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Abstract
The purpose of this note is to give a PDE satisfied by a call option when the price process is
a semimartingale. The main result generalizes the PDE in the case when the stock price is a
diffusion. Its proof uses Meyer-Tanaka and occupation density formulae. Presented approach
also gives a new insight into the classical Black-Scholes formula. Rigorous proofs of some
known results are also given.

1 Introduction

In this note we are concerned with pricing a call option. It is well known, see e.g. Shiryaev
(1999), that in a complete market its price at time zero is given by

C = C(S, K, T ) = e−rT E((ST − K)+|S0 = S), (1)

where T is maturity, St, 0 ≤ t ≤ T is the price of the stock, K is the strike and r is the riskless
interest rate. In the classical model of Black and Scholes ST is a LogNormal random variable
LN(µ, σ2T ), and in this case equation (1) gives

C = SΦ(h) − Ke−rT Φ(h − σ
√

T ), h =
ln(S/K) + (r + 1

2σ2T )

σ
√

T
. (2)

Auxiliary results are as follows. ∆ = ∂C
∂S is known as the delta of the option (it gives the

number of shares in a self-financing portfolio replicating the option). In the above formula
∂C
∂S = Φ(h), which is rather strange, as S enters the formula in two places in a nonlinear way.
We show that this is true in general, and that in the most general situation C = ∆S + κK,
which can be seen as an analogue of the Black-Scholes formula. One practically does not need
any assumptions for this result besides that the expectation exists.
It is well-known that in order to price options by no-arbitrage arguments the market model
should not admit arbitrage opportunities. A necessary condition for this is that the price
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process must be a semimartingale, see e.g. Shiryaev (1999). The main result shows that when
the price process is a continuous semimartingale, then the price of an option satisfies a partial
differential equation (PDE). It is well-known that when the price process is a diffusion, then
a PDE holds in the backward variables t and x, but surprisingly for a general continuous
semimartingale it is possible to have a PDE in the variables T and K. It turned out that such
a PDE is known in the literature when the price process is a martingale diffusion, i.e. when
dSt = b(St, t) dBt for some deterministic function b(x, t), Dupire (1997) and Bartells (2000).
Their method relies on diffusion properties of the process, the sketch of the proof given there
uses forward equations for the transition density. The proof given here is direct and appears
to be new. In the case of diffusions it recovers the result under less stringent conditions. The
result also gives a new insight into the pricing formula.

2 Results

Before stating the main result we need two auxiliary propositions, which are of interest in their
own right.

Theorem 1 Assume that ES+
T < ∞ and set F (y) = e−rT E(ST /S − y)+. Assume that F (y)

is differentiable in y in an open interval I. Then in the domain K/S ∈ I the option price as
a function of the present stock price S and strike K satisfies

C = S
∂C

∂S
+ K

∂C

∂K
. (3)

Theorem 2 Let ∆ = ∂C
∂S and κ = ∂C

∂K . Under the conditions of the previous theorem, ∆ and
κ of the option satisfy

∆ =
∂C

∂S
=

1
S

e−rT E(ST I(ST > K)) (4)

κ =
∂C

∂K
= −e−rT P (ST > K). (5)

From equations (3) and (5) we have

Corollary 3 Under the conditions of Theorem 1
(a) price of the option satisfies

C = ∆S + κK.

(b) ∂2C
∂K2 exists if and only if ST has a density fT , moreover

fT (K) = erT ∂2C

∂K2
. (6)

Proof of Theorem 1. The arbitrage-free price of the option is given by

C = e−rT E((ST − K)+|S0 = S)

= Se−rT E((ST /S − K/S)+|S0 = S) = SF (K/S)
(7)

Using (7) it is easy to see that the PDE (3) is satisfied. 2

Note here that on the other hand, a general solution to (3) is given by (7) for some function
F .
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Proof of Theorem 2. Let h(x, K) = (x − K)+, then

C = e−rT Eh(ST , K). (8)

Using ∂
∂K h = −I(x > K) at any point x 6= K, we find by changing expectation and derivative

(using dominated convergence) that (5) holds.
We have also from (8)

C = e−rT EST I(ST > K) − e−rT KP (ST > K), (9)

where I(A) is the indicator of set A. Using (3)

S∆ = e−rT E(ST I(ST > K)). (10)

The expressions for ∆ and κ now follow. 2

Remark. The formula (6) with an indication of proof is given in Breeden and Litzenberger
(1978) and Dupire (1994) in the context of diffusion models for the stock price. Here a rigorous
proof is given under minimal assumptions. The next Theorem is the main result of the note.

Theorem 4 Let St be a continuous semimartingale, such that there exists a martingale mea-
sure Q under which the process Ste

−rt is an H1 martingale on [0,>]. Suppose also the condi-
tions of Theorem 1, that ST possesses a density for any T ≤ >, and that 〈S〉T is differentiable.
Then the following PDE is satisfied

∂C

∂T
=

1
2
HT (K)

∂2C

∂K2
− rK

∂C

∂K
, (11)

where
HT (K) = E(

d〈S〉T
dT

|ST = K), (12)

and the initial condition is given by C(K, 0) = (S0 − K)+.

