and kt−1(u, ·) is equicontinuous at 0̂, we can find some integer n0 and
positive value c > 0 satisfying

sup
x′∈G′

n

[
M t−1

u,v(x′, Gn)kt−1(u, x′)
] ≤ c



Fill’s algorithm for continuous monotone kernels 150

for all (u, v) ∈ V and all n ≥ n0. By applying the induction hypothesis and then dominated
convergence theorem, we derive

lim
n→∞ sup

x′∈G′
n

M t
x,y(x′, Gn)

≤ lim
n→∞

[
sup

x′∈G′
n

1
kt(x, x′)

][∫ ∫
sup

x′∈G′
n

[
M t−1

u,v(x′, Gn)kt−1(u, x′)
]
K̂((x, y), du × dv)

]

=
1

kt(x, 0̂)

∫ ∫
M t−1

u,v(0̂, {0̂}) kt−1(u, 0̂)K̂((x, y), du × dv) = M t
x,y(0̂, {0̂}),

and

lim
n→∞ inf

x′∈G′
n

M t
x,y(x′, Gn)

≥ lim
n→∞

[
inf

x′∈G′
n

1
kt(x, x′)

] [∫ ∫
inf

x′∈G′
n

[
M t−1

u,v(x′, Gn)kt−1(u, x′)
]
K̂((x, y), du × dv)

]

=
1

kt(x, 0̂)

∫ ∫
M t−1

u,v(0̂, {0̂}) kt−1(u, 0̂)K̂((x, y), du × dv) = M t
x,y(0̂, {0̂}).

They together implies (2.13).

3 FMMR algorithm for absolutely continuous kernels

3.1 Proof of Theorem 1.2

We now complete the proof of Theorem 1.2 by introducing a rejection sampling method (see,
e.g., Chapter 10 of [11]), which essentially parallels Section 7.3 of [1]. Under the regularity
conditions we can form a time-reversal kernel density k̃ by

k̃(y, x) =
π(x)k(x, y)

π(y)
, (3.1)

and obtain the t-step time-reversed kernel density k̃t via (2.5) with k̃ substituted for k. Suppose
that there exists a constant c satisfying

π(z)
k̃t(0̂, z)

≤ c for all z ∈ X . (3.2)

Then one can construct an algorithm composed of the following two steps:

Step 1. Generate a sample value X0 = z from the density k̃t(0̂, ·).
Step 2. Accept the value X0 = z with acceptance probability c−1π(z)

/
k̃t(0̂, z) ; otherwise,

return to Step 1.

According to the rejection sampling principle, this algorithm generates a sample exactly from
the density π, and will yield an accepted value every iteration with success probability c−1.
And it will perform best when the least upper bound c∗ in (3.2) is chosen. By applying (2.5)
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with (3.1) inductively, we obtain π(x)kt(x, y) ≡ π(y)k̃t(y, x). Then, together with Corollary 2.3
we derive the least upper bound

π(z)
k̃t(0̂, z)

=
π(0̂)

kt(z, 0̂)
≤ c∗ =

π(0̂)
kt(1̂, 0̂)

, (3.3)

and the acceptance probability

kt(1̂, 0̂)
π(0̂)

· π(z)
k̃t(0̂, z)

=
kt(1̂, 0̂)
kt(z, 0̂)

. (3.4)

By Theorem 2.2 and (R1), note that we can choose sufficiently large Markov chain steps t in
order for (3.3) and (3.4) to have kt(1̂, 0̂) > 0.
Now we will see that Algorithm 1.1 is designed precisely to realize the above-mentioned al-
gorithm. Clearly the first phase of Algorithm 1.1 is Step 1. The acceptance probability of
Algorithm 1.1 can be expressed in the closed form∫

· · ·
∫

k̃(0̂, xt−1) · · · k̃(x1, z)
k̃t(0̂, z)

Mz,1̂(x1, dy1) · · ·Mxt−1,yt−1(0̂, {0̂}) dx1 · · · dxt−1.

By recursively applying (2.10), the t-fold upward kernel M t
z,1̂(0̂, {0̂}) has also the closed from

∫
· · ·

∫
Mz,1̂(x1, dy1) · · ·Mxt−1,yt−1(0̂, {0̂}) k(z, x1) · · ·k(xt−1, 0̂)

kt(z, 0̂)
dx1 · · · dxt−1.

