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Abstract
The law of a random tree constructed within a Brownian excursion is calculated conditional
on knowing the occupation measure of the excursion. In previous work David Aldous has used
random walk approximations to obtain this result. Here it is deduced from Le Gall’s description
of the tree in the unconditioned excursion.

1 Introduction

In [2] Aldous considers a tree constructed within the standard Brownian excursion, and shows
that after conditioning on the occupation measure of the excursion, the law of the tree is that
of an inhomogeneous coalescent. This description complements earlier results of the same
author [1] and of Le Gall [3] on the description of the tree within the unconditioned excursion.
The argument contained in [2] relies on checking a discrete version of the result (which is very
simple) and then passing to a continuous limit (which is not so simple). In this note I present
two direct proofs of Aldous’ description, making use of Le Gall [3].

2 The tree within the excursion

This section recalls some of the definitions of [2] and [3] and then records Aldous’ result.
Throughout e is a generic positive excursion with finite lifetime σ(e), and n is the Itô measure
of positive excursions of Brownian motion. We denote by l(e) the continuous occupation
density of an excursion e, so for any test function f ,

∫ σ(e)

0

f(e(u)) du =
∫ ∞

0

f(z)l(e)(z) dz.

We denote the law of l(e) under n by q .
Given an excursion e and p ≥ 1 distinct times between 0 and σ(e) we construct a tree, denoted
by Tp(e, t1, . . . tp), according to the following well known recipe.
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• The tree contains a root at height 0 and p leaves, with the height of the kth leaf being
e(tk).

• The paths from the root to leaves k1 and k2 split at a branchpoint having height inf{e(u) :
u between tk1 and tk2}.

• At each branchpoint left and right are labelled.

We always assume that the branchpoints are all distinct, so a tree with p leaves has p − 1
branchpoints. For such a tree denote the height of its leaves by x1 . . . xp and the height of its
branch points by y1 . . . yp−1. A tree can be thought of as a ‘shape’ plus a set of values for the
heights xi and yi. We consider the uniform measure, denoted by Λp, on the space of all such
trees- for each shape of tree it is the restriction of Lebesgue measure to the appropriate subset
of Rp × R

p−1 . Note that this measure has infinite total mass.
Given a tree, with its leaves and branchpoints labelled as above, and for z > 0, let

n(z) =
∑

i

1(xi≥z) −
∑

i

1(yi≥z),

that is the number of branches of T at height z. Then for any l : R+ 7→ R+ denote by D(T, l)
the quantity given by

l(x1) . . . l(xp)
l(y1) . . . l(yp−1)

exp
{
−2

∫ ∞

0

n(z)2 − n(z)
l(z)

dz

}
,

provided l is strictly positive on {z > 0 : n(z) > 0}, and otherwise 0.
The result we shall prove is as follows.

Theorem 1 (Aldous [2]). The joint distribution of Tp(e, t1, . . . tp) and l(e) under the mea-
sure

1[0,σ(e)](t1) . . . 1[0,σ(e)](tp) n(de) dt1 . . . dtp

is given by

2(p−1)D(T, l) Λp(dT ) q(dl).

In fact Aldous states the result under the measure

1[0,1](t1) . . . 1[0,1](tp) n(1)(de) dt1 . . . dtp,

where n(1) is the law of the excursion normalized to have lifetime 1, in which case it is simply
necessary to replace q by q(1), the law of l under n(1), in the above statement. The two
presentations are equivalent.
This result has an interesting interpretation. Suppose l is given and we want to construct a
random tree T whose law is that of Tp(e, t1, . . . tp) under the product measure

1[0,1](t1) . . . 1[0,1](tp) n(1)(de) dt1 . . . dtp

conditional on knowing the occupation measure of e is l. We should take the heights of the
leaves of the tree, x1 to xp, to be independent, each with distribution l(x)dx. Now think of
time running from x = ∞ down to x = 0, and the heights xi as being the birth times of
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particles. As time decreases let the particles cluster together according to the rule: each pair
of clusters (independently of the others) coalesces into a single cluster in the time interval
[x, x − dx] with probability 4dx/l(x). Add in random left/right choices each time clusters
coalesce and it is easy to associate with this proceedure a tree having branch points yi at the
times of coalescense. This tree then has the desired conditional law. Notice that to guarantee
that there is an associated tree we need there to be only one cluster on reaching x = 0, but
this will happen (with probability one) except for a set of exceptional l that are q-negligible.

