Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 83, pp. 1-26. Title: Holder regularity of weak solutions to nonlocal p-Laplacian type Schrodinger equations with A_1^p-Muckenhoupt potentials Author: Yong-Cheol Kim (Korea Institute for Advanced Study, Korea) Abstract: In this article, using the De Giorgi-Nash-Moser method, we obtain an interior Holder continuity of weak solutions to nonlocal $p$-Laplacian type Schrodinger equations given by an integro-differential operator $L^p_K$ ($p >1$), $$\displaylines{ L^p_K u+V|u|^{p-2} u=0 \quad\text{in } \Omega, \cr u=g \quad \text{in } \mathbb{R}^n\backslash \Omega. }$$ Where $V=V_+-V_-$ with $(V_-,V_+)\in L^1_{\rm loc}(\mathbb{R}^n)\times L^q_{\rm loc}(\mathbb{R}^n)$ for $q>\frac{n}{ps}>1$ and $0\frac{n}{ps}>1$, $ 0< s< 1$). Submitted February 21, 2025. Published August 08, 2025. Math Subject Classifications: 47G20, 45K05, 35J60, 35B65, 35D10, 60J75. Key Words: Holder regularity; nonlocal p-Laplacian type Schrodinger equation; A_1^p-Muckenhoupt potential; De Giorgi-Nash-Moser method.