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EXISTENCE AND NON-EXISTENCE OF SOLUTIONS FOR HARDY
PARABOLIC EQUATIONS WITH SINGULAR INITIAL DATA

ALDRYN APARCANA, BRANDON CARHUAS-TORRE,
RICARDO CASTILLO, MIGUEL LOAYZA

ABSTRACT. We establish the existence, non-existence and uniqueness of the local solutions of
the Hardy parabolic equation u; — Au = h(t)| - | 7g(u) on Q x (0,T) with Dirichlet boundary
conditions. We assume that Q with 0 € Q is a smooth domain bounded or unbounded, h €
C(0,00), g € C([0,00)) is a non-decreasing function, 0 < v < min{2, N}, and the initial data
have a singularity at the origin.

1. INTRODUCTION

Let Q € RV be a domain (bounded or unbounded) with a smooth boundary 9Q whenever it
exists. We assume that 0 € 2 and consider the parabolic problem

ug — Au = h(t)|z|Vg(u) in Q x (0,T),
u=0 on 09, (1.1)
w(0) =ug in £,

where h € C(0,00), 0 < v < min{2, N}, g € C(]0,00)) is a non-decreasing function, and ug €
L™ (Q) with ug > 0, 1 < r < co. Throughout the work, we consider only non-negative solutions.

The first equation of with o = 1 and g(t) = tP,t > 0,p > 1 is known as the Hardy
parabolic equation and it has been considered by many authors; see, for instance, [6, 19 20, 22]
and the references therein. Its elliptic version, that is —Awu = |- |~7uP was proposed by Hénon
[10] as a model for studying spherical-state stellar systems.

Problem (L.1)), with v = 0, h = 1 and initial data in Lebesgue spaces, has been extensively
studied, see [2, [9] [15], [16], 24] 25] for g(¢t) = t?,p > 1, and [14] for g € C([0,0)) a non-decreasing
function.

Problem , with v > 0, h = 1 and g(t) = t?,p > 1 was treated firstly in [22] Theorem
2.3] for non-negative initial data in the continuous bounded functions space Cg(RY) with v < 2.
For non-negative initial data in the Lebesgue space L"(Q2) and 0 < v < min{2, N} there is a
non-negative solution if and only if

pgp: ifr>1 or p<p§ ifr=1.
where
(2-—)r
N )
see [6, [19]. Moreover, for ug € L,.(RY), p > p? and

loc

py =1+

_ 2=
0 <wuplx) < clz| 72

for ¢* sufficiently small, then problem (1.1)) has a global solution in the class C((0,c0), L™(RY)),
m > N(p—1)/(2 —v), see [I9 Theorem 1.3]. Subsequently, in [I2] was obtained necessary
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conditions for the local existence considering a non-negative Radon measures in RV as initial
data. Their results imply that there exists a constant ¢, > 0 sufficiently large such that if

_2=0 . "
Cilz] P=LXB(0,1) it p > p?,
uo(ﬂﬂ =z

__N _ .
x|z~ log(e + |z 1) 723 1XB(o,z) if p=p3,

for ! > 0, then problem does not admit a solution. Here, xp (o) denotes the characteristic
function of the open ball B(0,1) centered at the origin and radius { > 0. For similar results to
v =0, see [I1], and for v > 0 and initial data singular at some point z € RY, see [13]. For results
with initial data up belonging to the weighted Lebesgue space, see [7].

