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SOLUTIONS TO NONLINEAR ELLIPTIC PROBLEMS WITH

NONHOMOGENEOUS OPERATORS AND

MIXED NONLOCAL BOUNDARY CONDITIONS

EUN KYOUNG LEE, INBO SIM, BYUNGJAE SON

Abstract. We investigate the existence, multiplicity and nonexistence of positive solutions to

nonlinear (singular) elliptic problems involving nonhomogeneous operators and mixed nonlocal
boundary conditions based on the behaviors of the nonlinear term near 0 and ∞. In particular,

we discuss the existence of at least three positive solutions to the mixed nonlocal boundary

problems, which is new finding even for the problems involving homogeneous operators. The
novelty of this study lies in constructing completely continuous operators related to nonlinear

elliptic problems involving complicated boundary conditions. We emphasize that only one fixed

point theorem is used to obtain the existence and multiplicity results, despite generalizing and
extending most of the problems in previous literature.

1. Introduction and main results

We consider the nonlinear (singular) elliptic problems with nonhomogeneous operators and
mixed nonlocal boundary conditions:

−(w(t)ϕ(u′))′ = λh(t)f(u), t ∈ (0, 1),

u(0)− au′(0) =

∫ 1

0

g0(s)k
0
0(s, u)ds+

m∑
i=1

αik
0
i (ζi, u(ζi)),

u(1) + bu′(1) =

∫ 1

0

g1(s)k
1
0(s, u)ds+

n∑
j=1

βjk
1
j (ξj , u(ξj)),

(1.1)

where λ > 0, a ≥ 0, b ≥ 0, 0 ≤ αi < 1, 0 ≤ βj < 1, m ∈ N, n ∈ N, and {ζi}mi=1 and {ξj}nj=1 are

increasing sequences in (0, 1). Here ϕ, f , w, h, g0, g1, k
0
i and k1j satisfy the following conditions:

(H1) ϕ ∈ C(R,R) is an odd increasing homeomorphism such that there exists ψ ∈ C((0,∞), (0,∞))
such that ψ(0) = 0 and ϕ(rs) ≤ ψ(r)ϕ(s) for r > 0 and s > 0,

(H2) f ∈ C((0,∞), (0,∞)) with lim infs→∞ f(s) > 0 and there exist c > 0 and γ ≥ 0 such that
f(s) < c

sγ for 0 < s < 1,

(H3) w ∈ C([0, 1], (0,∞)) and h ∈ C((0, 1), (0,∞)) with
∫ 1

0
h(r)
d(r)γ dr < ∞, where d(r) :=

min{r, 1− r},
(H4) g0, g1 ∈ C((0, 1), [0,∞)) with G := max{∥g0∥1 +

∑m
i=1 αi, ∥g1∥1 +

∑n
j=1 βj} < 1,

(H5) k0i , k
1
j ∈ C((0, 1) × [0,∞), [0,∞)) are such that k0i (s, r) ≤ r and k1j (s, r) ≤ r, where

i ∈ {0, 1, 2, . . . ,m} and j ∈ {0, 1, 2, . . . , n}.
Nonlocal boundary value problems of ordinary differential equations arise in various areas of

applied mathematics and physics. In particular, multipoint boundary value problems arise in a
fluid flow problem [11] and the theory of elastic stability [20], and integral boundary value problems
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arise in blood flow problems [17, 24] and thermal conduction problems [5, 13]. Recently, many
studies have been conducted on these two nonlocal boundary value problems. One can find several
works on multipoint and integral boundary value problems in a series of papers [6, 7, 15, 16, 21]
and [1, 3, 4, 12, 14, 22, 23], respectively. In [16], Ma studied the existence of positive solutions of
(1.1) with the homogeneous operator u 7→ (w(t)u′)′ (i.e., ϕ(s) = s), a nonsingular nonlinear term
f and the following m-point boundary condition

au(0)− bw(0)u′(0) =

m−2∑
i=1

αiu(ζi) and cu(1) + dw(1)u′(1) =

m−2∑
i=1

βiu(ζi)

with ac + ad + bc > 0. They used the Guo-Krasnoselskii fixed point theorem in a cone to get
the result. Webb and Infante [22, 23] provided a unified method of establishing the existence and
multiplicity of positive solutions of (1.1) with the homogeneous operator u 7→ u′′ (i.e., w(t) ≡ 1
and ϕ(s) = s), a nonsingular nonlinear term f and various nonlocal boundary conditions involving
Stieltjes integrals (thus allowing for m-point and integral boundary conditions). But one can see
that our mixed nonlocal boundary conditions contain their boundary conditions. Recently, Hai
and Wang [10] addressed the problem (1.1) with the homogeneous operator u 7→ (|u′|p−2u′)′ (i.e.,
w(t) ≡ 1 and ϕ(s) = |s|p−2s), a singular nonlinear term f and the following boundary conditions:

