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ABSTRACT. In this article, we study the boundedness of operators of Hardy type on generalized
central function spaces, such as the generalized central Hardy space HAS’;’T(]R")7 the generalized
central Morrey space Mﬁ’T(R"), and the generalized central Campanato space Cl\./IOf;’T(R")7
with p € (1,00), and ¢(¢) : (0,00) — (0, 00). We first show that HAZ/‘TI(R") is the predual of
CMOI;’T(R"). After that, we investigate the boundedness of operators of Hardy type on those
spaces. By duality, we obtain the boundedness characterization of function b € CMOZ’T(R”)

via the Mi’T(R")—boundedness of commutator [b, H*].

1. INTRODUCTION AND MAIN RESULTS

Firstly, we introduce a singular solution outside Sobolev spaces and its description via central

Morrey and Campanato spaces.

Problem setting. We consider the semilinear elliptic equation on the unit ball B := B;(0) C R™

(with n > 3)

—Au — %u =u?! inB, u>0, u€cH..(B\{0})
x
with
o | E (0, (”7_2)2) (subcritical Hardy potential),
e ¢ > 1 subcritical,
e u =0 on 0B (in weak sense).

Explicit singular solution. A classical singular approximate solution is given by

-2 -2
u(z) = Clz|™7, Where'y:nT— (n2 )2—u.

This function is
e Not in H!'(B) because

1
/ |Vu|2dx~/ P20 g = oo
B 0

e In H} (B\ {0}), with singularity at the origin.
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Why the solution is independent of ¢. Let us verify whether u(z) = Clz|~7 solves the full
nonlinear equation

—Au — xLu = uf. (1.3)

We compute
A7) = y(v +2 = n)|z[ 72,
so that
—Au— ﬁu =Ch(y+2—n)—pllz[72

We compare this with u? = C?)z|~79, and for equality we must have
2

—y-2=-v¢ = ~@-1)=2 = =TT

Hence, the singular function u(x) = |z|~7 solves the full nonlinear equation only when vy = %.

Thus, u(x) = |z|~7 is a solution to the *nonlinear® problem only when

2 n—2 n—2.2
-1 2 () -

But in our example, we fixed:

n—2 n—2.2
Y= - (2 ) —

which only matches qz—l for a specific q. Therefore, u is not a solution to the nonlinear equation
for general ¢, but it serves as a model to study the singularity and local behavior, independently
of the nonlinearity. It serves as a model to study the singular behavior of more general solutions,
particularly near the origin.

Membership in central Morrey spaces. We test whether u € £P*(B):

1/p

lul| cox == supr_A</ |u(x)\pdx) < 00. (1.4)
r<l1 B(0,r)

Let u(z) = ||, then

T
/ o] dz ~ / P = = g~ TET,
B(0,r) 0

So u € LP for

n
AL ——17. 1.5
’ (1.5)
Oscillation near zero: Campanato spaces. Consider the Campanato seminorm
912 =sup ™ [ |f@) = faon P, (16)
Camp r<l B(O,’l")
For f(z) = |z|~7, the mean oscillation behaves like
[ @) = Sl ~ A 7)
B(0,r)
A
So f € L&, (B) for
A<n—2y. (1.8)

In particular, since BMO corresponds to A = n, the function f(x) = ||~ is not in BMO, but lies
in a Campanato space with smaller .
In summary. the function u(x) = |z~
e is not in the Sobolev space H!(B),
e is in the central Morrey space L£P**(B) for suitable A,
e is in the Campanato space L>*(B) for A < n — 27,
e is not in BMO,
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e serves as a barrier function that captures the singularity of the Hardy potential, indepen-
dent of the nonlinearity.

This demonstrates how generalized central spaces such as Morrey and Campanato capture the
behavior of singular solutions to elliptic PDEs with Hardy-type potentials, even when the nonlin-
earity is not presented.

Building on this observation, our studies are the following twofold. First, we study some
generalized central function spaces, such as MZ*T(R"), CMOZ’T(R”), and HAY"(R"), where p €
(1,00). Through the paper, we always assume that ¢(t) is non-increasing on (0, 00), and t 7 o(t) is
nondecreasing on (0,00). Then, we demonstrate that HAg”J (R™) is the predual of CMOZT(R").
Second, we investigate the boundedness of operators of Hardy type on those spaces. By duality, we
obtain the boundedness characterization of function b in CMOZ’T (R™) by means of the boundedness
of commutators [b, H] and [b, H*] in the above central function spaces.
Notation: For ¢ € (1,00), we denote ¢’ the conjugate exponent, é + % = 1. With |Q] we denote
the Lebesgue measure of a measurable set 2 in R, and B; is the ball centered at 0 € R™ with
radius t. As usual, we denote a constant by C, which may depend on p,n and is probably different
at different occurrences. Finally, we denote A < B if there exists a constant C' > 0 such that
A< CB.

