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LOCAL AND GLOBAL SOLVABILITY OF FRACTIONAL POROUS MEDIUM
EQUATIONS IN CRITICAL BESOV-MORREY SPACES

AHMED EL IDRISSI, HALIMA SRHIRI, BRAHIM EL BOUKARI, JALILA EL GHORDAF

ABSTRACT. In this article we study fractional porous medium equations in Besov-Morrey spaces.
Using the Littlewood-Paley theory and the smoothing effect of the heat semi-group, we obtain

local well-posedness of this model. Also, we obtain global well-posedness for small initial data
. —2m4 2
in the critical Besov-Morrey spaces Np,hzo P(R™) with 1/2 < m < 1, max{1

and 1 < h <p.

}<p<o

n_
’2m

1. INTRODUCTION

We study the fractional porous medium equation given by the nonlinear diffusion model with
fractional Laplacian operators,

up — pAu = KV - (uVKu) in R" x (0, 00),
Ku=(-A)""u in R" x (0,0), (1.1)
u(z,0) = up(x) for z € R",

where n > 1, u = u(x, t) denotes the density or concentration, and therefore non-negative, ug is the
initial data, V is the gradient operator, p > 0 is the dissipative coefficient which corresponds the
viscous case, while 1 = 0 represents the inviscid case, kK = £1, and here for simplify the notation,
we take p = k =1, (—A)~™ is the inverse fractional Laplacian operator, and 0 < m < 1, that is,
the abnormal (normal) diffusion is modeled by a fractional power of the Laplacian. We mention
here that, The interest in using fractional Laplacians in modeling diffusive processes has a wide
literature, especially when one wants to model long-range diffusive interaction, and this interest
has been activated by the recent progress in the mathematical theory, see [28, 9] [7) [33] 13}, 15] and
related references cited therein.
When p =0, Kk =1 and m = 1, the model corresponds to the mean field equation

ug =V - (uVKu) in R"” x (0,00),
Ku=(=A)"'u in R" x (0, 00), (1.2)
u(x,0) = uo(x) for z € R,

which was introduced for the first time by Lin and Zhang [24]. They demonstrated the existence
and uniqueness of positive L solution in two dimensions. There are many studies on well-
posedness results of this equation. For instance, refer to [31, [37] and related references cited
therein.
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When g =1, k = —1 and m = 1, system (|1.1)) reduces to the classical Keller-Segel system

u—Au+ V- (uVKu) =0 in R™ x (0,00),
—AKu=u in R" x (0,00), (1.3)
u(x,0) = up(x) for z € R,

which describes a model of chemotaxis. System has been introduce by Keller and Segel
[19]. The well-posedness of Keller-Segel models has been studied by several researchers in various
spaces. Biler and Karch [4] have established, in the critical Lebesgue space L2 (R"), the existence
of both local and global solutions of this equation with small initial data. Additionally, they have
demonstrated the finite-time blowup of non-negative solutions with specific initial data that satisfy
high-concentration or large-mass conditions. Making use of the Chemin mono-norm methods, Zhao

L2
[36] obtained well-posedness results in the Besov spaces By, * (R"™) with 1 < p,r < co. Making
use of the smoothing effect of the heat semigroup, Iwabuchi [I7] proved the global well-posedness
of the system (1.3) in B;z:E(R”) where n > 1 and max{1,n/2} < p < oo, under the condition
of smallness of the initial data. He also demonstrated, with a sufficient condition, the local well-

5

posedness in B,, i:; (R™) [18]. Later, by the same method, Nogayama and Sawano [25] extended

these well-posedness results, where they established global well-posedness in the Besov-Morrey
.2 n
spaces N, T

o hoo (R™) with max{1, 5§} < p < oo and 1 < h < p, and local well-posedness in closed
subspaces of these spaces. And here we mention that certain aspects of these results were also
extended to the fractional power bipolartype drift-diffusion system. Further information on this
topic can be found in [23] [I1] and the relevant references cited therein.

When k =1 and 0 < m < 1, system has been derived starting from the same origin as the
fractional porous medium equation initially proposed by Caffarelli and Vézquez [6]. Indeed, the
model is conceived through the incorporation of the dissipative term p(—A)v into the continuity

equation
Opu+ V- (uV) =0, (1.4)

where V = —Vp is the velocity, and p represents the gas pressure which is related to v through
a linear integral operator p = Ku, with kernel K (z,y) = c|lz — y|~(@=2™). For u = 0, that is, the
fractional porous medium equation in the inviscid case, we have many studies on this equation. In
[6] the authors stated that the notable feature of this equation is the finite speed of propagation,
and they established, the existence of a weak solution with bounded initial data that exponentially
decays at infinity, the property of compact support, and also the relevant integral estimates. See
[B1, 28, 7] for more information on this equation. For the viscous case (> 0), El Idrissi et