The above results imply that |z|~(2=7)/(=1) is the optimal singularity for problem with
g(t) =t?, h =1, p > p’, and r = 1. Motivated for this fact, our main concern in this work
is to analyze the existence/non-existence of solutions for problem when the initial datum
ug € L"(Q) is compared with the singular function

Vr,p = K| - |_ﬂXB(0,z), (1.3)

for some k,5 > 0 and [ > 0 such that B(0,1) C Q. It is worth mentioning that the initial data
of the form were used first in [I7] to show the non-existence of non-negative solution for
a system related to with v = 0 and g(u) = wP. With this in mind, assuming h(t) = t*
and g(t) = t?, new solutions are obtained and we show that |z|~[(2=7+20)7/(?=1) ig the optimal
singularity for the problem with 7 > 1, see Section

In our first result, we study the non-existence of solutions for the problem . These solutions
are understood in the sense of mild solutions (see Definition . To do this, we assume that

 dt
G(r :/ — < 00, 1.4
D=] )
for all 7 > 0. We also consider the set
Is(k) ={p € L"(Q) : ¢" > 1y g in Q, for some k, 5 > 0}.

Theorem 1.1. Assume that 0 < v < min{2, N}, h € C(0,00) and g € C([0,00)) is a non-
decreasing function such that g(0) = 0. Suppose also that g satisfies condition and g' ¢, for
€ > 0 sufficiently small, is a convex function. There exists a constant cg, depending on N, such
that if uo € Zg(k) with 0 < 8 < N and

t
lim [G(cor/T¢P/0)] 7! / h(o)(t — o)™ 2do = 400, (1.5)

t—0+ 0

where G is given by (L.4), then the problem (1.1) does not admit a non-negative solution.

Remark 1.2. Here are some comments about Theorem [[1]
(i) The convexity condition of g'~¢, with 0 < ¢ < 1 sufficiently small, is necessary in our
approach. Clearly g(t) = t?, t > 0, p > 1, verifies this condition since g'~¢ is convex
for € > 0 sufficiently small. In general, this assumption is satisfied when ¢ is twice

differentiable with gg” — eg’? > 0 because
(6" )" =1 —eg " lgg" — g

(ii) A non-existence result for problem ([1.1]) can be obtained without the convexity assumption
of g17¢,e > 0, adapting the arguments of [6, proof of Theorem 1.4] and [, Proof of
Theorem 1.5, Case 2], under the condition

t
lim ¢~ N/ () / h(o)g(kY "o PPN GWN=1/2(5 = fo0, (1.6)
t—0+ 0

for ug € Zg(x),0 < 8 < N, and some constant ¢, depending only on N. Although more
general, the result is weaker when we apply it to the prototypical case g(t) = tP,p > 1 and

h(t) = t*; see Remark
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(iii) Another situation where it is possible to obtain non-existence results for problem (|1.1))
without the convexity condition of g1 ¢ € > 0, was obtained in [6] when

limsupt Prg(t) = +oo0, ifr>1or

t—o0

o (1.7)
/ tPGo(t)dt = 400, ifr=1
1

where Go(t) = sup;<,<; g(c)/o and p given by (1.2)), but there it is considered an initial
datum of the form ug = 21211 aEXB(0,ry) € L™(Q), where aj, > 0 and r; > 0 are chosen
appropriate. A similar situation occurs when © = RY and condition (I.7)) is satisfied.

For the existence of solutions we consider the set
(k) ={p € L"(Q) : 0 < ¢" < ¢, 5 in Q, for some &, § > 0}.
The sets ZP(x) and Zg(k) were considered in [3, 4] to analyze the existence and non-existence of

solutions, respectively, for a related problem with (1.1) and v = 0.

Theorem 1.3. Assume that 0 < v < min{2,N}, h € C(0,00), and g € C([0,0)) is a non-
decreasing function. There exists a constant Cy depending on N, B and r, such that for every
ug € (k) with 0 < B < N, problem (1.1]) admits a non-negative solution u € L>=((0,T), L"(£2))
if

¢
lim /2 [ h(0)G(Cor'/ma™P/CNg=12(t — )7/ 2d5 = 0. (1.8)
t—0+ 0

The function G : (0,00) — [0,00) is given by G(t) = supg.,<; 9(s)/s.

Moreover,
(a) u € L2 ((0,T), L®(2)) and there exists a constant C > 0 such that t°/?"||u(t)||p~ < C

loc

forallt € (0,T).
(b) we C([0,T], L7(%2)).