au(0)− bu′(0) =

∫ 1

0

g(s)u(s)ds and u′(1) = 0,

or

au(0)− bu′(0) =

∫ 1

0

g(s)u(s)ds and u(1) = 0,

with a > 0 and b ≥ 0. Assuming that the nonlinear term f(s) could have negative values near 0,

they showed the existence of positive solutions for the cases lims→∞
f(s)
ϕ(s) = 0 and lims→∞

f(s)
ϕ(s) = ∞

by applying the Krasnoselskii fixed point theorem in a Banach space. We note that they did
not discuss multiplicity results. The problem involving both multipoint and integral boundary
conditions simultaneously was initially introduced in [2] as follows:

−u′′(t) = f(t, u), t ∈ (T1, T2),

α1u(T1) + α2u(T2) = α3

∫ ζ

T1

u(s)ds+

m∑
i=1

γiu(νi),

β1u
′(T1) + β2u

′(T2) = β3

∫ ζ

T1

u′(s)ds+

m∑
i=1

ρiu
′(νi),

where 0 < T1 < ζ ≤ νi ≤ T2, αi, βi ∈ R, and γi, ρi ∈ (0,∞). The existence of solutions (which
may not be positive solutions) was discussed via three different fixed point theorems: Schaefer,
Krasnoselskii and Leray-Schauder.

Motivated by the aforementioned studies, we extend these results to the more general case (1.1),
which has a nonhomogeneous operator, a (non)singular nonlinear term, and mixed multipoint and
integral boundary conditions. Our objective is to study the existence, multiplicity and nonexis-
tence of positive solutions of (1.1) in C1[0, 1] according to the behaviors of f near 0 and ∞, that

is, the values of f0 := lims→0
f(s)
ϕ(s) and f∞ := lims→∞

f(s)
ϕ(s) . In particular, to discuss the existence

of three positive solutions, we assume

(H6) f(s) :=
fγ(s)
sγ , where fγ is continuous and nondecreasing,

(H7) there exist η > 0 and θ > 0 such that

f(θ)

ϕ(θ)
/
f(η)

ϕ(η)
>

4γw∗∥hγ∥1ψ( 16δ )ψ(
1+a
1−G )

w∗h∗δ2γ
,

and one or two of the following:

(H8a) η < 4θ
δ ,

(H8b) η > 4θ
δ ,



EJDE-2025/66 SOLUTIONS TO NONLINEAR ELLIPTIC PROBLEMS 3

(H9a) f(θ)
ϕ(θ) >

21+2γw∗∥h∥1ψ(
16
δ )ψ( 1+a

1−G )min{f0,f∞}
w∗h∗δγ

,

(H9b) f(η)
ϕ(η) <

w∗h∗δ
γ max{f0,f∞}

2w∗∥hγ∥1ψ(
16
δ )ψ( 1+a

1−G )
,

(H10a) max{f0,f∞}
min{f0,f∞} >

4w∗∥h∥1ψ(
16
δ )ψ( 1+a

1−G )

w∗h∗
(> 1),

(H10b) f0 > f∞, (H8a), (H9a) and (H9b),
(H10c) f0 < f∞, (H8b), (H9a) and (H9b),

where w∗ := mint∈[0,1] w(t), w
∗ := maxt∈[0,1] w(t), ∥hγ∥1 :=

∫ 1

0
h(r)
d(r)γ dr,

h∗ := min
{∫ 1

2

1
4

h(r)dr,

∫ 3
4

1
2

h(r)dr
}
,

and δ is the largest constant such that maxs∈[0,δ] ψ(s) ≤ w∗
2w∗ . We note that ψ(1) ≥ 1 since

ϕ(1) ≤ ψ(1)ϕ(1) by (H1). This implies δ < 1.
Noting that f0 = ∞ implies f(s) could be singular at 0, we state theorems according to the

following value of f0: f0 = ∞, f0 = 0 and f0 ∈ (0,∞).

1. Case f0 = ∞. Let λ∗ :=
4γw∗ψ( 16

δ )ϕ(θ)

h∗δγf(θ)
, λ∗ := w∗δ

γϕ(η)

∥hγ∥1ψ(
1+a
1−G )f(η)

and λ∞ := w∗
2∥h∥1ψ(

1+a
1−G )f∞

. We

establish the following results.