. o . " - —2m+ 4 .
al.[I0] considered the system (1.1)) for initial data in the critical Besov spaces Bpmm ?(R™) with
1 <m < 1 and max{l, 7~} < p < oo. They established sufficient conditions for the existence
and uniqueness of local solutions, and also proved the existence of global solutions for small initial
data in the same spaces. Furthermore, the well-posedness of this model has been demonstrated in

. . . . S—2m+ 2 . . .
various functional settings: in the Besov spaces B,mm ?(R™) with 1 < p,r < oo, in the Fourier-
. —2mt 2 ) . . .
Besov spaces F'B 7rm " (R™) with 1 < p,r < o0, in the critical Fourier-Besov-Morrey spaces

FN—2m+%+3(1—%)

o (R?) with 1 < p < oo and 1 < r < oo, and in the critical variable exponent

Besov-Morrey spaces NT_(Q)TZ?)T (R™) with 155 <m < 1+ 30 0<e<1, 1< r() <q() <
and 1 < h < co. These results were obtained by Xiao and Zhang [35], El Idrissi et al. [§], Toumlilin
[34], and El Idrissi et al. [I2], respectively, by applying the Chemin mono-norm methods.

Using a different method from the latter, which is the smoothing effect of the heat semigroup,
we seek to establish the existence of local solutions for initial data in a closed subspace of Besov-
Morrey spaces, which will be define later. Also we nshow the existence of global solutions of system
in the critical Besov-Morrey spaces N;;ZjE(R”) with % <m <1, max{l, 5~} < p < o0,
1 < h < p, under the smallness condition of initial data. The idea of our work is motivated by the
papers [17, [18, 25], which dealt with the classical Keller-Segel systems.
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The Besov-Morrey space N;j::g is critical for the system . In fact, if u(x,t) is the

solution of system , then
uy(z,t) == du(Az, \*t)
is also a solution of the same equation and
[u(, 0) —2men ~ [lux(0)]|  ~2min.
p,h,00 p,h,o00

The Besov-Morrey space, introduced by Kozono and Yamazaki [22], extends the concept of
classical Besov spaces by incorporating Morrey spaces as a fundamental element, thus providing a
larger functional framework. In particular, Besov-Morrey spaces are strictly broader than classical
Besov spaces (also refer to Remark. It is important to note that replacing the LP-norm by the
MY -norm is not sufficient to ensure a direct transition from Besov spaces to Besov-Morrey spaces.
One of the main difficulties comes from the collapse of certain essential embedding features when
working in the Besov-Morrey framework (see, for example, [I4} 25] for a more detailed discussion).
Within this extended functional framework, numerous recent works have been carried out on a
variety of fluid dynamics systems. The reader is referred to [14] 20, 22} 25, [29] and related references
cited therein for further information. However, Besov-Morrey spaces are generally not separable.
Therefore, the compatibility of initial data must be taken into account. With this in mind, in order
to consider the local existence result for the the system , we impose a vanishing condition

on the high frequency components of the initial data ug. i.e., we take ug € Nlihﬂ' = N;hﬂ.(R”),
where

N = {F €N s Jim | 3 Afl,, = 0.
J

which is a subspace of Besov-Morrey spaces (the idea is inspired by [I8]). See Section [2] for
definitions of other notation.
To address the system (1.1]), we consider the integral equation

t
u=ePug+ / AT L (wV(—A) ) dt, (1.5)
0

where ¢'® = F~1(e e F) and (=A)=™ := F~1(|¢|"2™F) are the heat semigroup and the
inverse fractional Laplacian operators, respectively. By using the contraction mapping approach
to the map below, we can solve (|1.5)),

t
U(u) = etPug —I—/ AT L (uV(~A) ™) dt (1.6)
0

Throughout this paper, C' will represent constants that may differ at different places, £ < F
denotes the existence of a constant C > 0 such that £ < CF and E ~ F denotes the existence of
constants C1,Cy > 0 such that C1F < E < CyF. BC (0,T; X) is the set of all functions bounded
on [0,7) and continuous on (0,7) with values in the space X. We define for v € S(R™), the
Fourier transform as .

