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Abstract

For each d ≥ 2, we give examples of d-dimensional periodic lattices on which the hard-core
and Widom–Rowlinson models exhibit a phase transition which is monotonic, in the sense that
there exists a critical value λc for the activity parameter λ, such that there is a unique Gibbs
measure (resp. multiple Gibbs measures) whenever λ < λc (resp. λ > λc). This contrasts with
earlier examples of such lattices, where the phase transition failed to be monotonic. The case
of the cubic lattice Zd remains an open problem.

1 Introduction

This paper is concerned with Gibbs measures for hard-core and Widom–Rowlinson lattice gas
models; we refer to Georgii, Häggström and Maes [2] for a gentle introduction to these models,
and (unless otherwise indicated) for the known results quoted in this section.
In the hard-core lattice gas model, 0’s and 1’s are assigned randomly to the vertices of a graph
G, in such a way that pairs of adjacent 1’s do not occur. This is supposed to model a gas
where particles have non-negligible radii and cannot overlap. When G is finite, the hard-core
model arises by first letting each vertex independently take value 0 or 1 with probabilities

1
λ+1 and λ

λ+1 , where λ > 0 is the so-called activity parameter, and then conditioning on the
event that no two vertices sharing an edge both take value 0. When the graph is infinite, the
corresponding event to condition on has probability 0, so we instead apply the standard DLR
(Dobrushin–Lanford–Ruelle) definition of infinite-volume Gibbs measures:

Definition 1.1 Let G = (V, E) be a finite or countably infinite locally finite graph, and fix
λ > 0. A probability measure ν on {0, 1}V is said to be a Gibbs measure for the hard-core
model on G at activity λ, if it admits conditional probabilities such that for all v ∈ V and
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all ξ ∈ {0, 1}V \{v}, a {0, 1}V -valued random object X with distribution ν satisfies

ν(X(v) = 1 |X(V \ {v}) = ξ) =
{

λ
λ+1 if ξ(w) = 0 for all w ∈ V with 〈v, w〉 ∈ E

0 otherwise.

It is easy to see that the definition agrees with the description above in the case of finite
graphs. For infinite graphs, it follows from standard compactness arguments that at least one
Gibbs measure exists for a given G and a given λ. The obvious next question is the following:
For given G and λ, can there be more than one Gibbs measure?
Consider the important special case G = Zd, d ≥ 2, which we write as short for the graph with
vertex set Zd and edges connecting Euclidean nearest neighbors. For this graph, it is known
that there exist constants 0 < λ1 < λ2 < ∞ (depending on d), such that the hard-core model
on Zd at activity λ has

{
a unique Gibbs measure if λ < λ1

multiple Gibbs measures if λ > λ2.
(1)

Furthermore, there exist, in the Gibbs measure multiplicity region of the parameter space, two
particular Gibbs measures νλ

even and νλ
odd which arise as perturbations of the even and odd

“checkerboard patterns” (the even checkerboard pattern is obtained by placing 1’s precisely
at those vertices whose Cartesian coordinates sum to 0 mod 2, and similarly for the odd
checkerboard pattern). From (1), it is tempting to conjecture the stronger statements that
there exists a critical value λc (again depending on d) such that the hard-core model on Zd

has {
a unique Gibbs measure if λ < λc

multiple Gibbs measures if λ > λc.
(2)

However, no proof of the monotonicity statement contained in (2) – that multiple Gibbs
measures at activity λ implies the same thing at all higher values of the activity – is known.
In our first main result of this paper, we obtain the threshold behavior in (2), not for Zd, but
for certain other lattices in d-dimensional Euclidean space.

Theorem 1.2 For each d ≥ 2, there exists a d-dimensional periodic lattice G, and a λc > 0,
such that the hard-core model on G has{

a unique Gibbs measure for all λ < λc

multiple Gibbs measures for all λ > λc.
(3)

For the precise definition of a “d-dimensional periodic lattice”, see Definition 2.1. Intuitively,
a d-dimensional periodic lattice is a transitive graph that is periodically embedded in Rd;
examples include the usual Zd lattice, as well as the triangular and hexagonal lattices in
d = 2. The examples we will work with are somewhat more involved.
A statement analogous to that in Theorem 1.2 has previously been obtained only for the hard-
core model on regular trees, whose recursive structure allow exact calculation of λc; see Kelly
[5]. Ours is the first example where the desired behavior is obtained for lattices that can be
embedded in a nice way in Euclidean space, and is also the first example where (3) is obtained
by more abstract arguments that do not involve calculating the critical value.
Let us now move on to the Widom–Rowlinson model. This is a lattice gas model where
vertices take values in {−1, 0, 1}. For a finite graph, the model at activity λ arises by letting
each vertex independently take value −1, 0 or +1 with respective probabilities λ

2λ+1 , 1
2λ+1 ,

and λ
2λ+1 , and then conditioning on the event that no −1 shares an edge with a +1 anywhere
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in the graph. We may think of +1’s and −1’s as two types of particles that cannot coexist at
close distance. The corresponding DLR definition is as follows.