Since
k̃(0̂, xt−1) · · · k̃(x1, z)

k̃t(0̂, z)
=

k(z, x1) · · · k(xt−1, 0̂)
kt(z, 0̂)

,

one can see that the acceptance probability in Algorithm 1.1 is exactly equal to the probability
M t

z,1̂(0̂, {0̂}). Furthermore, by Proposition 2.6 the second phase of Algorithm 1.1 works
precisely as Step 2, and generates the same acceptance probability (3.4). Therefore, we have
shown the correctness of Algorithm 1.1.

3.2 Gamma coupling

Let W be a measurable set on X × X . By Wx := {y : (x, y) ∈ W} we denote the section
determined by the first coordinate x. In what follows we will assume that Wx is nonempty
for every x ∈ X . Then a collection {Mx,y : (x, y) ∈ W} of Markov kernels is called a coupling,
if (i) Mx,y(x′, ·) is supported on the section Wx′ for every (x, y, x′) ∈ W × X , and (ii) the
function Mx,y(x′, A) of (x, y, x′) is jointly measurable on W ×X for each A ∈ B. We simply
write Mx,y(x′, ·) for a coupling if the underlying set W has been clearly specified. Furthermore,
given a Markov kernel K, we call Mx,y(x′, ·) a coupling for K if it is a coupling satisfying (1.1)
for every (x, y) ∈ W . We note that a monotone coupling is a special case of coupling for K
where the set W is particularly chosen to be the closed set V = {(x, y) : x ≤ y}. One can
generate a bivariate chain (Xt, Yt)t=0,1,... on the state space W from the bivariate Markov
kernel

K̂((x, y), dx′ × dy′) := Mx,y(x′, dy′)K(x, dx′), (3.5)

and the initial distribution (X0, Y0). Then the marginal chain (Xt)t=0,1,... is clearly a Markov
chain generated by K, and (1.1) becomes a necessary and sufficient condition for the marginal
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chain (Yt)t=0,1,... to be Markovian, having the same Markov kernel K. When W = X ×X , we
can always construct the “trivial” coupling Mx,y(x′, ·) := K(y, ·) for a Markov kernel K, by
which one can run independent marginal chains (Xt)t=0,1,... and (Yt)t=0,1,....
In the rest of this subsection we further assume that W contains the diagonal set ∆ := {(x, x) :
x ∈ X}, and that the Markov kernel K has a kernel density k. Given a coupling Lx,y(x′, ·),
we can construct another coupling Mx,y(x′, ·) by

Mx,y(x′, ·) :=

{
δx′(·) if k(x, x′) ≤ k(y, x′);
k(y,x′)
k(x,x′) δx′(·) + k(x,x′)−k(y,x′)

k(x,x′) Lx,y(x′, ·) if k(x, x′) > k(y, x′).
(3.6)

Let (x, y) ∈ W be fixed, and let γx,y :=
∫

k(x, z)∧k(y, z) dz where a∧b := min(a, b). Assuming
γx,y < 1, we can introduce the probability measures

Q(x,y)(dz) :=
1

1 − γx,y
[k(x, z) − k(x, z) ∧ k(y, z)] dz

and
Q(x,y)(dz) :=

1
1 − γx,y

[k(y, z)− k(x, z) ∧ k(y, z)] dz.

If Lx,y(x′, ·) satisfies for every (x, y) ∈ W ,

Q(x,y)(A) =
∫

Lx,y(x′, A)Q(x,y)(dx′) for each A ∈ B, (3.7)

then we will see in the next lemma that (3.6) is a coupling for K, and call it a γ-coupling.
Note that if γx,y = 1 then k(x, x′) = k(y, x′) and Mx,y(x′, ·) = δx′(·) for a.e. x′ ∈ X , which
trivially satisfies (1.1).

Lemma 3.1. The coupling Mx,y(x′, ·) in (3.6) satisfies (1.1) if and only if Lx,y(x′, ·) satis-
fies (3.7).