Theorem 1.1. Assume (H1)–(H5), f0 = ∞ and f∞ = ∞. Then (1.1) has no positive solution for
λ≫ 1 and has two positive solutions u1 and u2 for λ ≈ 0 such that ∥u1∥∞ → 0 and ∥u2∥∞ → ∞
as λ→ 0.

Theorem 1.2. Assume (H1)–(H5), f0 = ∞ and f∞ = 0. Then (1.1) has a positive solution u
for λ > 0 such that ∥u∥∞ → 0 as λ → 0 and ∥u∥∞ → ∞ as λ → ∞. In addition, if (H6), (H7),
(H8a) are satisfied, then (1.1) has three positive solutions u1, u2 and u3 for λ ∈ (λ∗, λ

∗) such that
∥u1∥∞ < η < ∥u2∥∞ < 4θ

δ < ∥u3∥∞.

Theorem 1.3. Assume (H1)–(H5), f0 = ∞ and f∞ ∈ (0,∞). Then (1.1) has no positive solution
for λ ≫ 1 and has a positive solution u for λ < λ∞ such that ∥u∥∞ → 0 as λ → 0. In addition,
if (H6), (H7), (H8a), (H9a) are satisfied, then (1.1) has three positive solutions u1, u2 and u3 for
λ ∈ (λ∗,min{λ∗, λ∞}) such that ∥u1∥∞ < η < ∥u2∥∞ < 4θ

δ < ∥u3∥∞.

2. Case f0 = 0. Let λ∞ :=
2w∗ψ( 16

δ )

h∗f∞
. We establish the following results.

Theorem 1.4. Assume (H1)–(H5), f0 = 0 and f∞ = ∞. Then (1.1) has a positive solution u
for λ > 0 such that ∥u∥∞ → ∞ as λ → 0 and ∥u∥∞ → 0 as λ → ∞. In addition, if (H6), (H7),
(H8b) are satisfied, then (1.1) has three positive solutions u1, u2 and u3 for λ ∈ (λ∗, λ

∗) such that
∥u1∥∞ < 4θ

δ < ∥u2∥∞ < η < ∥u3∥∞.

Theorem 1.5. Assume (H1)–(H5), f0 = 0 and f∞ = 0. Then (1.1) has no positive solution for
λ ≈ 0 and has two positive solutions u1 and u2 for λ≫ 1 such that ∥u1∥∞ → 0 and ∥u2∥∞ → ∞
as λ→ ∞.

Theorem 1.6. Assume (H1)–(H5), f0 = 0 and f∞ ∈ (0,∞). Then (1.1) has no positive solution
for λ ≈ 0 and has a positive solution u for λ > λ∞ such that ∥u∥∞ → 0 as λ → ∞. In addition,
if (H6), (H7), (H8b), (H9b) are satisfied, then (1.1) has three positive solutions u1, u2 and u3 for
λ ∈ (max{λ∗, λ∞}, λ∗) such that ∥u1∥∞ < 4θ

δ < ∥u2∥∞ < η < ∥u3∥∞.

3. Case f0 ∈ (0,∞). Let λ0 := w∗
2∥h∥1ψ(

1+a
1−G )f0

and λ0 :=
2w∗ψ( 16

δ )

h∗f0
. We establish the following

results.

Theorem 1.7. Assume (H1)–(H5), f0 ∈ (0,∞) and f∞ = ∞. Then (1.1) has no positive solution
for λ ≫ 1 a nd has a positive solution u for λ < λ0 such that ∥u∥∞ → ∞ as λ → 0. In addition,
if (H6), (H7), (H8b), (H9a) are satisfied, then (1.1) has three positive solutions u1, u2 and u3 for
λ ∈ (λ∗,min{λ∗, λ0}) such that ∥u1∥∞ < 4θ

δ < ∥u2∥∞ < η < ∥u3∥∞.
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Theorem 1.8. Assume (H1)–(H5), f0 ∈ (0,∞) and f∞ = 0. Then (1.1) has no positive solution
for λ ≈ 0 and has a positive solution u for λ > λ0 such that ∥u∥∞ → ∞ as λ → ∞. In addition,
if (H6), (H7), (H8a), (H9b) are satisfied, then (1.1) has three positive solutions u1, u2 and u3 for
λ ∈ (max{λ∗, λ0}, λ∗) such that ∥u1∥∞ < η < ∥u2∥∞ < 4θ

δ < ∥u3∥∞.