The Hardy operator is defined by

H(f) () = ﬁ / Wy xR (o), (1.9)
and its dual form is
H(f) (@) = — TW) 4 o er™\ {0}, (1.10)

Vn S22 1YI"

/2
T'(1+n/2)
[1I7] established the integral inequality

/Ooo (;/Ow f(t)dt)pd;yg (pfl)l’/owf(x)pdx (1.11)

for all non-negative f € LP(R,), with 1 < p < co. Note that the constant p%l is sharp.

By considering two-sided averages of f instead of one-sided, (1.11)) can be equivalently formu-
lated as

where v,, = is the volume of unit ball in R™. In the pioneering work, when n = 1, Hardy

1Moy < 251 lzoe (1.12)

Christ-Grafakos [4] extended (1.12)) to n-dimension. Furthermore, a sharp bound of weak type
(p,p) of H was obtained by the authors in [12]. Specifically, for any 1 < p < co we have

IH()Leoe < fllLer
for all f € LP(R™). In addition,
||| Lr—pree =1.

It is known that the inequalities of Hardy type play important roles in many areas of mathematics
such as analysis, probability and partial differential equations (see, e.g., [I} [2, 4}, 1T}, 16} 18| 2], 23]
and the references therein). For example, a slight modification of (1.11)) by setting F(x) =

fom f(t) dt provides us
00 p oo
/ PO 0 < (L)p/ F'(z) dz.
0 g p—1 0

The analogue of this inequality in R™ for n > 1 is
P
[ E2p < (2 [ 9iwpr i (1.13)
n T n—p Rn
where Vf is the gradient of f as usual; this holds for all f € C§°(R™\ {0}) if n < p < 00, and for

all f € C°(R™) if 1 < p < m. The constant is sharp and equality can only be attained by functions
f=0ae.
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Since the Hardy operators are centrosymmetric, the function spaces, which are characterized
by the boundedness of H and H* are central ones. For example, Shi-Lu, [25] established the

ePoA -
boundedness of H and H* in the central Morrey spaces Mf; (R™) (see Definition .

Theorem 1.1 (Shi-Lu [25]). Let 1 < p < oo and A € (0,%). Then H (resp. H*) is a bounded
operator from M%A(R”) — M’;”\(R").

Moreover, the boundedness characterization of operators of Hardy type in the homogeneous
Herz spaces has been studied by the authors in [13]. Inspired by the above results, we would

like to study the boundedness of operators of Hardy type in generalized central function spaces.
Therefore, it is convenient for us to introduce the notions of those spaces.

Definition 1.2. A real-valued function f is said to belong to the generalized central Morrey space
MPE"(R™) provided the following norm is finite:

£ 1l e (B2)
cpr = SUP ,
Hf”M¢ B, |Bt|1/p90(t)
where the supremum is taken over all the balls B; in R”.
Remark 1.3. A canonical example is ¢(t) = t=*, A € (0, ). In this case, we denote MS{’;T(R")
by MPA(R™).
Next, let us define the ¢-central Campanato space CMOZ’T(R").

Definition 1.4. A function f € L¥ (R™) is said to belong to CMOZ’T(R”) if

loc

I lexiop = sup L Tallerca
S TR0

with fp = \%I [ f(y) dy, for set B in R™.

< 00,

Remark 1.5. When ¢(¢) = 1, we denote CMOZ’T(R”) by CMO”" (R™) for short. And, if o(t) =
t72, A € (0, 2], we denote CMOY (R") by CMO™” (R™).

Remark 1.6. If there exists a constant Dy € (0, 1) such that ¢(2t) < Dyp(t) for all ¢ > 0, then
by using the same argument as in [30], we also obtain

MZ"(R") = CMO}," (R"). (1.14)
In particular, we have MPA(R") = CMOP’A(R"), with A € (0, 7].
Remark 1.7. Obviously, for 1 < p; < ps we have
CMOy, " (R") € CMO, " (R™). (1.15)
Moreover, it is known that
BMO(R") € CMO"™"(R") € CMO"™"" (R™) . (1.16)

We emphasize that CMOP7T(R") depends on p. Therefore, there is no analogy of the famous
John-Nirenberg inequality of BMO(R") for the space CMO”" (R™).

Our last interested central function space is the generalized central Hardy space. To define this
space, we first point out the definition of a central (1, ¢, ¢)-atom.

Definition 1.8. Let 1 < p < oo, and ¢(t) : (0,00) — (0,00). A function a(x) is called a central
(1, p,r, )-atom, if there exists a ball B; in R™ such that
(i) supp(a) C By,
(ii) [, a(z)dz =0,
(i) lellzrr < by

Now, we are ready to define HAD"(R™) (see definition H¥(R") by Zorko [30]).
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Definition 1.9. Let 1 < p < oo, and let ¢(t) : (0,00) — (0,00). We denote, by HAD"(R"), the
family of distributions h that, in the sense of distributions, can be written as

h = i )\jaj s
j=0

where a;, j > 0 are central (1, p,r, p)-atoms, and Y772 [A;| < oo,
It is clear that HAL"(R") is a vector space. In addition, we denote

[hllegars = inf { Z A1}
=0

where the infimum is taken over all possible decompositions of h as above.
Then (HAP"(R"™), || - [lgar-) becomes a normed space.