Remark 1.4. In the Theorem when ¢ is a convex function and g(0) = 0 we have that
G(t) =g(t)/t for t > 0.

It is worth mentioning that we have considered the sets Zg(x) and Z? (k) with the singularity
localized in 0 € €. We can obtain the same result considering a singularity in any fixed point
xo €  taking the sets

{oel"(Q):¢"(z) > K|z — x0|7ﬂxB(x0,l)(x) a.e. in €, for some &, 3 > 0},
{pel"(Q):0<¢p"(z) <k |x— 1’0|7ﬁXB(xo,l)(x) a.e. in €, for some &, > 0},

see [L3], for h = 1, g(u) = u? with Q@ =R, and [4] for v = 0, h = 1 with Q a bounded domain.
We now analyze the uniqueness. It was shown in [I9] Theorem 1.1(ii)] that problem (1.1)) with
g(t)=1t?,t>0,p>1,and h = 1 has a unique solution in the class C([0,T], L"(RY)) if
* p Y
p<p; and ;<17N.
Moreover, the uniqueness also holds for p < p} with the additional condition

sup {127 u(t)||pa} < oo and ¢ >
te[0,T]
It is important to mention that new advances on the uniqueness of problem have been
obtained in Lorentz spaces in [20], in weighted Lebesgue spaces in [7], in weighted Lorentz spaces
in [§], and in uniformly local Lebesgue spaces in [5].
To establish our uniqueness result we assume that g € C([0,00)) is locally Lipschtiz and define
L :[0,00) — [0,00) by

£(t> = sup M, for t > 0, ,C(O) =0.
0<u,v<t u—-v
uv

Our uniqueness result reads as follows.
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Theorem 1.5. Assume 0 < v < min{2, N} with 1/r+~v/N <1,0< 60 < N, h € C(0,00), and
g € C([0,0)) is a non-decreasing and locally Lipschitz function. Problem (1.1) admits a unique
solution in the class

{fue L=®((0,T),L"(Q) : sup t*?"||ju(t)|p~ < C} (1.9)
te(0,T)
if the map
t = h(t)L(Ct=9?") belongs to LI(0,T) (1.10)

for some g > 2/(2 — 7).

Remark 1.6. Here are some comments on Theorem [I.5
(i) The solution given by Theorem belongs to the class defined by with § = 8 and
ug € I?(k). The same occurs for §# = N with ug € L"(2) and h = 1, see [6, Theorem 1.2].
(ii) Note that condition depends on the constant C' of the set defined in (L.9). It is
clear, by a change of variable, that if £ or h are homogeneous, then the uniqueness holds
in the class

{ue L®((0,7),L7(Q) : sup t%|lu(t)] L~ < oo},
t€(0,T)

if £+ h(t)L(t=9/%") belongs to LI1(0,T), ¢ > 2/(2 — 7).

The remainder of this article is organized as follows. In Section 2, we present the notion of a
solution used in the work and establish some useful technical results. In Section 3, we give the
proofs of Theorems |1.1] and In section 4, we prove the uniqueness, And in Section [5] give
some applications.

2. PRELIMINARIES

Throughout this work, Po(x,y;t) is the Dirichlet heat kernel associated with the operator
0, — Aq, where —Aq is the Dirichlet Laplacian for the open set @ C RY. The Dirichlet heat
semigroup is defined for all ¢ € M™, the set of non-negative a.e. finite measurable functions on
by

[%wwmaé%w%W@@<m. (2.1)
It is well known, see [2I| Lemma 7], that
Po, (z,y;t) < Po,(w,y;t) < Pn(x,y;t) (2.2)

for z,y € O C Qy, where Q; and Qy are open subsets of RV, and Py is the heat kernel defined
by
Py (,y5t) = Pan (2,3 t) = (dmt) N/ 2elomvl/at, (2.3)
Sometimes, when the domain Q considered is clear, we denote Sq(t)¢ by S(t)d.
The following result is used in the proof of the non-existence of solutions, see [1].