3 The first proof

This is the quicker of the two arguments but makes full use of Le Gall’s description of the excur-
sion ([3], Theorem 3). According to this the distribution of T = Tp(e, t1, . . . tp) is 2(p−1)Λp(dT ),
and moreover conditional on T the excursion e is decomposed into pieces of path which are
distributed as independent stopped BMs. Readers are strongly advised to consult Le Gall’s
paper if they are unfamiliar with this construction. In the case p = 1 the tree is completely
determined by the height of its single leaf x1 = e(t1) and Le Gall’s description reduces to
that of Bismut (see Revuz and Yor [4], chapter XII). Conditional on x1 = x the processes(
e(t1 + u); 0 ≤ u ≤ σ(e) − t1

)
and

(
e(t1 − u); 0 ≤ u ≤ t1

)
are independent and are each

distributed as Brownian motion started from the level x and run until first hitting zero. By
virtue of the Ray-Knight theorems and the additive properties of squared Bessel processes (see
Revuz and Yor, [4], chapter XI) the joint distribution of e(t1) and l(e) is dx q(0,x)(dl) where
q(0,x) is the law of the unique solution of the SDE

Zt = 2
∫ t

0

√
Zsdβs + 4(t ∧ x), Z0 = 0.

But we know from the outset that, as a consequence of the occupation times formula, the
joint distribution e(t1) and l(e) is just l(x)dx q(dl), and so we see that the measure q(0,x) is
absolutely continuous with respect to q with density given by

q(0,x)(dl) = l(x) · q(dl).

More generally it follows from Le Gall’s description together with the Ray-Knight theorems
and the additive properties of squared Bessel processes that the joint distribution of T =
Tp(e, t1, . . . tp) and l(e) is

2(p−1)Λp(dT ) qT (dl),

where qT is, for fixed T , the unique law of the SDE

Zt = 2
∫ t

0

√
Zsdβs + 4

∫ t

0

n(s)ds, Z0 = 0. (3.1)

But a well known application of Girsanov’s formula (see Revuz and Yor, [4], chapters VIII and
XI) shows that this law is absolutely continuous with respect to q(0,x) (for sufficiently small
x > 0) and thus to q, in fact,

qT (dl) = D(T, l) · q(dl), (3.2)

and this proves the theorem.
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4 The second proof

The second argument I give looks somewhat more complicated, but it is interesting that it
avoids the need to apply the Ray-Knight theorem to the pieces of the excursion. It is a variant
of the argument used in [5].
Suppose ν is a positive finite measure supported on (0,∞). Define the excursion measure nν

via the absolute continuity relation

nν(de) = Eν(l(e)) · n(de),

where

Eν(l) = exp
{
− 1

2

∫ ∞

0

l(z)ν(dz)
}

.

Now for a given ν there exists a unique continuous increasing function g : R+ 7→ R+ with
g(0) = 0 such that if we take e according to Itô measure then eg defined by

g
(
eg(u)

)
= e

(∫ u

0

g′(eg(v))2dv

)

is distributed according to nν . In fact (although we do not use this) g is obtained via
g(x) =

∫ x

0 dy/Φ(y)2, where Φ is the unique, positive, decreasing solution of the Sturm-Liouville
equation

φ′′ = νφ,

with Φ(0) = 1, see Revuz and Yor ([4], appendix).
Using the space-time transform we can compute the distribution of Tp(e, t1, . . . tp) under the
measure

1[0,σ(e)](t1) . . . 1[0,σ(e)](tp) nν(de) dt1 . . . dtp

and find it to be given by

2(p−1) g
′(y1) . . . g′(yp−1)
g′(x1) . . . g′(xp)

· Λp(dT ). (4.1)

Elementary manipulations using g′(y)l(eg)(y) = l(e)(g(y)) show that the density D transforms
in the same way. More exactly

D(T, l(eg)) =
g′(y1) . . . g′(yp−1)
g′(x1) . . . g′(xp)

D(Tg, l(e)), (4.2)

were Tg is the tree with the same shape as T , but the kth leaf moves from height xk to g(xk)
and similarly the heights of the branchpoints change. We have already observed in the previous
section that ∫

q(dl)D(T, l) ≡ 1, (4.3)
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and combining this with (4.2) we obtain that for any tree T with leaves at xi and branchpoints
at yi,

∫
q(dl)D(T, l)Eν(l) =
∫

n(de)D(T, l(eg)) =
∫

n(de)
g′(y1) . . . g′(yp−1)
g′(x1) . . . g′(xp)

D(Tg, l(e)) =
g′(y1) . . . g′(yp−1)
g′(x1) . . . g′(xp)

. (4.4)

From this, and (4.1), we obtain that, for any positive test function F defined on the space of
trees, and for arbitrary ν,

∫
2p−1D(T, l) Λ(dT ) q(dl)F (T )Eν(l) =

∫
1[0,σ(e)](t1) . . . 1[0,σ(e)](tp)n(de) dt1 . . . dtp F (T )Eν(l), (4.5)

from which the theorem follows.

References

[1] D.J. Aldous, The continuum random tree III. Annals of Prob. 21(1):248-289, 1993.

[2] D.J. Aldous, Brownian excursion conditioned on its local time. Elect. Comm. in Probab.
3:79-90, 1998.

[3] J.F. Le Gall, The uniform random tree in the Brownian excursion. Prob. Th. Rel. Fields
96:369-383, 1993.

[4] D.Revuz and M.Yor, Continuous martingales and Brownian motion. Springer, 1998.

[5] J.Warren and M.Yor, The Brownian burglar: conditioning Brownian motion on its local
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