Such a space of this type has been studied by the authors in [3} 15, [14] and in the references
cited therein when ¢(t) = 1. In fact, Chen-Lau, [3] studied a theory of Hardy spaces HAD"(R)
associated with the Beurling algebras AP, 1 < p < oo, the space consisting of functions f on R"
for which

o0
kn
I£llar =27 || fxkllr < oo,
k=0
where xj is the characteristic function on the set {ac e R™ ; 281 < lz] < 2’“}, k > 1. For
convenience, we recall here the definition of HA”"(R) via the Beurling algebras A?.

Definition 1.10. Let f* be the vertical maximal function, defined by
£ (@) = sup |(f *¢e) ()
t>0

where ¢, (x) = t""4(z/t), and 1 is an integrable function on R™ such that [p, ¥ (z)dz = 1.
Then, we define HAD"(R) by the set of functions f such that || f*||a» is finite. Moreover, if we
set [/ lsaz = |f*l|ar. then | - [szaze is @ norm.

)

The most interesting aspect of the theory constructed by Chen-Lau is the atomic decomposition
of HAP"(R), for 1 < p < 2. Thanks to this decomposition, they obtained the duality

! ny* __ DT mn
HAL " (R")" = CMO " (R"). (1.17)
After that, Garcia-Cuerva [15] extended their results for all p € (1,00) by using the character-

izations via the grand maximal functions. Moreover, the associated spaces HAY? 0 < ¢ < 1,
1 < p < 0o was investigated by the authors in [14].

Remark 1.11. Obviously, for any 1 < p; < ps < co we have
HAP"(R") Cc HADV"(R™). (1.18)
It is interesting to emphasize that when (¢) = 1 the inclusion in (1.18) is strictly according
to (1.16) and (1.17). This observation is different from the point of view of the classical Hardy
spaces. That is
H">°(R") = H"(R") (1.19)
for 1 < ¢ < 00, see Theorem A, [6]. By (1.19)), one can define H!(R") (the real Hardy space) to
be any one of the spaces H(R") for 1 < g < oo.
Next, we discuss the commutators of Hardy operators. For any operator T', let us define

[0, T)(f) := bT(f) = T(bf).
Note that b is called the symbol function of [b,7]. When T is an operator of Hardy type, the
study of [b,T] has been investigated by many authors in [12] 20, 13 24}, 27, 26| 25| 23, 22], and
the references therein. In [22], Long-Wang proved Hardy’s integral inequalities for commutators
[b, H] and [b, Hg] (the fractional Hardy operator), 8 € (0, 1), with b belongs to the one-sided dyadic
functions CMO”" (R+). Moreover, Fu et al., [I3] obtained some characterizations of CMO”" (R™)
for 1 < p < oo via the LP-boundedness of [b, ] and [b, H*] in the following theorem.
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Theorem 1.12 (Fu et al. [I3]). Let b € Mo }’T(R"). Then both [b, H] and [b, H*] are
bounded on LP. Conversely,

(a) if [b,H] is bounded on LP, then b € CMO” " (R");
(b) if [b,H*] is bounded on LP, then
b e CMO”" (R™).
We also mention that Komori, [20] obtained a characterization of function b € CMO™ (RT) by

means of the LP-boundedness of [b, H] and [b, H*]. Note that his argument can be adapted for
the setting of the Euclidean space R" instead of RY. Lu-Zhao, [24] extended Theorem to the

space MO P }’/\(R") as follows.
Theorem 1.13 (Lu-Zhao, [24]). Let 1 < ¢ < p < oo be such that 0 < X = % - % < L. Then
b e CMO™ PPN Ry s 5, 4], b, H] - LIR?) — LP(R™).

1.1. Main results. As mentioned at the beginning, our first result is the following duality.
Theorem 1.14. Let 1 < p < 00, and ¢(t) : (0,00) — (0,00). Then, we have
! ny* __ VP mn
HAY " (R")" = CMO,, (R").
Remark 1.15. As a consequence of Theorem we observe that CMOZ’T(R") is a Banach
space.
Next, we extend Theorem |1.1{to Mi (R™).

Theorem 1.16. Let 1 < p < co. Assume that there is a constant Doy € (0,1) such that

©(2t) < Dop(t), Vt>0. (1.20)
Then, H (resp. H*) is a bounded operator from Mg’T(R”) — M’;’T(R"). In addition, we have
p
g < | —— DT .
1) ey < (5551 e (1.21)
for f e M{;’T(R”); and there is a constant C' = C(n,p) > 0 such that
() gz < Cl g (1.22)

for f e Mg’T(R”).

Remark 1.17. We emphasize that condition (1.20) can be relaxed in the Mg“-boundedness of
H, see the proof of Theorem This means that one can take p(t) = C > 0 in ([1.21)).