Proof. Define B := {x′ : k(x, x′) ≤ k(y, x′)}. By observing that Q(x,y)(B) = 0 and Q(x,y)(Bc) =
0, we can obtain∫

Mx,y(x′, A) k(x, x′) dx′ =
∫

B

δx′(A) k(x, x′) dx′

+
∫

Bc

[
k(y, x′)
k(x, x′)

δx′(A) +
k(x, x′) − k(y, x′)

k(x, x′)
Lx,y(x′, A)

]
k(x, x′) dx′

= K(y, A) − (1 − γx,y)
[
Q(x,y)(A) −

∫
Lx,y(x′, A)Q(x,y)(dx′)

]
,

which equals K(y, A) if and only if (3.7) holds.

The notion of γ-coupling appeared at several different places (see the notes in Chapter 1
of [7]), and was introduced by Lindvall [7] for a coupling of two probability measures P1

and P2 to achieve a maximal coupling. This particular coupling was a bivariate probabil-
ity measure Q on a product space whose marginals are consistent with P1 and P2, and its
mass Q(∆) on the diagonal set ∆ achieves its maximum

(
1 − 1

2‖P1 − P2‖
)
, where ‖ · ‖ de-

notes the total variation norm. By employing the same argument as in [7], one can show that
γx,y =

(
1 − 1

2‖K(x, ·) − K(y, ·)‖), and that our γ-coupling in (3.6) attains K̂((x, y), ∆) = γx,y.
But in the next proposition we justify our notion of the γ-coupling in connection with the reg-
ularity conditions.
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Proposition 3.2. If the kernel density k satisfies (R2), then (R3) holds for a γ-coupling Mx,y(x′, ·)
of the form (3.6).

Proof. Let ε > 0 be arbitrary. By Remark 2.1(b), (R3) holds if we can find a neighborhood
G of 0̂ so that (2.4) holds for any neighborhood G′ of 0̂ satisfying G′ ⊆ G. (i) Suppose
that 0 < k(x, 0̂) < k(y, 0̂). Then by (R2) we can find some neighborhood G of 0̂ such that
0 < k(x, x′) < k(y, x′) for all x′ ∈ G. Thus, we obtain

|Mx,y(x′, G′) − Mx,y(0̂, {0̂})| = |δx′(G′) − δ0̂({0̂})| = 0

for every x′ ∈ G′ and for every measurable subset G′ of G, as desired. (ii) Suppose that
0 < k(x, 0̂) = k(y, 0̂). Similarly we can find some neighborhood G of 0̂ such that 0 < k(x, x′)
and |k(x, x′) − k(y, x′)|/ k(x, x′) < ε/ 2 for all x′ ∈ G. Thus, we obtain

|Mx,y(x′, G′) − Mx,y(0̂, {0̂})|
≤

∣∣∣ k(y,x′)
k(x,x′) δx′(G′) + k(x,x′)−k(y,x′)

k(x,x′) Lx,y(x′, G′) − δ0̂({0̂})
∣∣∣ ≤ 2

∣∣∣k(x,x′)−k(y,x′)
k(x,x′)

∣∣∣ < ε,

for every x′ ∈ G′ and for every measurable subset G′ of G, as desired.
Finally, (iii) suppose that k(x, 0̂) > k(y, 0̂). By (R2) we can find some neighborhood G of
0̂ such that k(x, x′) − k(y, x′) ≥ α := (k(x, 0̂) − k(y, 0̂)) /2 and

∣∣∣ k(y,x′)
k(x,x′) − k(y,0̂)

k(x,0̂)

∣∣∣ < ε for all
x′ ∈ G. Then, by (3.7) we obtain

Q(x,y)(G′) =
∫

Lx,y(x′, G′)Q(x,y)(dx′) ≥ α

1 − γx,y

∫
Lx,y(x′, G′) dx′ (3.8)

for every x′ ∈ G′ and for every measurable subset G′ of G. Since Q(x,y)(G′) = 0 in (3.8)
implies that Lx,y(x′, G′) = 0 for a.e. x′ ∈ X , we derive

|Mx,y(x′, G′) − Mx,y(0̂, {0̂})|

≤
∣∣∣∣∣k(y, x′)
k(x, x′)

δx′(G′) +
k(x, x′) − k(y, x′)

k(x, x′)
Lx,y(x′, G′) − k(y, 0̂)

k(x, 0̂)
δ0̂({0̂})

∣∣∣∣∣
≤

∣∣∣∣∣k(y, x′)
k(x, x′)

− k(y, 0̂)
k(x, 0̂)

∣∣∣∣∣ < ε for a.e. x′ ∈ G′,

as desired.