Definition 1.3 Fix λ > 0 and a finite or countably infinite locally finite graph G = (V, E).
A probability measure µ on {−1, 0, 1}V is said to be a Gibbs measure for the Widom–
Rowlinson model on G at activity λ, if it admits conditional probabilities such that the
following holds for all v ∈ V and all ξ ∈ {−1, 0, 1}V \{v}. For a {−1, 0, 1}V -valued random
object X with distribution µ, the conditional distribution of X(v) on {−1, 0, 1}, given that
X(V \ {v}) = ξ, is 



(0, 1, 0) if ξ ∈ A+, ξ ∈ A−

(0, 1
λ+1 , λ

λ+1 ) if ξ ∈ A+, ξ 6∈ A−

( λ
λ+1 , 1

λ+1 , 0) if ξ 6∈ A+, ξ ∈ A−

( λ
2λ+1 , 1

2λ+1 , λ
2λ+1 ) if ξ 6∈ A+, ξ 6∈ A− .

Here A+ (resp. A−) is the set of configurations in {−1, 0, 1}V \{v} in which at least one neighbor
of v in G take value +1 (resp. −1).

As for the hard-core model, the existence of some Gibbs measure for the Widom–Rowlinson
model for given G and λ is standard, and the main question is whether or not it is unique. For
G = Zd, d ≥ 2, it is known that we have a unique Gibbs measure for λ sufficiently small but
not for λ sufficiently large. In particular, for large λ, there exists a Gibbs measure µλ

+ which is
concentrated on the event that the limiting large-scale fraction of +1’s is strictly greater than
that of −1’s (thus breaking the ±1 symmetry of the model), and an analogous Gibbs measure
µλ
− in which the −1’s form a majority over the +1’s. Again, it is natural to expect that the

threshold phenomenon in (2) should hold, but just like for the hard-core model this has not
been demonstrated for any other graphs than regular trees, for which the critical value λc has
been calculated (see Wheeler and Widom [6]). We shall prove the following Widom–Rowlinson
analogue of Theorem 1.2.

Theorem 1.4 For each d ≥ 2, there exists a d-dimensional periodic lattice G, and a λc > 0,
such that the Widom–Rowlinson model on G has{

a unique Gibbs measure for all λ < λc

multiple Gibbs measures for all λ > λc.

It is interesting to compare this result to the (somewhat surprising) result of Brightwell,
Häggström and Winkler [1, p 428] that there are other d-dimensional periodic lattices for
which having multiple Gibbs measures at some λ does not imply the same property for higher
values of λ. Similar examples (contrasting Theorem 1.2) for the hard-core model are also easily
obtained by the ideas reviewed in Section 2. Hence, different periodic lattices in d dimensions
give rise to qualitatively quite different behavior, both in the hard-core model and in the
Widom–Rowlinson model. This is perhaps a bit surprising, and in any case it demonstrates
that these models do not exhibit the sort of “universality” – that qualitative features of the
model should only depend on the dimension d and not on the details of the lattice – that is
generally expected to hold in, for instance, the Ising model and Bernoulli percolation (see,
e.g., Grimmett [3]).
The remaining sections of this paper are devoted to the task of proving Theorems 1.2 and 1.4.
A brief outline is as follows.
In Section 2, we show how the task of proving Theorem 1.2 can be reduced to that of proving
Theorem 1.4. This is done using an observation from [1], that the Widom–Rowlinson model is
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equivalent to the hard-core model on a different lattice; it turns out that this can be exploited
to translate the example with the desired monotonicity property for the Widom–Rowlinson
model (witnessing Theorem 1.4) into an analogous example for the hard-core model.
Then, in Section 3, we recall some facts about our main tool for analyzing the Widom-
Rowlinson model: the so-called site-random-cluster model. This model arises by identifying
+1’s and −1’s in the Widom–Rowlinson model as a single spin, denoted 1. The resulting
probability measure on {0, 1}V is i.i.d. measure, perturbed by a weighting factor 2k(η), where
k(η) is the number of connected components of 1’s in η ∈ {0, 1}V . This extra factor is due to
the fact that each such connected component has two possible values in the Widom–Rowlinson
model: +1 or −1.
In Section 4 we then prove Theorem 1.4. A natural approach – which suggests itself by
the corresponding proof of monotonicity of phase transition in the Ising model by means of
its Fortuin–Kasteleyn random-cluster representation – is to use Holley’s inequality (Lemma
4.1) to show that the site-random-cluster measures are stochastically increasing in the activity
parameter λ. However, the desired stochastic monotonicity fails in general, which is essentially
a consequence of the fact that k(η) fails to be decreasing in η, unlike in the Fortuin–Kasteleyn
random-cluster model. Comparison with the latter model (which also weights i.i.d. measure by
2k(η), but lives on edges rather than on vertices) suggests that we should consider a covering
lattice, as defined in (8). It turns out that this does not quite work, because isolated vertices
are weighted differently in the resulting model compared to the Fortuin–Kasteleyn model.
We therefore modify the covering graph using a certain “decoration” (i.e., addition of certain
vertices) which causes the weighting of isolated vertices (in the original lattice) to increase,
in such a way that Holley’s inequality can be invoked to finally deduce the desired stochastic
monotonicity.