_ 7 .f —iz-§
Fule) = 5(6) = Gyom [ et

and its inverse Fourier transform as

Fohula) = s [ e Sl

Organization of the paper: In Section [2] some basic facts about Littlewood-Paley theory and
some product laws in Besov-Morrey spaces are presented, and then presenting the statements of
our two main results. To prove these results, we give their key estimates and prove them in Section
Lastly, Theorem [2.9] and Theorem are established in Section [

2. PRELIMINARIES AND MAIN RESULTS

We introduce some basic knowledge of Littlewood-Paley theory and Besov-Morreyspaces and
reviews some lemmas that are pertinent to our purposes.
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2.1. Littlewood-Paley theory and Besov-Morrey spaces. We start by recalling the Littlewood-
Paley decomposition (see [3] for more details). Let ¢ € S(R™) be a smooth radial function such
that
0<p<1,
n 93 8
suppp C {€€R™: 2 <[] < o},

Y p(277¢) =1, forall{#0,
Jj€Z
and we denote ¢;(§) = p(277¢). So, for all u € S'(R™), let’s set the frequency localization
operators for all j € Z, to be as below
Aju=Flp;xu and Sju= Z Agu. (2.1)
k<j—1
Then, we have the homogeneous Littlewood-Paley decomposition
u= Z Aju  for all u € S'(R™)/P(R™),
JEZ
with P(R™) denoting the collection of all polynomials over R™. One observes here that Aj has
frequency [|¢| ~ 27} and that S; has frequency [|¢| < 27}, and one also notes that the quasi-
orthogonality property holds for the Littlewood-Paley decomposition, that is, for every u,v €
S'(R™)/P(R"), o
AAju=0 if |i—j]>2,
Ai(Sj_1uljv) =0 if [i — j| > 5.
Next, before we give the definition of Besov-Morrey spaces introduced by Kozono and Yamazaki

[22], we first present that of Morrey spaces, which serve as foundation for these spaces. Refer to
[22] 291, B0, [16], 2, B2], for more information on these spaces.

Definition 2.1. Let 1 < h < p < co. The Morrey space M} = M7 (R™) is defined to be the set
of all u € L (R™) such that

(2.2)

d_d
||U||M§j = sup R h||uHLh(B(o;0,R))<007
ro€RI, R>0

where B(zg, R) represents an open ball in R? with center zo and radius R.

The space M¥ equipped with the norm || - || My is a Banach space. Furthermore, we have
M = MG for 1 < hy < hy <p<oo, Mh = LP(R") for 1 < p < oo, and that Ml = M(R")
where M(R") stands for the space of finite Radon measures on R<.

Definition 2.2. For s e R, 1 <h<p<o0,1<r<ooanduecSR")/P, we set

. . 1 .
e, o { (Tiez?1gulg)" e < oo
Np,h,r SupjeZ 2JSHAJU’HMZ£ if r = oo.

Then the homogeneous Besov-Morrey space J\f; hor = /\fpﬁ h,T(R”) is defined by
Nopr={ueSR")/P: HUHNS,;L.T < 00}
Note that the homogeneous Besov space BIS),,.(]R") is the particular case of p = h;

Definition 2.3. For s e R, 1 < p, r < o0 and u € §'(R™)/P, we set
s, = {(2j6227‘gr'!Aj“'2p)1/r Lo
b sup;e 7 27°|| A ul| e if r = c0.
Then the homogeneous Besov space B;VT(R") is defined by
By (") = {ue S'®Y)/P: |

B, < OO}
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ForseR, 1<hy<h<p<ooandl<ry<r <oo, we have the following embeddings (refer
to [22, 29)):

N2 i MY ND, (2.3)
NS e = NS (2.4)
Ny = Ny (2.5)
Throughout this paper, the following Bony paraproduct decomposition will be used,
uv = T, + Tyu + R(u,v), (2.6)

with

Ty = Z S; ulju,  R(u,v) = Z Z Ajulv.

J J o=t
For more details, see [3] [5].
2.2. Essential lemmas. We invoke the following lemmas.

Lemma 2.4 ([29]). (1) (Hélder’s inequality) Let 1 < p,p1,p2 < 00 and 1 < h,hy,hy < 00
satisfying h < p, h; < p;i(i = 1,2), % = p% + p% and % = iTll + % Then for all u € MZII
and v € M}?, there exists a constant C' such that

vl < Cllullaggs lollagzs- (27)
(2) (Young’s inequality) Let 1 < h < p < co. Then for allu € L' and v € M%), one has
lux vl e < fluflz vl mg - (2.8)

(3) (Sobolev embedding) Let 1 <h <p < oo, 1 <hy<py<oo,1<r<oo, and let 5,50 €R
with s < so. If

h h
sofﬁzs()fﬁ and -2 =72,
Po p Po p
then
N3 o = Ny (2.9)

Lemma 2.5. (’9? is a bounded operator from N;:‘fl to Nlih,r'

Proof. Using that [|¢| ~ 27} for all j € Z, one has

i A 1r
||8?“||N;M = (Zzsrj||Ajagu||§wi)

