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Abstract
The weak limit of the normalized number of comparisons needed by the Quicksort algorithm
to sort n randomly permuted items is known to be determined implicitly by a distributional
fixed-point equation. We give an algorithm for perfect random variate generation from this
distribution.

1 Introduction

Let Cn denote the number of key comparisons needed to sort a list of n randomly permuted
items by Quicksort. It is known that

ECn = 2(n + 1)Hn − 4n ∼ 2n lnn and VarCn ∼ (7− (2π2/3))n2,

where Hn denotes the nth harmonic number. Furthermore,

Xn :=
Cn − ECn

n
−→ X
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in distribution. This limit theorem was first obtained by Régnier [8] by an application of
the martingale convergence theorem. Rösler [9] gave a different proof of this limit law via
the contraction method. Rösler’s approach identifies the distribution of X to be the unique
solution with zero mean and finite variance of the distributional fixed-point equation

X
D= UX(1) + (1− U)X(2) + c(U), (1)

where X(1), X(2), and U are independent; X(1) and X(2) are distributed as X ; U is uniform
[0, 1]; c is given by c(u) := 1+2u lnu+2(1−u) ln(1−u); and D= denotes equality in distribution.
The limit random variable X has finite moments of every order which are computable from the
fixed point equation (1). Tan and Hadjicostas [10] proved that X has a Lebesgue density. Not
much else was known rigorously about this distribution until Fill and Janson recently derived
some properties of the limiting density [5] and results about the rate of convergence of the law
of Xn to that of X [6]. Some of these results are restated for the reader’s convenience in the
next section.
We develop an algorithm, based on the results of Fill and Janson, which returns a perfect
sample of the limit random variable X . We assume that we have available an infinite sequence
of i.i.d. uniform [0, 1] random variables. Our solution is based on a modified rejection method,
where we use a convergent sequence of approximations for the density to decide the outcome
of a rejection test. Such an approach was recently used by Devroye [3] to sample perfectly
from perpetuities.

2 Properties of the quicksort density

Our rejection sampling algorithm is based on a simple upper bound and an approximation
of (the unique continuous version of) the Quicksort limit density f . We use the following
properties of f established in [5] and [6]. Let Fn denote the distribution function for Xn.

P1. f is bounded [5]:

sup
x∈R

f(x) ≤ K := 16,

P2. f is infinitely differentiable and [5]

sup
x∈R
|f ′(x)| ≤ K̃ := 2466,

P3. With δn := (2ĉ/K̃)1/2n−1/6, where ĉ := (54cK2)1/3, c := 589, we have [6]

sup
x∈R

∣∣∣∣Fn(x + (δn/2))− Fn(x− (δn/2))
δn

− f(x)
∣∣∣∣ ≤ Rn,

where Rn := (432cK2K̃3)1/6n−1/6.

By property P2, f is Lipschitz continuous with Lipschitz constant K̃. Therefore, Theorem 3.5
in Devroye [2, p. 320] implies the upper bound

f(x) ≤
√

2K̃ min(F (x), 1 − F (x)).
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Here, F denotes the distribution function corresponding to f . Markov’s inequality yields
F (x) = P(X ≤ x) ≤ (EX4)/x4 for all x < 0. Similarly, 1− F (x) = P(X > x) ≤ (EX4 )/x4 for
x > 0. The fourth moment of X can be derived explicitly in terms of the zeta function either
by Hennequin’s formula for the cumulants of X (this formula was conjectured in Hennequin [7]
and proved later in his thesis) or through the fixed point equation (1). From (1), Cramer [1]
computed EX4 = 0.7379 . . . (accurate to the indicated precision), so EX4 < 1. Therefore, if
we define

g(x) := min
(
K, (2K̃)1/2x−2

)
, x ∈ R, (2)

we have f ≤ g. The scaled version g̃ := ξg is the density of a probability measure for
ξ := 1/‖g‖L1 = [4K1/2(2K̃)1/4]−1. A perfect sample from the density g̃ is given by

[(2K̃)1/4/K1/2]SU1/U2,

with S, U1, and U2 independent; U1 and U2 uniform [0, 1]; and S an equiprobable random sign
(cf. Theorem 3.3 in Devroye [2, p. 315]).

Remark. According to the results of [5], f enjoys superpolynomial decay at ±∞, so certainly
f ≤ g for some g of the form g(x) := min(K, Cx−2). One way to obtain an explicit constant C
is to use

x2f(x) ≤ 1
2π

∫ ∞

−∞
|φ′′(t)| dt, x ∈ R,

where φ is the characteristic function corresponding to f , and to bound |φ′′(t)| [e.g., by
min(c1, c2t

−2) for suitable constants c1, c2] as explained in the proof of Theorem 2.9 in [5].
But we find that our approach is just as straightforward, and gives a smaller value of C (al-
though we have made no attempt to find the best C possible using the Fourier techniques
of [5]).