Lemma 2.1. Let 1,6 > 0 be such that B(0,14+25) C Q and 0 <y < N. There exists a constant
¢y > 0, depending only on N, such that
SO 7 XB00 = Nt Xpo.vh) -
for all 0 < t < min{d?,1%}.
The notion of solution used in the work is the following.

Definition 2.2. Let ug € L"(Q),ug > 0,1 < r < oo,y >0, g € C([0,00)) and h € C(0,0).
A non-negative measurable function u € L*®((0,7T), L"(£2)), defined a.e. in Q x (0,7) for some
T > 0, is called a solution (resp. supersolution) of problem if uw(t) = F(u,ug)(t) (resp.
u(t) > F(u,ug)) a.e. in Q x (0,T), where

Fu, ug)(t) = S(t)uo +/0 S(t—o)h(o)] - "g(u(o))do. (2.4)
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The following result is an adapted version of [6, Lemma 2.4].

Lemma 2.3. Assume that g € C([0,00)) is non-decreasing, h € C(0,00), v > 0, and ug € L™(£2),
1 <r < oo, withug > 0. If u is a supersolution of problem (L.1)) in Q x (0,T), then there exists a
solution u of problem (L.1) defined on Q x (0,T) such that 0 < u <.

Proof. w > §(u,up), since u is a supersolution of . Moreover, F(-,up) is non-decreasing
on u, since g is non-decreasing, h > 0 and the monotonicity property of the heat semigroup
{S(t)}+>0. Consider the sequence {u"}, >0, given by v’ = w, and F(u""', ug) = u™ for n > 1.
Since § is non-decreasing, the sequence {u"},>¢ is non-increasing a.e. in Q x (0,T) and w >
u™ > u™tt > 0. Let u(w,t) = lim, o u™(x,t), whenever it exists. The continuity of g, the
monotonicity of semigroup {S(t) }+>0, and the monotone convergence theorem allow us to conclude
that u = lim, e u™ = lim, oo F(u" "1 ug) = F(u, up). In addition, since 0 < u < % we conclude
that w € L>=((0,T), L"()). O

Let © C RN be a smooth domain (possibly unbounded). We recall the well-known smoothing
effect of the heat semigroup on Lebesgue spaces, that is,

1

_E(i_i)
[S(#)llLee < (dmt)” = a2 Lo,

for 1 <q1 <ga <o0o,t>0and ¢ € L1(Q), see [2, Lemma 7]. We also use the following estimate,
which can be obtained from estimates (2.2)), see [6, Lemma 2.5] and [19, Proposition 2.1].

Lemma 2.4. Let v € (0, N), and let q1,q2 € (1,00] satisfy

1 vy 1
0<—<—=-+—<1
q2 N q1

Then there exists a constant Cy > 0, depending on N,~,q1 and g2, such that
—y _N(L_1y_ 3
ISE - 77 @)L < Cot™ 2 o527 2 || Lan
for allt >0 and ¢ € L1 (Q).

Lemma 2.5. Assume that g € C([0,00)) is a convez function with g(0) =0 and ¢ € M™*. Then
9(S(t)¢) < S(t)g(4).

Proof. From inequality (2.2) we have that n = [, Po(x,y;t)dy < 1. Using expression (2.1,
Jensen’s inequality, the convexity of g and g(0) = 0, we obtain

o(5)0) = o | Pola.t)ot)dy)
= 9(77/Q Wfb(y)dy +(1 - 77)0)
< ng(/Q W@b(y)dy)

g/%mwmwmwzﬂmw.
Q

The following result can be found at [0} Lemma 4.1].