Jj€EZ

= (2l Al )

JjE€Z

X . . 1/r
5 (ZQST]Q‘M]T”AJ'UH?;\Aﬁ)

JjE€EZ

S ||“H,\'/:I\Y<;\~

Remark 2.6. Lemma [2.5] gives the following inequalities:
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Lemma 2.7 ([25[ 22, 21]). Let 1 <h <p<oo, 1 <hy<py<oo, 1 <r<ooandsecR. If

p < po and ho = %, Then for all u € N;,h,ow one has
<7305 |u) . 2.1
el Dl (210)
Lemma 2.8 ([25] 22| 21]). Let 1 <h <p < oo, s € R and e > 0. Then for all u € Nshoo, one
has
”6m“H/\'f;f;j1 < tiiHuHN;Yhm. (2.11)

2.3. Main results. In this subsection, we state the two main theorems of this work. Our local

: —2mA R .
well-posedness theorem for the system (1.1)) with ug € Np hTZO ? is the following.

Theorem 2.9. Letn>1,1/2<m <1 and 1 < h<p<oo. Assume that ug € ./\/ N . Then

we have the following results:

(1) Let max{1, 5=} < p < n and let p1,p2, h1, ho be arbitrary real numbers satisfying

) 2m
p §p17p2 < 00, hl éplv D2 € (d,OO) [h2,00)7
1 1 1 1 1 1 h_h h (2.12)

) + PR - = .
p p p2 b hi he p p1 p2
Then, there exist § > 0 and T > 0 such that the system (L.1)) admits a unique time-local

solution u € BC(O T, N p), and satisfy

p,h,00
sup [[u(t)]| _—2mpn < 00,
te(0,7) ol 0o

sup " Ju(t)| v + sup 1377 [V () e < 6
te(0,T) "M 4e(0,1) h2

(2) Let n < p < oo and let p,h be arbitrary real numbers satisfying

h h
max{p,h} <p<2p, —=-—. (2.13)
p P
Then, there exist § > 0 and T > 0 such that the system (1.1) admits a unique time-local
solution u € BC(O T; ./\/p sij ), and satisfy

sup_[[u(t)]| amin <o, sup t37% fu(t)] ga-2m <4
t€(0,T) .00 te(0,T) Pt

Next, we present the global well-posedness theorem.
Theorem 2.10. Letn>1,1/2<m<1and1 <h<p<oo.
(1) Let max{l, J*
Then there is a constant § > 0 such that for any ug € ./\/pﬁ,oo N satisfying |luol| . —2m+n <

’ 2m

} <p<n andlet p1,pa, h1, ho be arbztmry real numbers satisfying (2.12) -

p,h,00

.—9 n
0, the system (1.1)) has a unique global solution u € BC’(O, oo;./\fp’hj:j”), and satisfy

sup [Ju()]| ~amip + sup 77 lu(t)| o

te(0,00) p,h,o0 te(0,00)
+ sup 27 % |[|V]1 2 u(t) | e < Co,
te(0,00) h2

where Cy is a constant depending on §.
(2) Let n < p < o0 and let p, h satisfy - Then there exists a constant 6 > 0 such that
for any ug € N +; satisfying ||uo||N72m+% < 4, the system (1.1) has a unique global

p,h,00

‘ 2t 2 :
solution u € BC(O, oo;Np,hj; ”), and satisfies

1 _n
sup ||u(t)||N72m+§ + sup t2 2#Hu(t)||N;%121m < Cy,

te(0,00) p,h,c0 te (0,00
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where Cy is a constant depending on .

Remark 2.11. The method used in this paper, for proving local and global well-posedness results,
is different from the one in ﬂ?ﬂ and [36]. There, the authors used the Chemin mono-norm method,
to study systems and (| with m = 1, respectively. In Besov spaces Bp -, their functional
fmmework’ is distinct from our own. Indeed, one has ./\/'Shr 7 Bp for any 1 < p' < oo,
1 <7 < oo and s’ € R. However, the results of this work remain valid if we take Besov spaces
B?  instead of Besov-Morrey spaces N he In fact, if we have p = h, then N# BS

b,r p,p,T

3. KEY ESTIMATES

We get our critical estimates out of the way in this section. First, the following linear estimate
is used.