Now we assume that the Markov kernel K is absolutely continuous and stochastically mono-
tone, and choose W := {(x, y) : x ≤ y}. Since K(x, ·) � K(y, ·) implies Q(x,y)(·) � Q(x,y)(·),
by Nachbin–Strassen theorem there exists an upward kernel Lx,y satisfying (3.7). If we can
find further that Lx,y(x′, A) is jointly measurable for each A ∈ B, then the resulting γ-
coupling Mx,y(x′, ·) is monotone and also satisfies (R3) by Proposition 3.2.

3.3 Quasi-monotone case

Given a measurable subset W of X × X , we will say that a quasi-monotone case obtains, if
(a) there exists a particular element in X , say 1̂, satisfying (x, 1̂) ∈ W for all x ∈ X , (b) there
exists a particular element in X , say 0̂, satisfying k(x, 0̂) ≥ k(y, 0̂) for every (x, y) ∈ W , and
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(c) there exists a coupling {Mx,y : (x, y) ∈ W} for K in the sense of Section 3.2. Then, in this
subsection we reexamine the proof of Theorem 1.2, and attempt to extend the applicability
of Algorithm 1.1 for the quasi-monotone case. At the first glance of the derivation of the
least upper bound c∗ in (3.3), the stochastic monotonicity plays a role only in the form of
Corollary 2.3. Should Corollary 2.3 be granted, one can show that kt(z, 0̂) ≥ kt(1̂, 0̂) for all
z ∈ X even for the quasi-monotone case, and therefore derive (3.3). The next lemma will show
that we can generalize Corollary 2.3 for the quasi-monotone case.

Lemma 3.3. When the quasi-monotone case obtains, we have kt(x, 0̂) ≥ kt(y, 0̂) for every
(x, y) ∈ W.

Proof. We can prove it by induction for t ≥ 2. Recall the discussion in Section 2.5. Here
we can similarly verify (2.9) with the bivariate Markov kernel (3.5) on W . Since we have
kt−1(x′, 0̂) ≥ kt−1(y′, 0̂) for every (x′, y′) ∈ W by the induction hypothesis, we derive for
each (x, y) ∈ W ,

kt(y, 0̂) =
∫

kt−1(y′, 0̂) k(y, y′) dy′ =
∫ ∫

kt−1(y′, 0̂) K̂((x, y), dx′ × dy′)

≥
∫ ∫

kt−1(x′, 0̂) K̂((x, y), dx′ × dy′) =
∫

kt−1(x′, 0̂) k(x, x′) dx′ = kt(x, 0̂).

Now it is perfectly legitimate to run Algorithm 1.1 for the quasi-monotone case, and the
success of the rejection sampling method solely depends on the mechanism to generate the
correct acceptance probability (3.4). One can construct the t-fold coupling M t

x,y recursively
via (2.10) using the bivariate Markov kernel (3.5) on W . Then, as we have demonstrated in
Section 3.1, the second phase of Algorithm 1.1 yields the acceptance probability M t

z,1̂(0̂, {0̂}).
Proposition 3.4. Suppose that

(R4) the coupling Mx,y(x′, ·) satisfies (2.8) whenever k(x, 0̂) > 0 and (x, y) ∈ W.

Then it satisfies (2.12) whenever kt(x, 0̂) > 0 and (x, y) ∈ W.

Proof. It is exactly that of Proposition 2.6 except that we now have a rather general set W
from our quasi-monotone case.

Thus, we conclude that if (R1), (R2), and (R4) hold, then Algorithm 1.1 works correctly even
when the quasi-monotone case is considered, and that the monotone case simply becomes
a special case. Recall in Section 2.4 that the regularity conditions are sufficient for (R4).
Also note that if the coupling in the quasi-monotone case is a γ-coupling, then (R4) holds
automatically.
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