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Abstract
We give a new relatively compact proof of the famous identity for the distribution of the first
hitting time of a linear boundary by a skip-free process with stationary independent increments.
The proof uses martingale identities and change of measure.

Let {Xt}t≥0, X0 = 0, be a Lévy process which is skip-free in the positive direction. That is,
Xt has no positive jumps and its increments are stationary independent. For an x > 0 set

τ(x) := inf{t > 0 : Xt ≥ x}
with τ(x) = ∞ on the event {supt≥0 Xt < x}.
The following result is well known.

For any y, s > 0, ∫ ∞

y

P (τ(x) ≤ s)
dx

x
=

∫ s

0

P (Xt > y)
dt

t
. (1)

If Xt has a density pX(t, x) at x, then τ(x) also has a density pτ (t, x) at t and

1
x

pτ (t, x) =
1
t
pX(t, x). (2)

Relation (2) was first observed in a special case in [7]. Later the theorem was proved in [6], [9],
[11] (under additional conditions) and [2]. Moreover, it was shown in [8] that (1) is a necessary
condition for the process {Xt} to be skip-free.
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A discrete time (and, of course, space) analog of (2) is closely related to the classical ballot
problem and was first given (in a special case) as early as in 1711 by A. de Moivre. For
historical references and comments (and some generalizations) see e.g. [1] and Section 21 in
[10]. Some interesting extensions to the multidimensional case were given in [4].
Known proofs of the identities are either analytical (exploiting Laplace transforms in time
and their multiplicative structure) or are based on a limiting procedure and a combinatorial
argument (given, in particular in [5] and [10]) or factorization identities [3]. We present a new,
rather short and elegant (from our point of view) proof of the above result which uses (a)
martingale techniques to find the Laplace transform of the crossing time and then (b) change
of measure to find the desired representation for the distribution of the time in terms of the
distribution of Xt. To avoid a trivial situation, we assume that P (Xt > 0) > 0 for t > 0.

Proof. (i) Since there are no positive jumps in the process {Xt}, the m.g.f. ϕ(λ) := E eλX1 <
∞ for any λ ≥ 0 and is analytic on the positive half-line, and by independence of increments,

Mt := eλXt/ϕt(λ), t ≥ 0,

is a martingale. Denote by Pλ the probability corresponding to the respective Cramér trans-
form of the distribution of {Xt}, so that

Pλ(Xt ∈ dy) =
eλy

ϕt(λ)
P (Xt ∈ dy) (3)

and the process {Xt} still remains a Lévy process under Pλ.
Next set λ0 := sup{λ ≥ 0 : ϕ(λ) = 1}. Clearly, 0 ≤ λ0 < ∞ always, and under Pλ the drift
in {Xt} is linear with the coefficient

mλ := E λX1 =
ϕ′(λ)
ϕ(λ)

= (ln ϕ(λ))′ > 0 for λ > λ0 (4)

(just recall the elementary fact that lnϕ(λ) is convex and, when λ0 > 0, equal to 0 for both
λ = 0 and λ = λ0). Note also that, for λ > λ0, one has ϕ(λ) > 1.

(ii) The last inequality, together with the obvious fact that Mt < eλx/ϕt(λ) on the event
{τ(x) > t}, implies that, as t → ∞, Mt → 0 on {τ(x) = ∞} (so that we can formally set
Mτ(x) = 0 on this event) and also E (Mt; τ(x) > t) → 0. These relations ensure that the
optional stopping theorem holds:

1 = M0 = EMτ(x) = eλxE e−µτ(x) with µ := lnϕ(λ) (5)

(this can be shown e.g. by applying the theorem to the bounded stopping time τ(x) ∧ t and
then letting t → ∞). It is also clear that µ = µ(λ) is an increasing function mapping (λ0,∞)
onto (0,∞) and hence has an inverse function λ = λ(µ), µ ∈ (0,∞), with

dλ

dµ
=

1
dµ/dλ

=
ϕ(λ)
ϕ′(λ)