Lemma 2.6. Assume that p € M™ and0 < v < N. Then there exists a constant C; = C1(N,~) >
0 such that

_ 1 1\v/2
Sg ()] |77 Spa (s)p < C4 (; + ;) Spn (t+ )

for all t,s > 0.
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3. EXISTENCE AND NON-EXISTENCE

Proof of Theorem[1.1, We adapt the arguments used in [3, Proposition 2.6] and [I8, Lemma 15.6].
Since ug € Zg(k), ug > K" - |’B/TXB(OJ) = vp. Note that vy € L"(2) because 0 < § < N.

We argue by contradiction and assume that there exists a non-negative solution u € L>((0,T), L"(Q2))
for problem with initial data ug. Since ug > vg, by we have

w(t) = Flu,up)(t) > F(u,vg)(t)
for a.e. t € (0,T). Let ¢ € (0,s) with s € (0,7) and 1/¢ =1 — € > 0. From
S(s —t)u(t) > O(-, 1), (3.1)
where

Ot $)vg —|—/ h(o)S(s —o)| - |7 "g(u(o))do.

Note that for 2 € Q fixed, the function O(z,t) is absolutely continuous on (0, s). Consequently, it
is differentiable a.e. in (0, s). Thus, by the reverse Holder inequality and (3.1]) we have

O'(t) = h(t)S(s = )] - | g(u(t))
h(B)[S(s — )] - |7/ DI9S (s — 1)gM 9 (u(t)))?

( I
> h(t)[S(s — )| - |7/ 9(S (s — t)ut))
> h(t)[S(s — )| - |0 g(0(1))

for t € (0,T). Here, we have used Lemma for the convex function g'/9. Then
o©'(t) (1)1
GO)(t) = - < —h(t)[S(s —t)| - |7V A=D)
[GO)N'(#) 4(0) @[S(s =) -] ]
Integrating from 0 to s, we obtain

—6(8(0)) <6(6(s)) = 6(6(0)) < - /0 h(0)[S(s —o)| - |77/ 0=9] "4,

Hence
/t h(0)[S(t — o) - ["/=D]'"4do < G(S(t)wo),
for t € (0,7T) and all x € Qo(by continuity). Due to and we obtain
[ @ iSer @ = o)l [/ 0] < 61500l 0)
Since [Sg (t — 0)] - [/ D]1=9(0) = p'=9(t — )72, with
[ exp( o a0

we conclude that

00 [ W)t - ) 2o < Gl OmI0) (32
On the other hand, by Lemma [2.4] -, S(t)vg € L>°() for all t > 0, and by Lemma [2.1) we have
S(t)vo = C?v"él/TfB/%XB(o,\/{) ,
for all 0 < t < min{(1/3)?,T}. Thus,

{G([S(t)vo](0))}~ / )t — o) ?do do
> [G(ch k1B /0 ho)(t — o) 2do > 51!

as t — 07, by condition ([1.5). This contradicts estimate (3.2)). O
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Proof of Theorem[1.3 Let ug € L"(Q), up # 0, with ug € Z°(k) and 0 < 8 < N. Consider g
the zero extension to RY of ug. Because ug € Z°(k), there exists x,l > 0 such that g(z) <
/Ql/r|z|*5/TXB(0)l)(x) for x € RY. Thus, @y € L"(RY) for » > 1. By Lemma

|Sen (o) e < Cort/Ta™P/2m, (3.3)
The function w(t) = 2[Sg~ ()], is a supersolution of (L.I). Indeed, using inequality (3.3)),
the estimate provided by Lemma ﬁand condition (|1.8)), we have
t
| 8- o)l | gtw(o)do
0
¢

< /0 h(@)G([[w(o)||L=)S(t = a)| - |77 w(o)do

t

A4

< 2/ h(o)G(2Cok "o P/?")S(t — 0)| - |77 Sgw (0)Gipdo (34)
0

t

< 201 [Spw (t)iio)|at?/? / h(0)G(2CokY "o P/*)(t — o)™/ 2077 2do
0

< dw(t)

for all ¢ € (0,7) with T' > 0 sufficiently small and 0 < § < 1/2. Hence, from (2.4) and (3.4]), we
have