As a consequence of Theorem Remark [I.6] and TheoremfI.14] we have the following
corollary.
Corollary 1.18. Theorem|1.16, Then, the following statements hold
(a) H and H* are bounded operators from CMOZT(R") — CMOZT(R”);

’

(b) H and H* are bounded operators from HAZ’T'/ (R™) — HA’;/’T (R™).

Concerning the boundedness of commutators of Hardy operator, we have the following theorem.

Theorem 1.19. Assume hypotheses of Theorem . Ifb € CMOmaX{p’p }’T(R"), then the fol-
lowing statements hold

(a) [b,H] (resp. [b,H*]) is a bounded operator from M’;’T(R") — M%’"(R”);

(b) [b,H] (resp. [b,H*]) is a bounded operator from M’;/’T(R”) — Mg’T(R”).
Remark 1.20. Similarly as in Remark (1.20) can be relaxed for conclusion (a) of Theorem
L LS

By duality, we have the following result.
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Corollary 1.21. Assume hypotheses in Corollary . Ifb e Y (o R }’T(R”), then [b, H]
(resp. [b, H*]) is a bounded operator on CMOI;’T(R") and HA’;,’T (R™).

Typical examples for the Corollaries |1.18} [1.21]| are ¢(t) = ¢, and ¢(t) = (m)/\, for

X € (0,n/p]. Our last result is a characterization of function b in CMO"" (R") by means of the
boundedness of [b, H*] in ME"(R™).

Theorem 1.22. Assume hypotheses in Theorem . Ifbe LY (R™), and [b,H*] is a bounded
operator on ij;r (R™), then b € CMO”" (R™). Purthermore, there exists a constant C > 0 depend-
ing on n,p such that

bllcsior < CNbH gz ona (1.23)
By duality, we have the following corollary.
Corollary 1.23. Assume hypotheses in Theorem . Ifb e L (R™), and [b,H] is a bounded

loc
operator on HAL " (R"), then b € cMO”’ (R™). In addition, there exists a constant C > 0
depending on n,p such that

[bllexor < CIIb, H]| (1.24)

Az~ Spar -
As a consequence of Theorem and Corollary we have the following result.

Corollary 1.24. Assume hypotheses in Theorem . Suppose that tmin{%’ﬁ}go(t) is nondecreas-
ing on (0,00), and b € pradpr }(R”). Then, the following statements hold:

loc

(a) If[b,H*] is a bounded operator on MZ’T(R”) and Mg” (R™), thenb € cyo™ P (R™).
In addition, there exists a constant C = C(n,p) > 0 such that

ol < C (116 H g + 10,77 (1.25)

CNromaxpe ) [P
(b) If [b,H] is a bounded operator on HAZ/’T, (R™) and HAD"(R™), then

be MO PP }’T(R"). In addition, there exists a constant C = C(n,p) > 0 such that

18l cggmstostrr < C (I Hllggarr o ggazror + I Hllexazmaz- ) (1.26)

Typical examples of functions satisfying Corollary [1.24] are ¢(t) = t=*, and p(t) = (m)/\,
for A € (0, min{n/p,n/p'}].

Our paper is organized as follows. We study the generalized central Hardy space, and prove
Theorem [1.14] in the next section. The last section is devoted to the proof of Theorems [1.1641.22]

and of Corollary 1.24

2. Space HA” ™' (R") AS THE PREDUAL OF CMO. (R")

For any ball B in R™ we denote L{y"" (B) by the subspace of L?(B) of functions having mean
value zero. It is not difficult to verify that

Ly"(B)* = L' (B)/C(B), (2.1)

where C(B) is the set of the functions, which are constant on B. Then, we have the following
embedding result.

Proposition 2.1. For any 7 > 0, and for f € L§(B;), we have

115, fllaazs < B[P ()| fllLor(s,) -
Proof. Let us set
1
a(z) = T 5./ (x) .
| B[V o(T)|[ ftll Lo (B,
Since |, s f (z) dx = 0, then it is not difficult to verify that a is a central (1, p, r, p)-atom. Therefore,
the desired result follows from the Definition O
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Remark 2.2. As a consequence of Proposition if f € HAD"(R")*, then for any 7 > 0 we
obtain

15 f € LY"(B,)".