2 Reduction of the hard-core result

We first need to make Theorems 1.2 and 1.4 precise by defining the class of lattices referred
to in the theorems.

Definition 2.1 An infinite locally finite graph G = (V, E) is said to be a d-dimensional
periodic lattice if the following conditions hold:

(A) V = {v + z : v ∈ {v1, . . . , vn}, z ∈ Zd} for some finite set {v1, . . . , vn} ⊂ Rd,

(B) E = {〈x + z, y + z〉 : 〈x, y〉 ∈ {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xm, ym〉}, z ∈ Zd} for some finite
set {(x1, y1), . . . , (xm, ym)} ⊂ V 2,

(C) G is connected.

Conditions (A) and (B) capture the intuitive meaning of a periodic lattice. Condition (C)
is included to avoid examples such as the graph obtained by taking the 3-dimensional cubic
lattice Z3 and deleting all vertical edges: the resulting graph decomposes into infinitely many
connected components, each of which is essentially 2-dimensional.
Brightwell et al [1, Section 5] noted the following connection between the hard-core and
Widom–Rowlinson models. Let G = (V, E) be any finite or countably infinite locally finite
graph, and construct another graph G∗ = (V ∗, E∗) as follows. Let V ∗ = V × {−1, 1}, and let
two vertices (x, i) and (y, j) be linked by an edge in E∗ if either

(a) x = y and i = −j, or
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(b) 〈x, y〉 ∈ E and i = −j.

Suppose now that the {0, 1}V ∗
-valued random object X is distributed according to a Gibbs

measure for the hard-core model on G∗ at activity λ, and define Y ∈ {−1, 0, +1}V by setting

Y (x) =




−1 if X(x,−1) = 1
+1 if X(x, +1) = 1
0 otherwise,

for each x ∈ V . A direct calculation using Definitions 1.1 and 1.3 shows that the distribution of
Y then becomes a Gibbs measure for the Widom–Rowlinson model on G at the same activity
λ. Conversely, if Y ∈ {−1, 0, +1}V is distributed according to any Gibbs measure for the
Widom–Rowlinson model on G, and X ∈ {0, 1}V ∗

is obtained by setting

X(x, i) =
{

1 if Y (x) = i
0 otherwise

for each (x, i) ∈ V ∗, then X is distributed according to the hard-core model on G∗ at the
same activity. It is easy to see that these mappings between Gibbs measures for the Widom–
Rowlinson model on G and Gibbs measures for the hard-core model on G∗ form a bijection.
This is what we need in order to reduce the proof of Theorem 1.2 to that of Theorem 1.4:

Proof of Theorem 1.2 from Theorem 1.4: Fix the dimension d, and let G and λc be as
in Theorem 1.4. Construct G∗ from G as above. Clearly, by relabelling the vertices of G∗,
we can represent it as a d-dimensional periodic lattice. Furthermore, by the above bijection
between Gibbs measures, the hard-core model on G∗ at activity λ has a unique Gibbs measure
whenever λ < λc, and multiple Gibbs measures whenever λ > λc. �

3 Background on the Widom–Rowlinson model

In this section we review some background on the Widom–Rowlinson model; all of it can be
found in more detail in [2].
Let G = (V, E) be countably infinite and locally finite. In the introduction we mentioned the
Gibbs measures µλ− and µλ

+ for the Widom–Rowlinson model on G at activity λ; these can
be constructed as follows. Let V1 ⊂ V2 ⊂ . . . be an increasing sequence of finite subsets of V ,
converging to V in the sense that each v ∈ V is in all but finitely many of the Vn’s. Define
the (inner) boundary of Vn as

∂Vn = {x ∈ Vn : ∃y ∈ V \ Vn such that 〈x, y〉 ∈ E} .

