Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 69, pp. 1-19. Title: Existence of nontrivial solutions for biharmonic equations with critical growth Authors: Juhua He (Yunnan Normal Univ., Kunming, China) Ke Wu (Yunnan Normal Univ., Kunming, China) Fen Zhou (Yunnan Normal Univ., Kunming, China) Abstract: We consider the biharmonic equation with critical Sobolev exponent, $$ \Delta^2u-\Delta u-\Delta(u^2)u+V(x)u=|u|^{2^{**}-2}u+\alpha |u|^{p-2}u,\quad \text{in }\mathbb{R}^N, $$ where $N> 4$, $\alpha>0$, $V(x)$ is a given potential, $2^{**}=\frac{2N}{N-4}$ is the Sobolev critical exponent and $2