Proof of Theorem[1.14 Let a be a central (1,p’,r’, ¢)-atom with supp(a) C B; for some ¢ > 0.
Then, for any f € CMOZ’T(R") we have

f@aw)da] = | [ (1)~ o) a(e)ds

S Hf th”me(Bt ”a”L”/’W(Bt)

‘ Rn

Hf - th ”va’"(Bt)
’ < | llesior
Birg(n) 1 lovor

For every g € HAZ/’T/ (R™), one can decompose g = Z;’O:O Ajaj, where {a;};>0 is a sequence of
central (1,p’,7', p)-atoms; and Z;io |\j| < oo. Therefore, we deduce from the last inequality that

f dl‘—’Z//\f aJ dx
s(g;uﬂyummOy 22

< gl

’ R"

Fllenion -
This yields
P n ! ny\*
CMOW (R )CHAZ (R™)*.
It remains to show that
ot % . D,
HAZ (RM* C CMOv (R™). (2.3)

Let F € HA® "™ (R")*. Thanks to Remark 2.2] we have that 15, F € LI (B,)* for 7 > 0. By
([23), there ex1sts fr € LP"(B;)/C(B;) such that

<MJMMM¢=AJNMMM% Vg e L (B,). (2.4)

Therefore, for every 0 < 7y < 7o, we have

fr(z) = fry(x) for ae. z € B,
which makes sense by (2.4). Next, let us define f(z) = f,(z) if € B,. Obviously, we have
e Ly (R).
Now, we demonstrate that f € CMO "(R™). Indeed, for any ball Bt in R™, let us fix 79 > t.
Remind that f(z) = fi(z) € LP: ’”(Bt)/C’(Bt) for x € B;. By duality (2.1)), we obtaln

If— th”LPﬂ‘(Bt 1 /
_ “ t
BUro(t) B Pg(t) i,y /B _1‘ . — fB,) h(z)d ‘
1
=TB 1 su x)(h(z) — hp,) dz
|Bmﬂ@@)M”%£BfJ [ 1@ 0w ) ai o)
(h(x) — hp,) 1,
= sup Iro dz| .
HhHLp iy (Bt)_l‘ ( ) ‘Bt|1/P¢(t) ‘

() —hs, )Ls, is a central (1,p’, 7', p)-atom

Since h € L (By) and ||k 0.0 (5, = 1, it follows that BT

(see the proof of Proposition [2.1]), and

||]‘Bt (h(z) 7hBt)H ,
|B[/Pp(t)  THALT

<1.
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With this inequality noted, it follows from (2.5 that

If = fo,lloeris, Lo (W) —ho)y e <P
B 7P o() [Bil'frp(t) AT =

Since the last inequality holds for every ¢ > 0, we obtain

L < 1, Pl

HAZ ") HAZ ")
I llesronr < 1F N ggamory.
which yields (2.3). Hence, we have completed the proof of Theorem m O
Next, we use some properties of HAL"(R™) under certain conditions on ¢.

Proposition 2.3. Suppose that o(t) is non-increasing on (0,00), and there exists 79 > 0 such
that t7 o(t) is nondecreasing on (1, 00). Then HAP " (R") is the subspace of L°(R™)*.

Proof. Let a be a central (1,p',r’, ¢)-atom with supp(a) C By, and let ¢ be a test function in
L°(R™) (the space of bounded functions with compact support) with supp(¢)) C By,. Applying
Holder’s inequality yields

[l |Be 0 By, [/
B1/7(1)
If t < max{to, 70}, then it follows from the last inequality and the fact ¢(¢) > min{e(to), p(70)}
that
[Pl
min{¢(to), ¢(10)}

| . a(z)y(x) d$| < ||aHLr>’(Bt)Hw”LP(BthO) <

| a(z)(z) dz| <
Rn,

Otherwise, we have t{ ¢(to) < t7 p(t). Therefore,

1]l | B(z0, to)[M? _ [[l]z=
| B(20,to)|1/Peo(to) o(to)

| a(z)(z) dz| <
Rn

By combining the two cases, we obtain

[ ate)e(e) do| < — =
R™

min{¢(to), p(70)}
Now, for each h € HAZ/’T/ (R™), we can write h = Z;io Ajaj, where aj, j > 0 are (1,p',7/, p)-
atoms, and Y 7% [A;| < co. Then, it follows from (2.6) that

JRCICITE > | as@te)ds

- (i“ﬂ) 1l
j=0

(2.6)

min{o(to), ¢(70)}

e
min{¢(to), (7o)}
Thus, we obtain the conclusion. O

< Whllgpr

Remark 2.4. As a consequence of Proposition if h € HA};/’T, (R™), h = E?io Aja;, then the
series converges to h in the norm of L°(R™)*.

Proposition 2.5. Under the hypotheses in Pmpositionm HA{;”W (R™) is a Banach space.

Proof. Let {fn}n>1 be a Cauchy sequence in HAZ,’T/ (R™). Then, there exists a subsequence
{fn, }k>1 such that

I = Fvs lerag oy <27 (2.7)
Put

F=fn Y (Fn — ) -

k>2



10 L. T. NGHIA EJDE-2025/82

Note that for each k > 1, we have
k_k
ka _ka_1 = Z)\j j )
j=0
where {a?}jzo is a sequence of central (1,p’, 7', ¢)-atoms, and
Z |’\§| S Hka — fns ||HA§,"T/(R") +27%.
j=0
With this inequality noted, and by , we obtain
DY M 2 <o, (2.8)
k>15>0 E>1

This implies that f can be decomposed into central (1,p’, 7', ¢)-atoms.