Lemma 3.1. Let 0 < T < o0, l<m<1andl<h<p<oo
(1) Let 5= < p <n and p1,p2, h1, ho satisfy -, and let || - || x, be given as

[ullxcr == sup [fu()]|  —zmin + sup "7 [[ut)]]
te(0,T) p.h,oo te(0,T) 1
1l n 1-92 (31)
+ sup 222 ||V u(t) || e
t€(0,1) "2
Then
lle*uollxr S lluoll . ~2mn - (3.2)
p,h,00
(2) Let p > n and p,h satisfy (2.13)), and let || - ||y, be defined by
1_n
[ullyz == sup [[u(®)]| —2min + sup 272 [Ju(t) y1-2m. (3.3)
te(o, Nooh oo te(0, Pl
Then
e uollyz S lluoll  ~2mssn - (3.4)
Npohoo
Proof. (1) On the one hand, we have
[ Py I (35)
p,h,00 p,h,00

On the other hand, since p; > p > 5 and hl = %, using the embedding ([2.3) and the embedding
([2.9), and Lemma § with e = 2m -2 > O we obtain

£ e g S T e ol g
1 Np h,1
— 2m,—ﬁ
5 t 2p1 tif ||u0|| . 72'm+% (36)
p,h,o0
< luoll_-avnrs
p,h,00

and since po > n, p < po, and Z—; = %, using the embeddings (2.3) and (2.9)), Remark W and
Lemmawith e=1-7->0, one has

R [ e e
Np h,1 2
1_ _n_ _17%
g t2 2pat 2 ||u0|| L —2m4n (37)
p,h,o00 P
S ol o

Finally, estimates (3.5))-(3.7) yield (3.2)).
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(2) Since n < p < p and % = %, by using Lemmas and Ewith e=1- % > 0, we obtain

1_n 1, Y% a1
t2 ZpHetA’U,OHN;);‘im 5 t2720¢ 2 2(p ”)HU'O” ;i";:% ,S HUOH ;’21";:% (3.8)
Thus, estimates (3.5)) and (3.8)) yield (3.4). O

The second lemma is a bilinear estimation.

Lemma 3.2. Let 1/2<m <landlet 1 <h<p<oo, 1 <h <ps<ooandl <hy < ps < oo

satisfying % = p% + p% and % = h% + h% Then for all f € J\/E;,g:"l and g € N;;g;’fl, one has
1V (=A)"g + gV (=A) " fll g2 S [ Fllgze glgram . (3.9
p.h,00 P10, p2,ha,
Proof. Using the paraproduct decomposition due to Bony [5], we have
fV(=A)""g+gV(=A)""f = Ji+ J> + Js, (3.10)

where

Jri= Y A fV(=A)TSg+ AgV(=A) TS f,

leZ
Jo = Z Si-1fV(=A)""Ayg + 8119V (=D)AL,
leZ
Jz = Z Z AfV(=A)""Apg + Algv(_A)_mAk'f'
I€Z |I-k'|<1

Below, we estimate Jy, Jo and J3 separately. For J;, we consider the estimate of its first term
only, while the second one can be treated similarly. So, by (2.1) and (2.2), the embedding (2.3)),
Holder’s inequality (2.7)), and Remake we obtain

1A > AV (=2) "8 19l avg

IE€Z
S D MASVEA) TS gl g
ll—jl<4
S Y A ITA) "1 1gl i
ll—jl<4
< 9—(1-2m)j Z 2*(172m)(lfj)2(172m)lHAlfH'/Vlgi ”V(_A)fmgHMgz

li—jl<4

52—(1—2m)j( sup 2—(1—2m)(l—j))||f||N_17§ml||V(_A)—mg||N0 .
[l—jl<4 [ERCE P2 hiz,

<2 e,

|9”N§;§,;'ﬁ1'
Similarly,

185 3" AigV(=8) "S-t fllang S 2772 g2
leZ 1,h1,
Which implies that

|g|| rl—2m .
Np2ﬁ2,1

1A T ey S 2702 fl gaam lgllgezm (3.11)
p1,hi1,1 p2,fig,1
Analogously for J,, applying the embedding (2.3)), Holder’s inequality (2.7)), and Remarkagain,

since m > 1/2, one has

18, 811 fV(=A) " Aygllag

IeZ

S Y IS fV(=2) " A g

ll—jl<4



EJDE-2025/80 FRACTIONAL POROUS MEDIUM EQUATIONS 9

S Y S 1A g 19(-8) " gl

ll—j| <4 k<l—2
5 Z 27(172m)l Z 27(172m)(kfl)2(172m)k”AkaM;)1 ||v(_A)7mg||M'€2
o )

li—t]<4 ksl=2
< 2_(1—2m)l( 2—(1—2m)<k—l)) rizm ||V (=A)"g]lx
~ Z ks<l;I_)2 HfHN;l;lHV( ) g||N£2’ﬁ2’1
i—1]<4 =
—(1-2m)j —(1=2m)(I—j) . :
<2 (X e Nflg-2m llglg-2m
i—11<4
< —(l—Qm)j 1 —om 1 _om
<2 HfIIN;l;N||g||N;2Y§271.
Thus, when m > 1/2, we have
A < 9—(1-2m)j 1 —om -1 2m
1Al a2 1l xs-2m gl =2m (3.12)