Theorem 1.9. Assume (H1)–(H5), f0 ∈ (0,∞) and f∞ ∈ (0,∞). Then (1.1) has no pos-
itive solution for λ ≈ 0 and λ ≫ 1. If (H10a) is satisfied, then (1.1) has a positive solu-
tion for λ ∈ (min{λ0, λ∞},max{λ0, λ∞}). If (H6), (H7), (H10a), (H10b) are satisfied, then
(1.1) has three positive solutions u1, u2 and u3 for λ ∈ (max{λ∗, λ0},min{λ∗, λ∞}). If (H6),
(H7), (H10a), (H10c) are satisfied, then (1.1) has three positive solutions u1, u2 and u3 for
λ ∈ (max{λ∗, λ∞},min{λ∗, λ0}).

We use the following Krasnoselskii-type fixed point theorem to get the existence and multiplicity
results (see [9, Lemma A]).

Proposition 1.10. Let X be a Banach space and I : X → X be a completely continuous operator.
Suppose that there exist a nonzero element z ∈ X and positive constants r and R with r ̸= R such
that

(a) if y ∈ X satisfies y = σIy for σ ∈ (0, 1], then ∥y∥X ̸= r,
(b) if y ∈ X satisfies y = Iy + τz for τ ≥ 0, then ∥y∥X ̸= R.

Then I has a fixed point y ∈ X with min{r,R} < ∥y∥X < max{r,R}.
The main challenges of this study are constructing the completely continuous operator (Tλ in

Section 2) for the modified problem of (1.1) that reflects the mixed nonlocal boundary conditions
and finding lower estimates of functions obtained through the operator (Tλy, where y ∈ C[0, 1]).
In general, due to the boundary conditions, completely continuous operators related to nonlocal
boundary value problems are more complicated than those related to local boundary value prob-
lems, and functions obtained through the operators related to nonlocal boundary value problems
could have maximums either in (0, 1) or at a boundary of (0, 1). To overcome the difficulty of con-
structing the operator Tλ, we modify the completely continuous operators for the local (Dirichlet
and nonlinear) boundary value problems in [18, 19] by adding some functions representing the
boundary conditions (A(y), B(y) and C(s) in Section 2). To find necessary lower estimates of
Tλy, we use different representations of Tλy depending on where it has a maximum.

It is also noteworthy that this study complements the existing results by dealing with the
nonlocal boundary value problem in which it has a nonhomogeneous operator and a (non)singular
nonlinear term. In particular, we discuss the existence of at least three positive solutions that has
not been treated much in previous studies.

In Section 2, we construct the completely continuous operator Tλ to find fixed points of the
modified problem of (1.1) and show that the fixed points are eventually positive solutions of (1.1).
We prove Theorems 1.1 - 1.3, 1.4 - 1.6, and 1.7 - 1.9 in Sections 3, 4, and 5, respectively. Section
6 provides an example of (1.1) with a nonhomogeneous operator and a singular nonlinear term.

2. Preliminaries

In this section, we construct the completely continuous operator Tλ for the modified problem
of (1.1) and show that fixed points of Tλ are positive solutions of (1.1).

We first construct the completely continuous operator Tλ. To do this, we extend the ideas in
[18, 19], which are the local boundary value problems. For y ∈ C[0, 1], we define the following
functions related to the boundary conditions:

A(y) :=

∫ 1

0

g0(s)k
0
0(s, |y(s)|)ds+

m∑
i=1

αik
0
i (ζi, |y(ζi)|),

B(y) :=

∫ 1

0

g1(s)k
1
0(s, |y(s)|)ds+

n∑
j=1

βjk
1
j (ξj , |y(ξj)|),

C(s) := ϕ−1
(w(1)ϕ(s)

w(0)
+

λ

w(0)

∫ 1

0

h(r)f∗(y)dr
)

for s ∈ R,
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where f∗(y(t)) := f(max{y(t), δρλd(t)}) and ρλ > 0 is to be determined in each section. Then we
define the operator Tλ : C[0, 1] → C[0, 1] by

Tλy(t) := A(y) + aC(my) +

∫ t

0

ϕ−1
(w(1)ϕ(my)

w(s)
+

λ

w(s)

∫ 1

s

h(r)f∗(y)dr
)
ds,

where y ∈ C[0, 1] and my ∈ R is the constant such that

B(y)− bmy = A(y) + aC(my) +

∫ 1

0

ϕ−1
(w(1)ϕ(my)

w(s)
+

λ

w(s)

∫ 1

s

h(r)f∗(y)dr
)
ds.