Next, we claim that fy, — f as k — oo in the norm of L°(R™)*. If this is true, then by
we can conclude that f — f in HAZ ™ (R") as N — co. Since f = fx,, +3 s por1 (fve = FNe_s);
it suffices to prove that 3, -, . (fn, — fnv,_,) converges to 0 as ko — oo with respect to the norm
of L (R™)*. By ., we obtain

‘/n Z (fve = fves)(@ d$‘< Z Z\/\H‘/ af (z ’

k>ko+1 k>ko+11>0

il
< 2 2 Whnrt et

k>ko+11>0

With this inequality it follows from (2.8 that
lim |7 (= ) ey =0

ko—00
k>ko+1

Therefore, fn, — fin Lg°(R™)* as ko — oo. This completes the proof. O

3. BOUNDEDNESS OF OPERATORS OF HARDY TYPE IN GENERALIZED CENTRAL FUNCTION
SPACES

3.1. Hardy operators in generalized central function spaces.

Proof of Theorem[I.16. We first prove the Mp ""-boundedness of H. For each ball B; in R, let us

write

H()(@) =H(f1)(x) + H(f2)(x), VzeR",
with f1 le” and fQ f]-BC BC R™ \ Bt.
For f1, we apply (1.12] - to obtam

[H(F)llzr (B0 <( P ) 1 f1[ e
Bl /Pp(t) T \p—1/[Bi|!/Pep(t)

_ (. p \IfllLrrs 3.1
_(p—l)lBtll/”so(t) .

< (555 Mg

Next, since fo = 0 on By, for each x € B, we observe that

H(fa)(@) = — / )y =0. (3.2)

Up ||
A combination of (3.1]) and (3.2)) yields

P Dlrewy v im0 (2 )y
|B:|1/P(t) |Bi|Pp(t)  ~ \p—1 e
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Since the last inequality holds for any ¢ > 0, we obtain
IR xgr < (=27 ) Iy
Mg — p— 1 M

It remains to prove the M{;’T—boundedness of H*. We argue similarly as in (3.1) to obtain

IH*(f)llLrr B, <
|B|V/Pep(t)

1 1
7/ f(y) dy’ _ 1
Un Jiyz2 [yI" Vn

(o)
A
pet {2k<|y|<2h e}

<> [ iwld.
k=1 Bk,

Thanks to Holder’s inequality, and ([1.20]), we obtain

f llwaz - (3.3)

Next, we observe that

[H*(f2)(@)] =

i/ O
{2re<lyl<2rrey [Y["

k=1

(y) dy‘

oo

17 (f2) (@) S Y25 T fllor (B Barsre
k=1
oo

Z ”fHLT’(BQkJrlt) (p(2k+lt)
|BQk+1t|1/p90(2k+1t)

N

M8 I

< D e )| fllyaz-

=
Il
—

qu

Dy oM flinazr < el Fllnry

k=1
Therefore, we deduce that
11 (f)llprm ) S 1Bl P f I anr - (3.4)
Combing (3.3) and (3.4) yields the desired result. The proof is complete. O

Proof of Corollary[1.18, The proof of part (a) follows from Theorem and Remark It
remains to prove (b). Thanks to duality, for every f € HAZ,’T/ (R™) we have

[H(Nlgar = sup \/H(f)(x)g(x)dx]

HchMoP»T:l

sup ‘/f YH* (g ’

HQHCMQP r=1

s sup | fllgap o IR @ lexior

copr=1
HQHCI\/IogT

< sup

~

1 e oo gl cnror = Il ar o -
HQHCMOg,rZI HAZ CMO«P HAZ

Hence, we conclude that H maps HAZ/’T, (R™) — HAg”’/ (R™). Similarly, the conclusion also
holds for H*. Therefore, we complete the proof. O
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3.2. Commutators of Hardy operators in generalized central function spaces. Before
proving Theorems [I.19] and we recall a fundamental result being useful for our argument
later.

Lemma 3.1. Let 1 <p < oo, and k > 1. For each ball By in R™, we have

16— bs,, HLM(Bt) < 2"(k + 1)|[bllcyrorr | BelV7

Proof. For each j > 1, we observe that

1
‘szj+1t - bBth| < 7/ ‘b(y) - b32j+1t‘ dy
|B23t‘ B2-7t

|Bai+1g| 1
[ Bait| [Bas+1] /Bﬂﬂt 6®) = bz, | dy
< 2°|bll oot < 2% 1bllonror -
From this inequality, we obtain
k-1
16 = by, Lor sy < 0= bBllrr) + Y b8y, = b5y, lLor ()
=0

16 —bp,llLrr(B,
B, |1/P

k—1
S |Bt|1/p ) + Z |szjt B bB2j+1t‘|Bt|1/p
7=0

< 2"(k + 1)[|bllcnror | Bel 7 -
The proof is complete. O

Next, we estimate |15, ||M}(;.,r for each ball B, in R™.