We are now moving on to the last term J3. We use the following formula, based on an analysis of
the algebraic structure of the system (|1.1)):

(Ja)i= Y Afoi(=A)""Apg+Aigd(—A) " Ap f = K} + K} + K7,

IEZ |I—k'|<1

for i =1,2,...,n. Where (J3); is the ith exponent of (J3) and

K=Y 3 (=) [((Ca)ymA) (=) Awg)]
I€Z |I-k'|<1

K=Y > 29 [((—a)ymA) (997 (-8) " Awg)]
IEZ |I—k'|<1

K} = Z Z 0; K(—A)_mAzf> Ak'g} :

€7 |I—k'|<1

To estimate the above three terms, we use Holder’s inequality (2.7), Remark and Cauchy-
Schwartz’s inequality in the following way: From ({2.2)), there is dy € N such that

1A K | pp S 2™ [((=A) " Af) (0i(=A) "™ A g) | ame
I3 h
\l—k/\gl
Lk'>j—do
S22y 2_2ml||AlfHMg;2(1_2m)k/||Ak'g||M;§
I-k'|<1
l,‘k’zj‘:do (3.13)
S22 3 27 ( sup 27D )0 2IYA e 202K A g e
[I—k'|<1 12j=do " "2
LK >j—do

< 9—(1-2m)j o o)
S2 ||fHN[jb§L;"’2||9||Np12,§;2-

1A g S 27 30 1 ((=2)7" A ) (897 (=) 7" Awg) llagg

[1-k"|<1
Lk'>j—do

S22 A g 207 A gl g
li—k'|<1
Lk'>j—do

SN A gy 2 sup 2D )20 A g
i—k<1 Lo ’
Lk >j—do
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<2707 37 (sup 27070 )02 A £ g 2072 A gl g

|l7k/|§1 le_dU
Lk >5—do
Since m < 1, then
1A K | < 27(172m)ﬂ||f|w;;§3ﬁ2 gl 1 —2m . (3.14)
1A, 5 | g
23 (A AY) Avglag
li—k'|<1
Lk'>5—do
T 27 A1l page 1Ak g g2
li—k'|<1
LE' >j—do
SP D 2 AY gy sup 27O )20 A
li—k'|<1 " li=HI<1 "
Lk >j—do
< 9-(1-2m)j Z ( sup 2—2(1—m)(l—j))2(1—2m)l||Alf||Mp12(1—2m)k’HAk/g”MP2.
1>j—d Ry fig
i-k'|<1 =TT
Lk >j—do
Since m < 1, we have
ALK, < 9o (m2m)iy gy .
18K g <2 £l xr1=2m_[lgllr1—2m . (3.15)
Thus, (3.13)), (3.14]), (3.15) and the embedding (2.4, give us
n 3
1A Tsllaee <D0 NAEF s S 2_(1_2m)’||fHNp1;;;71 gl r1—2m - (3.16)
=1 k=1

Eventually, we combine (3.11)), (3.12) and (3.16)), then multiply by 2(1=2")7 and take [°—norm
on both sides of the resultant estimate to obtain (3.9)). The proof of Lemma is complete. [

The last estimate is a corollary of the following lemma.

Lemma 3.3 ([25]). Let s € R, >0, 1 <h<p<oo,1<hy<pg<ooandl <r <oo. If

ho _ h s
po > p and e =7 Then for all u € Np,h,r’ we have
Bynf(1_ 1
t2+2(1’ P0)||etAu||Ns+/s =90,
po.hg,T
1 rimtg
Lemma 3.4. Let 0 <T <00, 3 <m<1,1<h<p<occandug€N,,

(1) Let 5= < p < n and let p1,pa, b1, ho satisfy (2.12)). Then, one has

tm*ﬁnetA |Hv‘1_2m6tA t—0

1_ _n_
uoll gz 772 uol pzz — 0.

(2) Let p > n, the parameters p,h satisfy (2.13) and 1 < r < co. Then, one has
i1 ¢A ) t—0
t2 2 ||€ UOHN;;L?:n — O
Proof. (1) By applying the embedding (2.3) and Lemma fors=—-2m+ 2, =2m—-2 >0,
po =p1 > P, hg = hy and r = 1, we obtain

290, (3.17)

hy,1

A e [Vt A [P
h1 P1,
For the second term, by the Adams theorem [1], we have

= —_——_— ﬁii
£ [V g pgn S [V e g g
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where ¢ > 0 and p3, h3 satisfy
h h 1 1
1< hs <ps<oco, p3s>p, —3:—27 —:——i—g.
ps  p2  ps p2 d
Using again the embedding (2.3]) and Lemmafor s = 72m+%, 8= C+1f% >0, pg =p3 > D,
ho = hs and r = 1, we obtain

146 n 146 n
¢ s |||V e By | s S 8772 [V B | o
3

p3,h3,1

14¢
<tz s ll|e* u0||N<+1 2m =9 0.