It can be shown that Tλy ∈ C1[0, 1], my = (Tλy)
′(1), C(my) = (Tλy)

′(0), and my is continuous for
y. Further, Tλ : C[0, 1] → C[0, 1] is completely continuous, Tλy(t) is the solution to the boundary
value problem

−(w(t)ϕ(x′))′ = λh(t)f∗(y), t ∈ (0, 1),

x(0)− ax′(0) = A(y),

x(1) + bx′(1) = B(y),

and Tλy satisfies the following property.

Lemma 2.1. Assume (H1)–(H5). Then Tλy(t) ≥ δ∥Tλy∥∞d(t).
Proof. Let x(t) := Tλy(t). We first show x(0) ≥ 0. If a = 0, then it is clear because x(0) = A(y) ≥
0. Let a > 0. Assume to the contrary that x(0) < 0. Then x′(0) < 0 by the boundary condition
at 0. If there exists tx ∈ (0, 1] such that x′(tx) = 0 and x′(t) < 0 for t ∈ (0, tx), then we have

x′(t) = ϕ−1
( λ

w(t)

∫ tx

t

h(s)f∗(y)ds
)
≥ 0,

which is a contradiction. Thus x′(t) < 0 for t ∈ (0, 1]. This implies x′(1) < 0 and x(1) < 0.
However, this is a contradiction since x(1) = B(y)− bx′(1) ≥ 0. Hence x(0) ≥ 0.

We can show x(1) ≥ 0 by similar arguments. Then we obtain x(t) ≥ δ∥x∥∞d(t) by Lemma 2.1
in [8]. □

Next we find a condition for fixed points of Tλ to be positive solutions of (1.1).

Lemma 2.2. Assume (H1)–(H5). If Tλy = y for some y ∈ C[0, 1] with ∥y∥∞ ≥ ρλ, then y is a
positive solution of (1.1).

Proof. It is clear that y ∈ C1[0, 1] since Tλy ∈ C1[0, 1]. Further, we have y(t) ≥ δ∥y∥∞d(t) ≥
δρλd(t) ≥ 0 by Lemma 2.1. Thus y satisfies

−(w(t)ϕ(y′))′ = λh(t)f∗(y) = λh(t)f(y), t ∈ (0, 1),

y(0)− ay′(0) = A(y) =

∫ 1

0

g0(s)k
0
0(s, y(s))ds+

m∑
i=1

αik
0
i (ζi, y(ζi)),

y(1) + by′(1) = B(y) =

∫ 1

0

g1(s)k
1
0(s, y(s))ds+

n∑
j=1

βjk
1
j (ξj , y(ξj)).

Hence y is a positive solution of (1.1). □

Now we introduce different representations of Tλy to be used to find lower estimates. If
∥Tλy∥∞ = Tλy(tm) for some tm ∈ (0, 1), then (Tλy)

′(t) ≥ 0 for t ∈ (0, tm), (Tλy)
′(t) ≤ 0 for

t ∈ (tm, 1) and Tλy can be written as

Tλy(t) =

A(y) + a(Tλy)
′(0) +

∫ t
0
ϕ−1

(
λ

w(s)

∫ tm
s

h(r)f∗(y)dr
)
ds, 0 ≤ t ≤ tm,

B(y)− b(Tλy)
′(1) +

∫ 1

t
ϕ−1

(
λ

w(s)

∫ s
tm
h(r)f∗(y)dr

)
ds, tm ≤ t ≤ 1.

If ∥Tλy∥∞ = Tλy(0), then (Tλy)
′(t) ≤ 0 for t ∈ (0, 1) and Tλy can be written as

Tλy(t) = B(y)− b(Tλy)
′(1) +

∫ 1

t

ϕ−1
(
− w(0)ϕ((Tλy)

′(0))

w(s)
+

λ

w(s)

∫ s

0

h(r)f∗(y)dr
)
ds.
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If ∥Tλy∥∞ = Tλy(1), then (Tλy)
′(t) ≥ 0 for t ∈ (0, 1) and Tλy can be written as

Tλy(t) = A(y) + a(Tλy)
′(0) +

∫ t

0

ϕ−1
(w(1)ϕ((Tλy)′(1))

w(s)
+

λ

w(s)

∫ 1

s

h(r)f∗(y)dr
)
ds.

3. Proofs of Theorems 1.1–1.3

We use Proposition 1.10 with I = Tλ, X = C[0, 1] and z ≡ 1 to show the existence and

multiplicity results in Theorems 1.1–1.3. Let fm(s) := infr∈(s,∞) f(r). Noting that lims→0
fm(s)
ϕ(s) =

∞ since f0 = ∞, we can choose rλ ∈ (0, 1) such that fm(s)
ϕ(s) >

2w∗ψ( 16
δ )

λh∗
for s ≤ rλ. Then we define

ρλ = rλ in Tλ. Additionally, we assume rλ < min{η, 4θδ } to prove the existence of three positive
solutions in Theorems 1.2 - 1.3.