3 The rejection algorithm

We have found an explicit, integrable upper bound on f . Furthermore, an approximation of
f with explicit error estimate is given by P3. Let

fn(x) :=
Fn(x + (δn/2))− Fn(x− (δn/2))

δn

with δn given in P3. Then |fn(x) − f(x)| ≤ Rn for all x ∈ R, and Rn → 0 for n→∞.
To calculate the values of fn we require knowledge about the probabilities of the events {Cn =
i}. Let N(n, i) denote the number of permutations of n distinct numbers for which Quicksort
needs exactly i key comparisons to sort. Then

P(Cn = i) =
N(n, i)

n!
.

These probabilities are non-zero only if n−1 ≤ i ≤ n(n−1)/2. With the initializing conventions
N(0, 0) := 1 and N(i, 0) := 0 for i ≥ 1 and the obvious values N(n, i) = 0 for i < n − 1 and
for i > n(n− 1)/2, we have the following recursion for n ≥ 1 and for n− 1 ≤ i ≤ n(n− 1)/2:

N(n, i) =
n∑

k=1

i−(n−1)∑
l=0

N(k − 1, l)N(n− k, i− (n− 1)− l).
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This recurrence is well known. To verify it, assume that the first pivot element is the kth
largest element out of n. Then the number of permutations leading to i key comparisons is
the number N(k − 1, l) of permutations of the items less than the pivot element which are
sorted with l key comparisons, multiplied by the corresponding number of permutations for
the elements greater than the pivot element, summed over all possible values of k and l. Note
that n − 1 key comparisons are used for the splitting procedure. Observe that we also have
ECn =

∑
i iN(n, i)/n!. The table (N(n, i) : i ≤ n(n− 1)/2), and ECn , can be computed from

the previous tables (N(k, i) : i ≤ k(k − 1)/2), 0 ≤ k < n, in time O(n5). Then, observe that,
for y < z,

Fn(z)− Fn(y) =
1
n!

∑
ECn+ny<i≤ECn+nz

N(n, i),

and thus fn(x) is computable from the table (N(n, i) : i ≤ n(n − 1)/2) and ECn in time
O(n(z − y)) = O(nδn) = O(n5/6). Now, the following rejection algorithm gives a perfect
sample X from the Quicksort limit distribution F :

repeat
generate U, U1, U2 uniform [0, 1]
generate S uniform on {−1, +1}
X ← ((2K̃)1/4/K1/2)SU1/U2

T ← Ug(X) (where g(x) := min(K, (2K̃)1/2/x2))
n← 0
repeat

n← n + 1
compute the full table of N(n, i) for all i ≤ n(n− 1)/2
Y ← fn(X)

until |T − Y | ≥ Rn

Accept = [T ≤ Y −Rn]
until Accept
return X

This algorithm halts with probability one, and produces a perfect sample from the Quicksort
limit distribution. The expected number of outer loops is ‖g‖L1 = 4K1/2(2K̃)1/4 .= 134.1.
Note, however, that the constants K and K̃ are very crude upper bounds for ‖f‖∞ and
‖f ′‖∞, which from the results of numerical calculations reported in [10] appear to be on the
order of 1 and 2, respectively.
Moreover, considerable speed-up could be achieved for our algorithm by finding another ap-
proximation fn to f that either is faster to compute or is faster to converge to f (or both). One
promising approach, on which we hope to report more fully in future work, is to let f1, f2, . . .
be the densities one obtains, starting from a suitably nice density f0 (say, standard normal),
by applying the method of successive substitutions to (1). Indeed, Fill and Janson [6] show
that then fn → f uniformly at an exponential rate. However, one difficulty is that these
computations require repeated numerical integration, but it should be possible to bound the
errors in the numerical integrations using calculations similar to those in [5].

Remark. Let k ≡ kn := blog2(n + 1)c. We noted above that if N(n, i) > 0, then n− 1 ≤ i ≤
n(n−1)/2. This observation can be refined. In fact, using arguments as in [4], it can be shown
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that N(n, i) > 0 if and only if mn ≤ i ≤Mn, with

mn := k(n + 1)− 2k+1 + 2 ∼ n log2 n = (1/ ln 2)n lnn = (1.44 . . .)n lnn

= the total path length for the complete tree on n nodes

and Mn := n(n− 1)/2. These extreme values satisfy the initial conditions m0 = 0 = M0 and,
for n ≥ 1, the simple recurrences

mn = mn−1 + blog2 nc and Mn = Mn−1 + (n− 1).
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