~

Thus,
t%*%nwp-%emuouwz 20,9, (3.18)
Then (3.17) and (3.18) yield the desired result.
(2) By choosing s = —2m + %, g=1-— % >0, po=p>pand hg = h, Lemmagives us the
desired limit. (]

4. PROOF OF MAIN THEOREMS

3

=2
We find local solutions with any initial data ug in the subspaces N "7 and global solutions

with small initial data ug in the critical Besov-Morrey spaces N for the gathered n < p < oo
and 5 < p < n in Subsection [f.1|and Subsection 1.2 respectlvely

4.1. Case n < p < co: Proof Theorems (2) and (2). . We first prove the following
bilinear estimate.

Proposition 4.1. Let 0 < T < o0, % <m<1l,n<p<oo,1<h<p, the parameters p, h satisfy
(2.13), and let
1 n
lullya := sup 27 20 Ju(t)]] yri—2m. (4.1)
I = sup gy
Then ,
II/O OB (wV(=8) " w + wV (=A) ") A vy S ullygllwlly;-

Proof. Recall that for 0 < T < oo, || - ||vs is given by

fullvy i= s [t oy + s 7 ult) gy

s p,h,00 te(0,

We denote H := vV(—A)""w + wV(—A)""u. Applying Remark the embedding ([2.4) and
Lemma, we obtain

||/ t—t)AG . gt || E— </ lle (t*t')AHdt’Hlezngdt’

p h, o0 p,h,1

5/ (t =) F D H g
0

From Lemma [3:2] we have

t t
t—t")A -z
[ / TOAYHA | ey S / (8 =) Flu(t")| gz ()] 1 2m

p,h,o0

t
_n _1l,n
S [a-oy e B glelge

t
< Jullya Jwlly / (t— )5 ()15
0

S llullvgllwllyz-
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For the second term of || - ||y,., we apply Remark and Lemmas and again, to obtain
t t
(t—t")A . Moo < (t—t"HA [
R T P M e T P
t 1
5/ (tft')—r*(*“)anNl o dY
0

t
_1l_n
S / (t—¢)7 zp||u<t'>||N;;,z;n||w<t’>|m;;g;ndt'

M

t
< IIullyTllley;/ (t—t) 2 (@) B ) At
0

1, n
St lullyy Jwllyy-

Finally, we obtain the estimate of || - ||y, by multiplying the two sides of the above inequality by
téf%, and combine the resultant estimate with (4.2]). The proof of Propositionis complete. [

Now we can prove the existence of local solutions of system (1.1)) for any initial data ug in

—2mtn .
N P with 1 < h < p < o0, in the case n < p < oco.

p,h,00

Proof of Theorem (2) For T > 0 and t € [0,T], we define the map
t ’
W u(t) — ePug + / et=tAy. (uV(=A)"™u) dt’, (4.3)
0

in the following metric space, for a small § > 0,

Yh = {u€ BC(0,T;N, o 7Y ¢ ullys < 6},
equipped with the distance
d(u,w) = [l = wlly;.
According to Lemma (2), we have the existence of T' > 0 such that
0
e uollyy < 5,

and we choose T satisfying this. Then by Proposition [4.1] there exists C; such that for every
u € Y, we have

0
19 ()lyy < lle®uolly + 01(||U||Y1) <3 + 167,

and, by setting A(u,w) = f (t=thAy . (uV(=A)"™w)dt’, there exists Cy such that for every
u,w € Y, we obtain
d (¥ (u), ¥(w)) = || Ay, ) Aw, w)|ly;
< [A(u,v = w)llyy + [[A(w — w,w) vz
<G (HullyTl + lwlly ) e = wily;
< 2056w — wlly;.
Then, by choosing § small enough such that

1 1
6 < min {2701’ 4—02},
we have
[PCllyy <6, d(W(w), ¥(w)) < d(w,w).
Thus, according to Banach’s fixed point theorem, we obtain a unique fixed point u € Y, of ¥, that
is, the local solution of system (I.1)). Furthermore, by setting [ullye = supseo,1) Hu(t)||N,2m+%,

p,h,00
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and since ¥(u) = v, then from Lemma [3.1] (2) and Proposition we obtain

2
lellyg = 9@y S lluoll 2z + (lellyz)” S llwoll -2mes + 6% < oo

p,h,00 p,h,o0

The proof of the second statement of the Theorem is thus complete.