Also define the graphs Gn = (Vn, En) where

En = {〈x, y〉 ∈ E : x, y ∈ Vn} .

Let the probability measure µλ
+,n on {−1, 0, +1}Vn be given by the Widom–Rowlinson model

on Gn with so-called “plus boundary condition”, meaning that we condition on the event
that all vertices on the boundary ∂Vn take value +1. More precisely, µλ

+,n is the probability
measure which to each ξ ∈ {−1, 0, +1}Vn assigns probability

µλ
+,n(ξ) =

1
Zλ

n

∏
v∈Vn

λ|ξ(v)|I{ξ(x)ξ(y)≥0 for all 〈x,y〉∈En}I{ξ(x)=+1 for all x∈∂Vn} (4)
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where IA denotes the indicator function of the event A, and Zλ
n is a normalizing constant. We

will also identify µλ
+,n with the probability measure on {−1, 0, +1}V that corresponds to setting

X(x) = +1 for all x ∈ V \ Vn and picking X(Vn) according to (4). With this interpretation
in mind, it is well-known (and can be shown by standard stochastic monotonicity arguments)
that the measures µλ

+,n converge to a limiting probability measure µλ
+ on {−1, 0, +1}V as

n → ∞, in the sense that
lim

n→∞ µλ
+,n(A) = µλ

+(A)

for any cylinder event A. Moreover, the limiting measure does not depend on the choice of
the vertex sets {Vn}∞n=1, and it is a Gibbs measure for the Widom–Rowlinson model on G at
activity λ.
Analogously, the measure µλ− on {−1, 0, +1}V is obtained as a limit of measures µλ−,n, which
are defined as µλ

+,n except that we put −1’s instead of +1’s on the boundary. The following
statements are known to be equivalent.

(i) The Widom–Rowlinson model on G has a unique Gibbs measure.

(ii) µλ
− = µλ

+

(iii) µλ
+(X(x) = +1) = µλ

+(X(x) = −1) for all x ∈ V .

In order to analyze when (i)–(iii) hold, it is useful to consider the projection from {−1, 0, +1}Vn

to {0, 1}Vn obtained by taking absolute values at each vertex: Suppose that we pick X ∈
{−1, 0, +1}Vn according to µλ

n,+ and obtain Y ∈ {0, 1}Vn by setting

Y (x) = |X(x)| for each x ∈ Vn .

The distribution of Y on {0, 1}Vn is denoted φλ
n, and is called the wired site-random-cluster

measure for Gn at activity λ. (Readers familiar with random-cluster analysis of Ising and
Potts models may note below that site-random-cluster measures play a similar role for the
Widom–Rowlinson model as the usual (Fortuin–Kasteleyn) random-cluster measures do for
Ising and Potts models.) A direct calculation shows that φλ

n(η) for η ∈ {0, 1}Vn is given by

2k(η)

Zλ
n

∏
v∈Vn

λη(v)I{η(x)=1 for all x∈∂Vn} (5)

where k(η) is the number of connected components not intersecting ∂Vn of the set of 1’s in η,
and Zλ

n is as in (4). Furthermore, the conditional distribution of X given Y can be described
as follows. X has 0’s at precisely the same vertices as Y , and +1’s at all vertices that take
value 1 in Y and sit in a connected component of 1’s intersecting ∂Vn; all other connected
components of 1’s in Y are independently assigned “all +1’s” or “all −1’s” with probability 1

2
each. Hence, for x ∈ Vn,

µλ
+,n(X(x) = +1) − µλ

+,n(X(x) = −1) = φλ
n(x ↔ ∂Vn)

where {x ↔ ∂Vn} is the event that there is a connected component of 1’s containing x and
intersecting ∂Vn. It follows that conditions (i)–(iii) above are equivalent to

(iv) limn→∞ φλ
n(x ↔ ∂Vn) = 0 for all x ∈ V

and this is the condition that we will analyze directly in the next section.
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4 Proof of the Widom–Rowlinson result