§(w, o) = S(t)uo + / S(t — oYh(o)] - | "g(w(o))do

IN

1
iw(t) + dw(t)

(5 + D)

< w(t)7

IN

for t € (0,7T") with T' > 0 sufficiently small. Thus, §(w,u¢) < w in (0,7) and w is a supersolution

of (L.1) in (0, 7).
Lemma [2.3] assures that problem (I.I)) admits a solution defined on (0,7") and 0 < u(t) < w(t)
for ¢t € (0,T). Moreover, from estimate ((3.3)),

[w(t)|| oo < 2||Spn (£)iig| Lo < CtB/2T,

for some constant C' > 0. This shows item (a).
To show item (b) we write the solution of problem ([1.1)) in the form

u(t) = S(t)up + /0 St —o)h(o)| |77 f(u(o))do = ui(t) + us(t),

for t € [0,T]. Since uy € C([0,T], L"(£2)), we need only to show the continuity of ug. To this end,
we argue as in [23 p. 285]. Using the facts that g and G are non-decreasing and estimate ({3.3)
we have

9(u(0)) < g(w(0)) < w(0)G(w(0)) < 2G(2Cox"" o /2")[Sax (o )iio]| -

Here, we have used that w(t) = 2[Sgw (t)Uo] }Q is a supersolution of problem (1.1)) on (0, 7). Taking
0 <7 < t< T and arguing as in the derivation of (3.4) we obtain

I S(t—=a)h(o)]-]"g(u(o))do| L

<2 [ h(@)G@Cor "o PP)S(t ~ o)[| - | Sex (o)iodol |-

T

t
< 201||710||Lr157/2/ Wo)G (200K "o =B/2) (t — o)~/ 26~ /2y,
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It follows that
I [ ste=amio Patutodol e o

as t — 7. Indeed, this is clear if 7 > 0, and when 7 = 0 we use the hypothesis (1.8). O

4. UNIQUENESS
We use the following singular Gronwall Lemma, see [2, p. 288].

Lemma 4.1. Let T > 0, A > 0, 0 < o,¢ < 1 and let f be a non-negative function with
f € LY0,T) for some ¢ > 1 such that ¢ max{a,(} < 1. Consider a non-negative function
p € L>(0,T) such that

olt) < A + / (t — o) f(0)p(0)do

fort € (0,T). Then there exists a constant C > 0, depending only on T, «, ¢ and || f]||pa, such that
o(t) < ACt™® a.e. t € (0,T).

Proof of Theorem[I.5 Suppose that problem (1.1)) has two solutions u and v in the class (1.9)
defined on some interval (0,7") with the same initial data wug, that is,

u(t) = S(t)uo +/ S(t — 0Vh(o)] - | g(u(o))do, (4.1)
v(t) = S(t)uo +/0 S(t —o)h(o)]-|""g(v(o))do. (4.2)
Subtracting (4.2)) from , we have
/ S(t = ()] - lglu(o)) - g(v(o))ldo

< [ oy 20~ igzg"”nmsaa>{|~|7[u<a>v(o)}}da

/ h(o)L(Co™%/%")8 o) {l-~ —v(0)]} do.
Since y < N, v/N +1/r <1 and 1/g+ /2 < 1, using Lemmawe obtain

Ju(t) ~ v(®)]l2r < Co / W) L(Co* NS (t — 0)| - | [u(o) — v(o)]| 1-do

< Co/o h(o)L(Co™"2")(t — o) 2 u(o) — v(0)|1-do.

Hence, the uniqueness follows from Gronwall’s singular Lemma (Lemma [4.1)) and condition (L.10).
O

5. APPLICATIONS

We apply Theorems [I.1] and [I.3] to some classical examples of nonlinear heat equations.