Proof of Theorem 1.1. We first show the multiplicity result for λ ≈ 0. Let σ ∈ (0, 1] and u ∈ C[0, 1]
be a solution of u = σTλu and ∥u∥∞ ≥ rλ. Then u(t) = σTλu(t) ≥ 0 by Lemma 2.1. If
∥u∥∞ = u(0), then u′(0) = σ(Tλu)

′(0) ≤ 0 and u satisfies

∥u∥∞ = u(0) ≤ Tλu(0)

≤ A(u) =

∫ 1

0

g0(s)k
0
0(s, |u(s)|)ds+

m∑
i=1

αik
0
i (ζi, |u(ζi)|)

≤ G∥u∥∞.

However, this is a contradiction since G < 1. If ∥u∥∞ = u(1), then u′(1) = σ(Tλu)
′(1) ≥ 0 and u

satisfies

∥u∥∞ = u(1) ≤ Tλu(1)

≤ B(u) =

∫ 1

0

g1(s)k
1
0(s, |u(s)|)ds+

n∑
j=1

βjk
1
j (ξj , |u(ξj)|)

≤ G∥u∥∞.

However, this is a contradiction. Hence there exists tm ∈ (0, 1) such that ∥u∥∞ = u(tm). Then
u′(1) = σ(Tλu)

′(1) ≤ 0. We note that δ < 1, A(u) ≤ G∥u∥∞, (Tλu)
′(0) = C((Tλu)

′(1)), and
u(t) = σTλu(t) ≥ σδ∥Tλu∥∞d(t) = δ∥u∥∞d(t) by Lemma 2.1. Thus u satisfies

∥u∥∞

≤ A(u) + a(Tλu)
′(0) +

∫ tm

0

ϕ−1
( λ

w(s)

∫ tm

s

h(r)f∗(u)dr
)
ds

= A(u) + aϕ−1
(w(1)ϕ((Tλu)′(1))

w(0)
+

λ

w(0)

∫ 1

0

h(r)f∗(u)dr
)
+

∫ tm

0

ϕ−1
( λ

w(s)

∫ tm

s

h(r)f∗(u)dr
)
ds

≤ A(u) + (1 + a)ϕ−1
( λ

w∗

∫ 1

0

h(r)f∗(u)dr
)

≤ A(u) + (1 + a)ϕ−1
( λ

w∗

∫ 1

0

h(r)
( c

max{u, δrλd(r)}γ
+ fM (max{u, δrλd(r)})

)
dr
)

≤ A(u) + (1 + a)ϕ−1
( λ

w∗

∫ 1

0

h(r)
( c

(δ∥u∥∞d(r))γ
+ fM (∥u∥∞)

)
dr
)

≤ G∥u∥∞ + (1 + a)ϕ−1
( λ

w∗

( c∥hγ∥1
δγ∥u∥γ∞

+ ∥h∥1fM (∥u∥∞)
))
,

where fM ∈ C([0,∞), [0,∞)) is such that fM (0) = 0, fM (s) is nondecreasing for s ≤ 1 and
fM (s) := maxr∈[1,s] f(r) for s > 1. Then we obtain

ϕ(∥u∥∞) ≤ ψ
( 1 + a

1−G

)
ϕ
( (1−G)∥u∥∞

1 + a

)
≤ λ

w∗
ψ
( 1 + a

1−G

)( c∥hγ∥1
δγ∥u∥γ∞

+ ∥h∥1fM (∥u∥∞)
)
.
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This implies

1 ≤ λ

w∗
ψ
( 1 + a

1−G

)( c∥hγ∥1
δγ∥u∥γ∞ϕ(∥u∥∞)

+
∥h∥1fM (∥u∥∞)

ϕ(∥u∥∞)

)
. (3.1)

If ∥u∥∞ = 1, then we have 1 ≤ λ
w∗
ψ( 1+a

1−G )(
c∥hγ∥1

δγϕ(1) + ∥h∥1fM (1)
ϕ(1) ). However, this is a contradiction

for λ ≈ 0. Hence ∥u∥∞ ̸= 1 for λ ≈ 0.
Now we show that there exist two constants (one is greater than 1 and one is ess than 1)

satisfying (b) in Proposition 1.10. Let τ ≥ 0 and u ∈ C[0, 1] be a solution of u = Tλu + τ .
Then there are three cases: (i) ∥u∥∞ = u(tm) for some tm ∈ (0, 1), (ii) ∥u∥∞ = u(0), and (iii)
∥u∥∞ = u(1). We first consider the case (i). Then (Tλu)