The purpose of this section is to prove Theorem 1.4. What we need to show is that if condition
(iv) above fails for λ = λ1 for some given λ1, then it fails for all λ > λ1. The natural way
to try to do this is to show that the measures {φλ

n}λ>0 are stochastically increasing in λ, so
we need to recall the concept of stochastic domination. For η, η′ ∈ {0, 1}S, where S is an
arbitrary finite set, we write η � η′ if η(s) ≤ η′(s) for all s ∈ S. A function f : {0, 1}S → R is
said to be increasing if f(η) ≤ f(η′) whenever η � η′. For two probability measures π and π′

on {0, 1}S, we say that π is stochastically dominated by π′, writing π
D� π′, if

∫
{0,1}S

f dπ ≤
∫
{0,1}S

f dπ′ (6)

for all increasing f : {0, 1}S → R.
A standard tool for establishing stochastic domination is the following result; see, e.g., [2] for
a proof.

Lemma 4.1 (Holley’s inequality) Let S be a finite set and let π and π′ be probability mea-
sures on {0, 1}S that both put positive probability on all elements of {0, 1}S. Let X and X ′

be {0, 1}S-valued random elements with distributions π and π′. If, for all s ∈ S and all
η, η′ ∈ {0, 1}S\{s} such that η � η′, we have

π(X(s) = 1 |X(S \ {s}) = η) ≤ π′(X ′(s) = 1 |X ′(S \ {s}) = η′)

then π
D� π′.

Consider now the wired site-random-cluster measure φλ
n in condition (iv). Suppose that we

could establish, for any x ∈ Vn, that

φλ
n(Y (x) = 1 |Y (Vn \ {x}) = η) (7)

is increasing both in λ and in η. Then Lemma 4.1 would show that φλ1
n

D� φλ2
n whenever

λ1 ≤ λ2. Applying (6) with f = I{x↔∂Vn} (which is obviously an increasing function) would
then give that

φλ1
n (x ↔ ∂Vn) ≤ φλ2

n (x ↔ ∂Vn)

so that by letting n → ∞ and using the equivalence between (iv) and (i)–(iii), we would arrive
at the desired conclusion: if there are multiple Gibbs measures at λ = λ1, then this is the case
at λ = λ2 as well, whenever λ2 ≥ λ1.
Unfortunately this approach does not quite work, due to the fact that although the expression
(7) is always increasing in λ, it is sometimes not increasing in η. This feature of the site-random-
cluster model (which is discussed further in [2]) distinguishes it from the ordinary (Fortuin–
Kasteleyn) random-cluster model, for which the above-sketched monotonicity argument does
work. Since the latter model lives on the edges of a graph, rather than on the vertices, this
immediately suggests the following approach in searching for a lattice that will exemplify
Theorem 1.4: Given a d-dimensional periodic lattice G = (V, E), consider its covering lattice
(also known as the line graph) G′ = (E′, V ′) defined by V ′ = E and

E′ = {〈x, y〉 : x, y ∈ V ′, the edges x and y share a vertex in G} . (8)
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Unfortunately again, the site-random-cluster model on G′ does not work quite the same as the
Fortuin–Kasteleyn random-cluster model on G, because it turns out that whereas the latter
gives the same weighting factor 2 to all connected components (relative to i.i.d. measure; cf
the factor 2k(η) in (5)), the former gives a different weighting factor for isolated vertices. To
deal with this problem, we introduce a variation of a covering lattice which is tailored for our
purposes. For a graph G = (V, E), define another graph G∗ = (V ∗, E∗) by setting

V ∗ = V ∗
(1) ∪ V ∗

(2)

where V ∗
(1) = E and V ∗

(2) = V × {1, 2}, and

E∗ = E∗
(1) ∪ E∗

(2)

where
E∗

(1) = {〈x, y〉 : x, y ∈ V ∗
(1), the edges x and y share a vertex in G}

and

E∗
(2) = {〈x, (y, i)〉 : x ∈ V ∗

(1), (y, i) ∈ V ∗
(2), the edge x is incident to the vertex y in G} .