5.1. Case g(t) = tP with p > 1. Non-existence. In this case G(7) = 7177 /(p—1). Thus, condition
(1.5) is equivalent to

¢
lim t_'B(”_l)/QT/ h(o)(t — o) 2do = +o0. (5.1)
t—0t 0
In particular, when h(t) = t® condition (5.1)) is satisfied if 1 +a > /2 and
2— 2
p—1

Hence, p > 1+ [(2 — v + 2a)r]/N.
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Eristence. Since G(t) = t*~! condition ([1.8) is equivalent to

t
lim t'Y/Q/ h(o)oPP=D/Ce=7/2(t — 5)=1/2dg = 0. (5.2)
t—0t 0
In particular, when h(t) = t*, condition (5.2)) is satisfied if 1 +a > /2, and
2 — 2
5 < # < N

whenever p > 14 [(2 — v + 2a)r]/N.
In summary, when h(t) =t* and 1+ a > /2 we obtain a critical exponent

5t = (2 =75+ 2a)r
p—1
such that for 5 € (0, N) and p > 1+ [(2 — v + 2a)r]/N we have:
e If B < B* and ug € Z°(k), then problem admits a non-negative solution.
o If 5> B* and ug € Zg(k), then problem (|1.1) does not admit a non-negative solution.

This shows that |z|~#" is the optimal singularity for problem .

The critical case 8 = B* was treated in [I3, Theorem 1.2] in the particular case where h = 1
and r = 1.
Uniqueness. When h(t) = t*,t > 0 with 1 + a > /2, we have that £(s) = psP~! and condition
is verified for 8 < *, with g* given by . Indeed, in this case, it is possible to choose
q > 1 such that

, (5.3)

Blp—1) 1 v
—_ - -<1l-=.
o a < P < D)
The arguments used in this case can be used to treat the function g(t) = (1 + ¢)?[In(1 + ¢)]?

with p,q > 1.

Remark 5.1. If in the nonexistence part, we use condition (1.6) in place of (1.5), with g(¢) =
t?,p>1, and h(t) =t* a > —1 we have

3 N

¢ t
t_%/ W(0)g(r o™ )0 T do > (k" dy )Pt 5 5 / W) " do
0 0

N B N—
= Ot 27~z Tltat o — 400

as t — 0 for

2 N
l(2—’y+2a+—) < B < N,
P r

whenever p > 1+ [(2 — v + 2a)r|/N. However,
2 N
Br < l(2—7+2a+—>.
D r

5.2. Case g(t) = e*® with a > 0 and h(t) = t*. Although ¢!~ is not a convex function, we
can apply Theorem to conclude that problem does not admit a non-negative solution for
ug € I@(I{) if
8> (2—’}/—1—2a)r7
@
1+ a > v/2. To show this, we argue by contradiction and assume that problem has a non
negative solution v on a some interval (0,7). Since

a+1
exp(av) > (ozj— 1) vt for v >0,
we conclude that v is a supersolution of problem (1.1)) with g(t) = (a/(a+1))**teTl. By Lemma
problem (L.1)) with g(¢) = (a/(a + 1))*T1¢**! admits a solution which contradicts the result
obtained in Subsection 51
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6. CONCLUDING REMARKS

We establish new results on the existence and non-existence of a solution for the Hardy parabolic
equation uy — Au = h(t)| - |7 Yg(u) in 2 x (0,T), where Q is a smooth (bounded or unbounded)
domain (0 € ), g € C([0, 00)) non-decreasing, h € C(0,00) and 0 < v < min{2, N} (see Theorem

and for specific conditions on g).
In our approach, we consider initial data with a singularity at the origin, that is, in the sets

78(k) and Zp(k) with 0 < B < N and x > 0. As a consequence of the results, considering g(t) = t?
with p > 1, h(t) = t* for all ¢ > 0, we determine a new critical value 3*, given by , for the
existence of solutions, see Section

Finally, we establish a conditional uniqueness analyzing the behavior of the Lipschitz constant
of function g (see Theorem [1.5)). class where the solutions obtained are defined.
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