′(tm) = 0. We note that

u(t) = Tλu(t) + τ ≥ δ∥Tλu∥∞d(t) + τ

≥ δ(∥Tλu∥∞ + τ)d(t) = δ∥u∥∞d(t)

≥ δ∥u∥∞
4

(3.2)

for t ∈ [ 14 ,
3
4 ] by δ < 1 and Lemma 2.1. If tm ≥ 1

2 , then (Tλu)
′(0) ≥ 0 and u satisfies

∥u∥∞ ≥ A(u) + a(Tλu)
′(0) +

∫ tm

0

ϕ−1
( λ

w(s)

∫ tm

s

h(r)f∗(u)dr
)
ds

≥
∫ 1/4

0

ϕ−1
( λ

w(s)

∫ tm

s

h(r)f∗(u)dr
)
ds

≥
∫ 1/4

0

ϕ−1
( λ

w∗

∫ 1
2

1
4

h(r)fm(u)dr
)
ds

≥ 1

4
ϕ−1

(λh∗
w∗ fm(

δ∥u∥∞
4

)
)
.

By similar arguments, we can show that if tm < 1
2 then ∥u∥∞ ≥ 1

4ϕ
−1(λh∗

w∗ fm( δ∥u∥∞
4 )). For case

(ii), (Tλu)
′(0) ≤ 0, (Tλu)

′(1) ≤ 0 and u satisfies

∥u∥∞ ≥ B(u)− b(Tλu)
′(1) +

∫ 1

3/4

ϕ−1
(
− w(0)ϕ((Tλu)

′(0))

w(s)
+

λ

w(s)

∫ s

0

h(r)f∗(u)dr
)
ds

≥
∫ 1

3/4

ϕ−1
( λ

w(s)

∫ s

0

h(r)f∗(u)dr
)
ds

≥
∫ 1

3/4

ϕ−1
( λ

w∗

∫ 3
4

1
2

h(r)fm(u)dr
)
ds

≥ 1

4
ϕ−1

(λh∗
w∗ fm(

δ∥u∥∞
4

)
)
.

For case (iii), (Tλu)
′(0) ≥ 0, (Tλu)

′(1) ≥ 0 and u satisfies

∥u∥∞ ≥ A(u) + a(Tλu)
′(0) +

∫ 1/4

0

ϕ−1
(w(1)ϕ((Tλu)′(1))

w(s)
+

λ

w(s)

∫ 1

s

h(r)f∗(u)dr
)
ds

≥
∫ 1/4

0

ϕ−1
( λ

w(s)

∫ 1

s

h(r)f∗(u)dr
)
ds

≥
∫ 1/4

0

ϕ−1
( λ

w∗

∫ 1
2

1
4

h(r)fm(u)dr
)
ds

≥ 1

4
ϕ−1

(λh∗
w∗ fm(

δ∥u∥∞
4

)
)
.

Hence we obtain ∥u∥∞ ≥ 1
4ϕ

−1(λh∗
w∗ fm( δ∥u∥∞

4 )) for all cases. Then we have

λh∗
w∗ fm

(δ∥u∥∞
4

)
≤ ϕ(4∥u∥∞) ≤ ψ

(16
δ

)
ϕ
(δ∥u∥∞

4

)
.
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This implies

fm( δ∥u∥∞
4 )

ϕ( δ∥u∥∞
4 )

≤
w∗ψ( 16δ )

λh∗
. (3.3)

By the definition of rλ, we obtain rλ < δ∥u∥∞
4 . Thus ∥u∥∞ ̸= rλ for λ > 0. Noting that

lims→∞
fm(s)
ϕ(s) = ∞ since f∞ = ∞, we can also find Rλ ≫ 1 such that Rλ > 1 and

fm( δs4 )

ϕ( δs4 )
>
w∗ψ( 16δ )

λh∗

for s ≥ Rλ. Thus ∥u∥∞ ̸= Rλ for λ > 0.
By Proposition 1.10, Tλ has two fixed points v1, v2 ∈ C[0, 1] for λ ≈ 0 such that rλ < ∥v1∥∞ <

1 < ∥v2∥∞ < Rλ. Hence v1 and v2 are positive solutions of (1.1) by Lemma 2.2. Further, we
obtain ∥v1∥∞ → 0 and ∥v2∥∞ → ∞ as λ→ 0 from (3.1).