Lemma 3.2. Suppose that ¢(t) is non-increasing, and tﬁw(t) is nondecreasing. Then, for any
ball B, in R™ we have

15, :
Bl — 7N -
M o(r)
Proof. We consider the term I(¢) := “l‘g:‘”j#, t > 0. If t < r, then since ¢(¢) is nonincreasing,
then we obtain
_|Br N By|'P |By|!/P 1

10 = 5o = B < o)

Otherwise, it follows from the monotonicity of |B;|'/P¢(t) that

|BT|1/P 1
I(t) < <
O < 1B, Vo) < o)

Combining the two inequalities yields

1
1BT ‘NPT S - 35
16,z < (35
The reverse of (3.5)) is obvious since I(r) = ﬁ. Therefore, the desired result follows. O

Proof of Theorem[I.19 (a) Fix a ball B; in R". We write
[b, H](f) = [b, H](f1) + [0, H](f2),
with f1 = fl1p, and fo = flpge. Since [b,H] maps L? — LP, we have
B HIG ey S 180yt el = Bl gt 1 o5

It follows from the monotonicity of ¢ that

I[6; H](f1) | Lor 5,
| Be|'/Po(t)

||fHLl”vT(th)
- max{p,p’},r T T T
CMO |Bi[*/Pe(t) (3.6)

S HbHCMOmax{p,p’},T ||fHM$’T .

L < o)
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Next, for any x € B; we observe that [b, H](f2)(z) = 0. A combination of this fact, and (3.6))
provides us with

||[b;H](f)||L:U,T(Bt) _ |||:b’H(f1)HLP’T(Bt) < ||b|| ' ' / ||f|| -
|Bt‘1/p90(t) |Bt|1/p§0(t) ~ convomaxipp'tr NET

Therefore, we obtain the desired result in part (a).
(b) Since [b, H*] maps LP — LP, then we can mimic the proof of (3.6]) to obtain

116, H*[(f1)ll Lo (B,
O | R |y I 3.7
1T S Bllgyommntron | e (3.7)

Concerning fo, we write

116, H*](f2)ll Lom(8.)

1 f(y)
—||= b(z) — b
| /|y|z2t( (z) —by))

Tyl dyHLp,r(Bt)

Un

< 2k¢ *”/
B ”,;)( ) {2k e<|y|<2r+1t}

HI @ty
DY /{

We first treat I;. Applying the triangle inequality, Minkowski’s inequality, and the Holder in-
equality yields

‘b(x) - b32k+1t| ‘f(y)| dy”LP,r(Bt)

|b(y) - b32k+1t| ‘f(y” dg”Lp,T(Bt) =1+ 1.

2kt<y| <21y

o0
1L < @k / 1= b o (50| F ()] dy

1;) {2re<|y|<2k+1e} e L (B
> 1

<SS Byesre b= by o o1l (5,0 )| Bavsrel
k=0

< S U= b e (20 g
k=0

Thanks to Lemma and ((1.20)), we obtain from the last inequality that
LS Y2k + 2)lloxior | B /" DE o1 gy
= (3.9)
S \Bt|1/p%0(t)Hb||cMo”Hf”Mg;" :

Note that (3:9) was obtained from 33 (k +2)Di ™ < oo.
For I, we use Holder’s inequality, and Lemma [3.1] to obtain

kyy—n
12 < H 2(2 t) Hb - bB2k+1t ||Lp/’T(sz+1t) ||f||Lp’7'(sz+1t) ||Lp*r(Bt,)
k=0

oo

||b - ngk+1t ||LP’J‘(sz+1t) ”f”LP»"(szHt) k41 1/p
1 1/p k+1 SD(Q t)|Bt|
| Boki14 |7 | Bart1,|!/Pp(28F1E) (3.10)

A
g

i
o

hE

<3 bllger o I g DE o (8)| B[P

>
Il
o

S B2 (0)18] gt I g -

Combining (3.8)), (3.9), and (3.10) yields

116, H*|(fo)ll Lo (B,)
£ < . A DT .
B S Plosiorons s

Therefore, the desired result follows from (3.7) and (3.11). The proof is complete. O

(3.11)
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Proof of Corollary|1.21] The proof is similar to the one of Corollary then we leave it to the
reader. (]

Finally we demonstrate Theorem [1 The proof follows by way of the following lemma.
Lemma 3.3. Let a be a central (1,p")-atom. Then, there exist two functions f € HAZ’T (R™),
and g € Mg’“(R”) such that

a(z) = f(2)H"(g)(x) — g(x)H(f)(2), (3.12)

1 g a9l az - (3.13)

< —.
“In2
Proof. Suppose that supp(a) C B, for some 7 > 0. Let us set

o) = 0 and () = (M prcpaican) (0,

We first claim that the above construction satisfies (3.12). In fact, if |x| > 7, then it is clear that

f(@) =H(f)(z) =0
since supp(a) C B;, and the cancellation property of a respectively. Therefore, (3.12)) is true for
all |z| > 7. Otherwise, we have g(z) = 0, and

. 1 O(T)1{r<)a|<2r} (V)
H(g)() = — Ay
ly|>lal ly
2T
= LIET) / Ups s lds = o(r)In2.