Remark. The assumptions of the theorem are rather general.
1. Existence of the martingale measure Q is a sufficient condition for the model to be free of
arbitrage; in some models it is also a necessary condition.
2. If filtration is generated by Brownian motion then 〈S〉T is absolutely continuous due to the
predictable representation property.

Proof of Theorem 4: It is easy to see that under the risk-neutral measure St = S0 +
∫ t

0 rSudu+
Mt, where Mt is an H1 martingale. Let LK

T be the local time of S at K. By the definition of
the local time or Meyer-Tanaka’s formula (see e.g. Protter (1992) or Klebaner (1998))

(ST − K)+ = (S0 − K)+ +
∫ T

0

I(St > K) dSt +
1
2
LK

T

We can see by using the Davis inequality (ibid) that
∫ T

0 I(St > K)dMt is a martingale, and
we have from the representation of St above by taking expectation

E(ST − K)+ = E(S0 − K)+ + rE

∫ T

0

I(St > K)St dt +
1
2
E(LK

T ). (13)
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Next we show that
∂

∂T
E(LK

T ) = fT (K)HT (K), (14)

where fT (K) is the density of ST . The occupation density formula (ibid) used for a positive
bounded function g gives ∫

LK
T g(K) dK =

∫ T

0

g(St) d〈S〉t. (15)

Taking expectations in the above formula
∫

E(LK
T )g(K) dK = E

∫ T

0

g(St) d〈S〉t =
∫ T

0

E(g(St)
d 〈S〉t

dt
) dt.

Proceeding
∫

E(LK
T )g(K) dK =

∫ T

0

E(g(St)E(
d〈S〉t

dt
|St)) dt =

∫ T

0

∫
g(K)Ht(K)ft(K) dK dt.

Changing the order of integration
∫

E(LK
T )g(K) dK =

∫
g(K)

∫ T

0

ft(K)Ht(K) dt dK.

It follows (since g is arbitrary) that E(LK
T ) =

∫ T

0
Ht(K)ft(K) dt, and (14) follows.

Using the notation h(x) = (x − K)+ we see from (13) that Eh(ST ) is differentiable in T ,
moreover with (5) and (6) we have

∂Eh(ST )
∂T

= rEh(ST ) + rKP (ST > K) +
1
2
fT (K)HT (K)

= rEh(ST ) − rKerT ∂C

∂K
+

1
2
erT HT (K)

∂2C

∂K2
.

As C = e−rT Eh(ST ), the stated PDE now follows. 2

Using the relation between solutions of PDE’s and expectations of functions of diffusions we
obtain that the option price can be calculated as if the strike K were a diffusion process
depreciating at rate r and diffusion term H .

Corollary 5 Assume the conditions of Theorem 4. Then

C(K, T ) = E((S0 − KT )+|K0 = K), (16)

where Kt solves the following SDE on [0, T ]

dKt = −rKt dt +
√

HT (Kt) dBt, with K0 = K. (17)

Proof of Corollary 5:
Let > ≥ T be fixed. Introduce the following notations: t = > − T , C′(K, t) := C(K, T ) =
C(K,>− t), H ′

t(K) := H>−t(K) = HT (K). Then ∂C
∂T = −∂C′

∂t . Thus the PDE for C′ is

1
2
H ′

t(K)
∂2C′

∂K2
− rK

∂C′

∂K
+

∂C′

∂t
= 0.
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This is the backward equation if Kt is a diffusion with the generator

Ltf =
1
2
H ′

t(K)
∂2f

∂K2
− rK

∂f

∂K
. (18)

The initial condition C(K, 0) = (S0 −K)+ becomes the boundary condition C′(K,>) = (S0 −
K)+. Thus (see e.g. [7]) its solution can be represented as C′(K, t) = E((S0−K>)+|Kt = K).
But C ′(K, t) = C(K, T ) for any 0 ≤ t ≤ >. Therefore taking t = 0 we have T = > and the
result follows. 2

In general the function HT (K) is hard to calculate. Below we give some simple examples. In
the classical case this approach gives a representation for the pricing formula given by (19).

Example. Black-Scholes model. The dynamics for the stock price is assumed to be dSt =

rSt dt + σSt dBt. Hence we have HT (K) = E(d〈S〉T

dT |ST = K) = E(d
∫ T
0 σ2S2

udu

dT |ST = K) =
σ2K2. By Corollary 5

C(K, T ) = E((S0 − KT )+|K0 = K), (19)

where Kt solves the SDE dKt = −rKt dt + σKt dBt. In this case it is easy to see (using
calculation for LogNormal variable KT ) that the classical Black-Scholes formula results.

Example. A Stochastic Volatility model of Bachelier type. The model for the stock price is
dSt = vt dBt, dvt = σ dBt, r = 0.
HT (K) = E(v2

T |ST = K) = σ2T + 2σK. The PDE satisfied by the option is
∂C(K,T )

∂T = (σ2T
2 + σK) ∂2C

∂K2 .

Remark The SDE for Kt above can also be obtained by the change of numéraire under the
measure that renders ert/St a martingale, Kt = K/St and the price of the option (in units of
stock) is E(1 − K/ST )+. I thank the referee and Erik Schlögl for this remark. I also thank
Jia-An Yan for useful comments.
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