=
1

mλ
(6)

from (4).
Now (5) is equivalent to E e−µτ(x) = e−λx, and differentiating this relation w.r.t. µ yields

∫ ∞

0

e−µttP (τ(x) ∈ dt) = xe−λx dλ

dµ
=

x

mλeλx
. (7)
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(iii) Next denote by TA =
∫ ∞
0

1A(Xt) dt the time spent by our process in the set A (i.e. the
sojourn time of A). We will make use of the following fact: for any 0 < a < ∞ and λ > λ0,

E λT(0,a] =
a

mλ
. (8)

To prove it, note that due to (4) and Wald’s identity one has for any a > 0

a = E λXτ(a) = mλE λτ(a). (9)

Further, one can easily see that

τ(a) − T(−∞,0] ≤ T(0,a] ≤ τ(a) + T
(a)
(−∞,0], (10)

where T
(a)
A denotes the time spent in A by the process {Xt+τ(a) − a}t≥0, which clearly has the

same distribution as {Xt}t≥0, and hence T(−∞,0] and T
(a)
(−∞,0] are identically distributed, too.

Moreover, for λ > λ0, they have a finite expectation under Pλ:

Iλ := E λT(−∞,0] = E λ

∫ ∞

0

1(−∞,0](Xt) dt ≤ E λ

∫ ∞

0

e−λXtdt

=
∫ ∞

0

E λe−λXtdt =
∫ ∞

0

dt

∫
e−λy eλy

ϕt(λ)
P (Xt ∈ dy) =

∫ ∞

0

dt

ϕt(λ)
< ∞

since ϕ(λ) > 1.
Now this and the RHS of (10) imply that E λT(a,b] < ∞ for any finite interval (a, b] [the last
fact actually following from the well-known known recurrence-transience dichotomy for Lévy
processes as well]. Together with the obvious observation that, for any 0 < a < b < c < ∞,

T(a,b] + T(b,c] = T(a,c]

this means that a corresponding equality holds for the (finite) E λ-expectations of these vari-
ables, and hence we have

E λT(a,b] = γ(b − a)

for some constant γ < ∞. But from (9) and (10) one gets

|E λT(0,a] − a/mλ| ≤ Iλ,

and letting here a → ∞ we immediately see that this constant γ must be equal to 1/mλ which
completes the proof of (8).

(iv) Note that equality (8) can be re-written as

a

mλ
= E λ

∫ ∞

0

1(0,a](Xt) dt =
∫ ∞

0

Pλ(Xt ∈ (0, a]) dt

=
∫ ∞

0

dt

∫
(0,a]

eλx

ϕt(λ)
P (Xt ∈ dx) =

∫
(0,a]

[
eλx

∫ ∞

0

e−µtP (Xt ∈ dx) dt

]
.

Since the above holds for any a > 0, the expression in the brackets is (for any λ > λ0) nothing
else but a multiple of the Lebesgue measure: [· · ·] = m−1

λ dx for x ∈ (0,∞), so that

dx

mλeλx
=

∫ ∞

0

e−µtP (Xt ∈ dx) dt.
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Now dividing the LHS and RHS of (7) by x and integrating them w.r.t. dx over (y,∞) we
get, using the above formula, that∫ ∞

y

dx

x

∫ ∞

0

e−µttP (τ(x) ∈ dt) =
∫ ∞

0

e−µtt

∫ ∞

y

dx

x
P (τ(x) ∈ dt)

=
∫ ∞

y

dx

mλeλx
=

∫ ∞

0

e−µtP (Xt > y)dt.

for any µ > 0. The equality of the Laplace transforms (in µ) implies that the measure

tL(dt) := t

∫ ∞

y

dx

x
P (τ(x) ∈ dt)

has the density P (Xt > y), or, equivalently, that L(dt) has the density P (Xt > y)/t. And
this completes the proof since the desired identity (1) just represents that fact in terms of the
respective distribution functions.
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