This yields the above claim.
Now, we demonstrate (3.13)). Since a is a central (1, p’)-atom, f is a multiple of central (1,p’, ¢)-

atom, and
1

1 lgar+ < 15 (3.14)
In2°
Moreover, thanks to Lemma [3.2] we obtain
p(r) _on Tro(T) n
I9llxezr = (DL {r<jaj <2y Inger < =2 — < 2%, (3.15)
M (reen VT = o) ~ 7 20 er)

The last inequality follows from the monotonicity of function ¢ o(t).

As a result, (3.13]) follows from ([3.14) and (3.15). Therefore, we obtain Lemma O

Remark 3.4. The above construction demonstrates that g € L°(R"), and f € L? (R"). In

addition, the result of Lemma can be considered as a HA?" (R™)* factorization. Note that
the H'(R"™) factorization by means of the Calderén—Zygmund operators has been studied by the
authors in [5] [7, [8, @1 10 [19] 28] 29] and the references therein.

Proof of Theorem[I.23 For thsi purpose, We use a duality argument. Since CMO”" (R™) =
HAP>" (R™)*, it follows that for any h € HA? " (R™), one can decompose

h = i )\jaj ,
7=0

where {a;};>0 is a sequence of central (1,p’)-atoms; and Z;io I\ < .
For every j > 0, by applying Lemma [3.3] to a; we have that there exist two functions g; €
M2"(R"), and f; € HAZ"™ (R") such that

aj(z) = fi(x)H*(9;)(x) — g;(x)H(f;)(z),

and
2p
i g 93 < s (3.16)
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Since b € L} (R™), and by Remark the following integrals are well-defined, and satisfy
| [ @t da] =] [ b@li@m @) - gims) @) do
=| [ 5@ ds] .17
< M fillggar o 1116, 17 (g5) g -

Note that (3.17) was obtained from M””(R”) = CMOP’T(R") = HAPI’T/ (R™)*. Since [b, H*] is a
bounded operator on Mg’”(R”) it follows from (3.17)) and (3.16) that

n

. 2p
\/R bx)a; (@) da| < 110, H Vinarwazr 195 ez [ Fillg o < 1 QII[b ZIVTEERVIES

With this inequality, for any h € HAZI’T/ (R™) we obtain

’/Rn b(x)h(z) de| :j;]pj /R b(x)a; (z) da]

< (% 1) g N M i (315)
o
S T [N T
By duality, we obtain
Iblloxior < s 06, H g e (3.19)
The proof is complete. O

Proof of Corollary[1.23, To obtain the result, we can repeat the proof of Theorem with a
slight modification in (3.17) as follows

’/n z)a;(x d:v - ‘/n H*(g5)(x) — g5 (x)H(f;)(2)] dm‘
—| [ )@@ i (3:20
< 10 M1 gy 9 -

Since [b, H] maps HAZI’T/ — HAZ/’T/, we deduce from (3.20) that

{ b(z)a;(z) d:n| < ||[b,H

. ]||HA£/’T/—>HA$/‘T/ ||fjHHAI;'vT/ ngHMﬁr

IN

2%
TR
By arguing similarly as in (3.18)), for any h € HAZ,’T/ (R™), we also obtain

n

2v
y (v) da| < [,

||HA£;I$"J*>HA5I,1'/ hHHAL‘””"’

This yields (|1.24). O

Proof of Corollary[1.27, The proof is just a combination of the results in Theorem [I.22)and Corol-
lary [[:23] Therefore, we leave it to the reader. O
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4. APPLICATIONS OF HARDY’S INEQUALITY

We present here several applications of Hardy’s inequality. In [2], Brezis-Vézquez studied the

problem
—Au=Af(u) in Q,

u=0 on 0f,

where (2 is a bounded domain in R™, and f is a continuous, positive, increasing and convex function
defined for v > 0 with f(0) > 0 and

(4.1)

lim &

s—o0 8

The authors established a characterization of the singular H! extremal solutions and the extremal
value \* by a criterion consisting of two conditions:

(i) They must be energy solutions, not in L.
(ii) They must satisfy

/\/Qf’(u)q§2dx§/9\v¢\2dx, V6 € C(Q). (4.2)

Roughly speaking, this formula means that the first eigenvalue of —A — A f/(u) is nonnegative, is a
version of Hardy’s inequality. To obtain the desired result, they improved a version of the classical
Hardy’s inequality.

Another application of Hardy’s inequality is to study negative eigenvalues of the self-adjoint
operator —A — V in L?(R"™), where potential V satisfies V > 0, V € L™?(R"), n > 3. This has
important implications in semi-classical spectral analysis, in which the transition between classical
and quantum mechanics is studied.

Acknowledgements. The author would like to thank Professor Jesus Ildefonso Diaz for his
valuable comments which were very helpful for improving the original manuscript.
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