Next, we demonstrate the existence of global solutions of Equation for small initial data ug
. —2m+3 . .
in N, o with 1 < h < p < 00, in the case n < p < co.
Proof of Theorem (2). For small Cy > 0, we define the metric space
. —2m+%

Yo = {uc BC(O,oo;Nnhm ) ufly.. < Col,

equipped with the distance d(u,w) := ||u — w||y,,. Returning to the map (4.3)), and according to
Lemma [3.1] (2) and Proposition there exist C3,Cy > 0 such that for every u € Y, we have

2
I (@)llyee < Cslluoll  —2msy + Ca([lullyec)” < Cslluoll  —2ms + C4C3,

p,h,o0 p,h,00

and, there exists C5 such that for every u,w € Y, we obtain
d(¥(u), ¥(w)) < Cs (Jullye + lwllye) lu —wlly, <2C5Collu —wly,,.
Assume that [lugl| . —2m+z <6, for small § > 0 satisfy

p,h,00
1
0 < —C
s 203 0
and choosing Cy small enough such that
1 1
Co <min{—,—}.
b mintsg i)

Then, for every u,w € Y., one has
1
¥ (W)ly. < Co,  d(¥(u), T(w)) < 5d(u, w).

Eventually, using the Banach fixed point theorem, we obtain a unique fixed point u € Y., of ¥,
that is, the global solution of the system (|1.1)). This completes the proof.

4.2. The case 5~ < p < n: Proof of Theorems (1) and (1). To finish the proofs of
Theorem and Theorem [2.10] it suffices to prove the following crucial bilinear estimate. With
this estimate, by using Lemma (1), Lemma (1) and the same argument as in Subsection
@ we can obtain the local and global solutions for the case 5~ < p < n.

Proposition 4.2. Let 0 < T < 00, + <m <1, max{l, 2} < p < n, 1 < h < p the parameters
P1, 2, ha, he satisfy (2.12), and let || - || x1 be given as

lullxy, = sup "7 u()| e + sup ¢35 ||| V2 ut)]| g (4.4)
te(0,T) L te(0,T) 2

Then, we have

t
|| / Y (uV(—A) ) Aty S ullxy el .

Proof. We have

[ullx; == sup [lu(®)|  -2m+z + sup tm_illﬂ(t)llMgl
(0,T) p.h,o0 te(0,T) 1

+ sup 3T |||V 2(t)]| e
te(0,T) ha

14+2m

' P2
embeddings (2.9)), (2.5, (2.4) and (2.3)), and Lemma we obtain

t
I / (DAY L (T (—A) ) A arn
0 N P

p,h,00

Let 9 be defined by % =1L 4+ L 50that ¥ < pand —%— < ¥ < d. Applying Remark the
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l—2m4 B

N,

9,h,00

t
< / 1et=2 (¥ (—A) ™ w) dF |
0
t

1—2m+ 2
S [E-t) T pva) g
0

Using Holder’s inequality (2.7) and since m < 1, T3sm < U <d, then we have

i
(tft’)Av . V(—A)"™ dtl oman
1] (19 (- ) ) A oy
t
s [(e-ey s
0

t
_1 — —mt2 1l n
i/o(tft’) MR ()T 2 | [l x4

w(t) ez [V (=2) 7w (t) | waze 4

t
Sl il [ 6=y dm ) mbar

S llullxg llwllxy.-

For the other terms of || - || x,., we have

t
”/0 e(t—t’)AV, (UV(—A)_mw) dt,HMii

p1,hy,1

t
< / [et=2 (uV (=A)"™w) dt' ||y
0
t

n-3-5(3-3) “ma||« /
< | @@=t 71 [V (=A) " wl| 5o dt
0

9,01
P1

t
S -0 09 (-8) g, d
0 by

P1

t s o
S [ =0y Oy 19 (-8) () gy 0t

t n
S [ e o) )R ul ] o
0

Sl g wll xy.

and
t
72 [l AT - (9= 8) ) dY
0 .2
t
S [ 102 (@ 2) ) s o,
t

s [e-e et 0 0g-a) g, ar
0 229

P2

t
S =T ) gy 19 8) ) g

t
S [ (e ey ) T g g de
0

St | o flw xs

Thus, we arrive at

t
—_n 4! A —
A II/0 AV (uV(-A) ") Al e S Mlullxp llwllxg

EJDE-2025/80

(4.6)
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t
£ ||V / AT (T (-A) ) Al e S Tl el (47)

Therefore, we obtain Proposition 4.2 O
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