In other words, G∗ is obtained by first taking the covering graph G′ = (V ′, E′), and then
adding two extra vertices corresponding to each vertex x in G, where each such extra vertex
gets an edge in G∗ to each vertex y ∈ V ′ that correspond to an edge in G that is incident to
x.
The point of this construction is that the vertices in V ∗

(2) compensate for the above-mentioned
problem with isolated vertices in an edge configuration on G, by getting a greater amount
of freedom to “choose” their value in case of such isolation; see (10) below. This additional
freedom shows up as the extra term λI{v is isolated w.r.t. ξ} in (11).
The following result is a more specific variant of Theorem 1.4. For an infinite graph G, we let
pc(G, bond) denote the critical value for i.i.d. bond percolation on G, i.e.,

pc(G, bond) = inf{p ∈ [0, 1] : i.i.d. bond percolation on G with retention para-
meter p produces an infinite cluster with positive probability.}

The critical value pc(G, site) for site percolation is defined analogously.

Proposition 4.2 Let d ≥ 2, let G = (V, E) be a d-dimensional periodic lattice such that√
2 − 1 ≤ pc(G, bond) < 1, and define G∗ = (V ∗, E∗) from G as above. Then there exists a

λc > 0 such that the Widom–Rowlinson model on G has
{

a unique Gibbs measure for all λ < λc

multiple Gibbs measures for all λ > λc.
(9)

Remark. The requirement that pc(G, bond) < 1 is in fact superfluous; it is possible to show,
by a standard renormalization argument, that pc(G, bond) < 1 holds for any d-dimensional
periodic lattice with d ≥ 2. This observation is, however, not needed in our proof of Theorem
1.4.

Before proving Proposition 4.2, we first show how it implies Theorem 1.4.

Proof of Theorem 1.4 from Proposition 4.2: It is easy to see that if G is a d-dimensional
periodic lattice, then we can relabel the vertices of G∗ to make it a d-dimensional periodic
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lattice as well. It therefore only remains to show that for each d there exists a d-dimensional
periodic lattice with pc(G, bond) ∈ [

√
2 − 1, 1). For d = 2, we may take G = Z2, because

pc(Z2, bond) = 1
2 ; see, e.g., [3]. For d ≥ 3, we have pc(Zd, bond) ∈ (0, 1); see [3] again. If we

now let Gd,n denote the lattice obtained by replacing each edge in Zd by n edges in series,
then, clearly,

pc(Gd,n, bond) = (pc(Zd, bond))1/n .

This critical value tends to 1 as n → ∞, whence we may take G = Gd,n with n large enough
so that (pc(Zd, bond))1/n ≥ √

2 − 1. �

For the proof of Proposition 4.2, it is useful to isolate the following lemma.

Lemma 4.3 Let d ≥ 2, let G = (V, E) be a d-dimensional periodic lattice satisfying pc(G, bond) ∈
[
√

2 − 1, 1), and define G∗ from G as above. Then the Widom–Rowlinson model on G∗ has

(a) a unique Gibbs measure for all λ < 1√
2
, and

(b) multiple Gibbs measures for all sufficiently large λ.

Proof: We begin with part (b). From the construction of G∗, it is clear that i.i.d. site
percolation on G∗ with parameter p produces an infinite cluster with positive probability if
and only if the same holds for i.i.d. bond percolation on G at the same parameter value. Hence
pc(G∗, site) = pc(G, bond) ∈ [

√
2−1, 1). In particular, pc(G∗, site) < 1, which, in combination

with the observation that G∗ has bounded degree (by the definition of a d-dimensional periodic
lattice), allows us to invoke [4, Theorem 1.1] to deduce that (b) holds.
Moving on to (a), take λ < 1√

2
, and consider the conditional distribution of the +1-particles

given the positions of the −1-particles. Under any Gibbs measure for the Widom–Rowlinson
model on G at activity λ – specifically, the plus measure µλ

+ – this conditional distribution is
simply that each vertex that is not occupied by or adjacent to a −1 independently takes value
0 or +1 with respective probabilities 1

λ+1 and λ
λ+1 . Hence the (unconditional) distribution

of the +1-particles is stochastically dominated by i.i.d. site percolation on G with parameter
λ

λ+1 . Since

λ

λ + 1
<

1√
2

1√
2

+ 1
=

√
2 − 1 ≤ pc(G∗, site) ,

we get that the i.d.d. site percolation forms no infinite cluster almost surely, and therefore
there are µλ

+-a.s. no infinite clusters of +1’s. Reversing the roles of +1’s and −1’s in this
argument shows that there are also no infinite clusters of −1’s µλ

+-a.s., so that in fact all
connected components of +1’s or −1’s are finite. This implies condition (iii), which in turn
implies that there is only one Gibbs measure. �

Proof of Proposition 4.2: Fix a G∗ as in the proposition. In view of Lemma 4.3, we only
need to show the monotonicity part of (9) – that having multiple Gibbs measure at some
activity λ implies the same thing at all higher activities.
Define a sequence {G∗

n = (V ∗
n , E∗

n)}∞n=1 of finite subgraphs of G∗ in the same manner as the
sequence {Gn}∞n=1 was defined in Section 3, but with the additional requirement that ∂V ∗

n ⊂
V ∗

(1) for each n. Let µλ
+,n denote the probability measure on {−1, 0, +1}V ∗

n corresponding to
the Widom–Rowlinson model on G∗

n with activity λ and plus boundary condition; hence µλ
+,n

is given by (4) with E∗
n and ∂V ∗

n in place of En and ∂Vn. Also let µλ
+,n denote the projection

of µλ
+,n on {−1, 0, +1}V ∗

n∩V ∗
(1) .
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Given a configuration ξ ∈ {−1, 0, +1}V ∗
n∩V ∗

(1) , call a vertex x ∈ V ∗
n ∩ V ∗

(2) isolated if ξ(y) = 0
for all y ∈ V ∗

n ∩ V ∗
(1) such that 〈x, y〉 ∈ E∗

n. Note that all neighbors y of x are neighbors
of each other (see the definition of G∗), so that if any of the neighbors take value +1, then
none of them take value −1, and vice versa. Hence, the set of possible values of X(x) given
X(V ∗

n ∩ V ∗
(1)) = ξ is


{−1, 0, +1} if x is isolated
{0, +1} if x is not isolated, and has a neighbor with value +1
{−1, 0} if x is not isolated, and has a neighbor with value −1,

(10)

irrespective of the values of all other vertices in V ∗
n ∩ V ∗

(2). We can therefore integrate out
{X(v)}x∈V ∗

n ∩V ∗
(2)

in µλ
+,n, and using (4) we get that µλ

+,n is given by

µλ
+,n(ξ) =

1
Zλ

n

∏
v∈V ∗

n ∩V ∗
(1)

λ|ξ(v)| ∏
v∈V ∗

n ∩V ∗
(2)

(
λ + 1 + λI{v is isolated w.r.t. ξ}

)

× I{ξ(x)ξ(y)≥0 for all 〈x,y〉∈En}I{ξ(x)=+1 for all x∈∂Vn} (11)

for each ξ ∈ {−1, 0, +1}V ∗
n∩V ∗

(1) .
Next let φλ

n be the wired site-random-cluster measure for G∗
n at activity λ, and let φ

λ

n be the
projection of φλ

n on {0, 1}V ∗
n∩V ∗

(1) . By (11), we have that the probability assigned by φ
λ

n to
each η ∈ {0, 1}V ∗

n ∩V ∗
(1) is given by

φ
λ

n(η) =
2k(η)

Zλ
n

∏
v∈V ∗

n ∩V ∗
(1)

λη(v)
∏

v∈V ∗
n ∩V ∗

(2)

(
λ + 1 + λI{v is isolated w.r.t. ξ}

)

× I{η(x)=1 for all x∈∂Vn} (12)

where k(η) is the number of connected components not intersecting ∂V ∗
n of the set of 1’s in

η. It is to this probability measure φ
λ

n that we will now be able to apply Holley’s inequality
(Lemma 4.1) to obtain a useful stochastic comparison between the behaviors at different values
of λ.
Fix an x ∈ V ∗

n ∩ V ∗
(1) \ ∂V ∗

n . Write y1 and y2 for the two vertices in G that x connect when
viewed as an edge in G, and write B1 (resp. B2) for the set of vertices in V ∗

n ∩V ∗
(1) \ {x} whose

corresponding edge in G has y1 (resp. y2) as an endpoint. For η ∈ {0, 1}V ∗
n∩V ∗

(1)\{x}, consider
the connected components of 1’s in η, and note that at most one such component intersects B1

(because all pairs of vertices in B1 share an edge in G∗
n). We define C1(η) to be this connected

component if it exists; otherwise we set C1(η) = ∅. C2(η) is defined analogously. Finally in
this long sequence of definitions, we partition {0, 1}V ∗

n∩V ∗
(1)\{x} into four subsets A, A′, A′′ and

A′′′ as follows. Let

A = {η ∈ {0, 1}V ∗
n∩V ∗

(1)\{x} : C1(η) = C2(η) = ∅} ,

A′ = {η ∈ {0, 1}V ∗
n∩V ∗

(1)\{x} : exactly one of the components C1(η) and C2(η)
is empty} ,

A′′ = {η ∈ {0, 1}V ∗
n∩V ∗

(1)\{x} : neither C1(η) nor C2(η) is empty, C1(η) 6= C2(η),
and at most one of them intersects ∂V ∗

n } ,

A′′′ = {η ∈ {0, 1}V ∗
n∩V ∗

(1)\{x} : neither C1(η) nor C2(η) is empty, and we have
either that C1(η) = C2(η) or that both components intersect ∂V ∗

n } .
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Let Y be a {0, 1}V ∗
n∩V ∗

(1) -valued random object with distribution φ
λ

n. By direct application of
(12), we get, for any x ∈ V ∗

n ∩ V ∗
(1) \ ∂V ∗

n and any η ∈ {0, 1}V ∗
n∩V ∗

(1)\{x} such that η(∂V ∗
n ) ≡ 1,

that

φ
λ

n(Y (x) = 1 |Y (V ∗
n ∩ V ∗

(1) \ {x}) = η)

φ
λ

n(Y (x) = 0 |Y (V ∗
n ∩ V ∗

(1) \ {x}) = η)
=




2λ(λ + 1)4

(2λ + 1)4
if η ∈ A

λ(λ + 1)2

(2λ + 1)2
if η ∈ A′

λ

2
if η ∈ A′′

λ if η ∈ A′′′ .

(13)

A crucial observation now is that if we increase η (meaning that we change some of the 0’s in
η to 1’s), then we can only move down the list of events in (13) – from A towards A′′′ – but

not the other way around. For λ ≥ 1√
2

we have
(

2λ+1
λ+1

)2

≥ 2, so that

2λ(λ + 1)4

(2λ + 1)4
≤ λ(λ + 1)2

(2λ + 1)2
≤ λ

2
≤ λ

and we can deduce that the left-hand-side of (13) is increasing in η whenever λ ≥ 1√
2
. A

straightforward calculation also shows that all four expressions in the right-hand-side of (13)
are increasing in λ for all positive λ. Hence, the left-hand-side of (13) is increasing both in η
and in λ as long as λ ≥ 1√

2
. It follows that

φ
λ

n(Y (x) = 1 |Y (V ∗
n ∩ V ∗

(1) \ {x}) = η) is increasing
in η and in λ, whenever λ ≥ 1√

2
.

(14)

We now claim that for all λ1, λ2 ∈ [ 1√
2
,∞), we have

φ
λ1

n

D� φ
λ2

n . (15)

To see this, first note that both measures put probability one on the “all 1’s” configuration on
the boundary ∂V ∗

n , and then note that Lemma 4.1 in combination with (14) shows that the
projection of φ

λ1

n on {0, 1}V ∗
n∩V ∗

(1)\∂V ∗
n is stochastically dominated by the same projection of

φ
λ2

n . Hence, (15) is established.
To finish the proof, we need to show (recall condition (iv) in Section 3) that if λ1 ≤ λ2 and

lim sup
n→∞

φλ1
n (x ↔ ∂V ∗

n ) > 0 for some x ∈ V ∗ , (16)

then also
lim sup

n→∞
φλ2

n (x ↔ ∂V ∗
n ) > 0 for some x ∈ V ∗ , (17)

To this end, suppose that λ1 ≤ λ2 and that (16) holds. By Lemma 4.3, we have λ1 ≥ 1√
2
. We

may assume that x ∈ V ∗
(1), because if not (i.e., if x ∈ V ∗

(2)), then it is easy to see that (16) holds
for some nearest neighbor of x, which is necessarily in V ∗

(1). Having made this assumption, note
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that if ξ ∈ {0, 1}V ∗
n contains a path of 1’s from x to ∂V ∗

n , then it also contains such a path with
the additional property that all vertices on the path are in V ∗

(1) (such a path can be obtained by

just skipping the vertices in V ∗
(2) from the first path). Hence φ

λ1

n (x ↔ ∂V ∗
n ) = φλ1

n (x ↔ ∂V ∗
n ),

so that
lim sup

n→∞
φ

λ1

n (x ↔ ∂V ∗
n ) > 0 .

Furthermore, (15) implies that φ
λ1

n (x ↔ ∂V ∗
n ) ≤ φ

λ2

n (x ↔ ∂V ∗
n ), so that

lim sup
n→∞

φ
λ2

n (x ↔ ∂V ∗
n ) > 0 .

This implies (17), so the proof is complete. �
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