Next we show the nonexistence result for λ ≫ 1. Assume that (1.1) has a positive solution u.

Then u satisfies (3.3). Since lims→0
fm(s)
ϕ(s) = ∞ = lims→∞

fm(s)
ϕ(s) , we have

0 < inf
s∈(0,∞)

fm(s)

ϕ(s)
≤
fm( δ∥u∥∞

4 )

ϕ( δ∥u∥∞
4 )

≤
w∗ψ( 16δ )

λh∗
. (3.4)

However, this is a contradiction for λ≫ 1. Hence (1.1) has no positive solution for λ≫ 1. □

Proof of Theorem 1.2. We first show the existence result for λ > 0. If u ∈ C[0, 1] is a solution of
u = Tλu+ τ with τ ≥ 0, then u satisfies (3.3). This implies ∥u∥∞ ̸= rλ for λ > 0.

If u ∈ C[0, 1] is a solution of u = σTλu with σ ∈ (0, 1] and ∥u∥∞ ≥ rλ, then u satisfies (3.1).

Noting that lims→∞
fM (s)
ϕ(s) = 0 since f∞ = 0, we can find R̂λ ≫ 1 such that R̂λ > rλ and

1 >
λ

w∗
ψ
( 1 + a

1−G

)( c∥hγ∥1
δγsγϕ(s)

+
∥h∥1fM (s)

ϕ(s)

)
for s ≥ R̂λ.

Thus we obtain ∥u∥∞ ̸= R̂λ for λ > 0 from (3.1). By Proposition 1.10, Tλ has a fixed point v for

λ > 0 such that rλ < ∥v∥∞ < R̂λ. By Lemma 2.2, v is a positive solution of (1.1). Further, we
obtain ∥v∥∞ → 0 as λ→ 0 from (3.1) and ∥v∥∞ → ∞ as λ→ ∞ from (3.3).

Next we show the multiplicity result for λ ∈ (λ∗, λ
∗). Let σ ∈ (0, 1] and u ∈ C[0, 1] be a solution

of u = σTλu. We note that

u(t) = σTλu(t) ≥ σδ∥Tλu∥∞d(t) = δ∥u∥∞d(t)

by Lemma 2.1. By (H6), if ∥u∥∞ = η (≥ rλ) then u satisfies

∥u∥∞ ≤ A(u) + a(Tλu)
′(0) +

∫ tm

0

ϕ−1
( λ

w(s)

∫ tm

s

h(r)f∗(u)dr
)
ds

≤ A(u) + (1 + a)ϕ−1
( λ

w∗

∫ 1

0

h(r)f∗(u)dr
)

= A(u) + (1 + a)ϕ−1
( λ

w∗

∫ 1

0

h(r)
fγ(max{u, δrλd(r)})
max{u, δrλd(r)}γ

dr
)
ds

≤ A(u) + (1 + a)ϕ−1
( λ

w∗

∫ 1

0

h(r)
fγ(∥u∥∞)

(δ∥u∥∞d(r))γ
dr
)

≤ G∥u∥∞ + (1 + a)ϕ−1
(λ∥hγ∥1f(∥u∥∞)

w∗δγ

)
.

Therefore,

ϕ(∥u∥∞) ≤ ψ
( 1 + a

1−G

)
ϕ
( (1−G)∥u∥∞

1 + a

)
≤ λ∥hγ∥1f(∥u∥∞)

w∗δγ
ψ
( 1 + a

1−G

)
.
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This implies

w∗δ
γ

λ∥hγ∥1ψ( 1+a
1−G )

≤ f(∥u∥∞)

ϕ(∥u∥∞)
=
f(η)

ϕ(η)
.

However, this is a contradiction for λ < λ∗. Hence ∥u∥∞ ̸= η for λ < λ∗.
Let τ ≥ 0 and u ∈ C[0, 1] be a solution of u = Tλu+ τ . Assume ∥u∥∞ = 4θ

δ . Then three cases
can occur: (i) ∥u∥∞ = u(tm) for some tm ∈ (0, 1), (ii) ∥u∥∞ = u(0) and (iii) ∥u∥∞ = u(1). We

first consider case (i). Noting that u(t) ≥ δ∥u∥∞
4 for t ∈ [ 14 ,

3
4 ] from (3.2), if tm ≥ 1

2 , then

∥u∥∞ ≥ A(u) + a(Tλu)
′(0) +

∫ tm

0

ϕ−1
( λ

w(s)

∫ tm

s

h(r)f∗(u)dr
)
ds

≥
∫ 1/4

0

ϕ−1
( λ

w(s)

∫ tm

s

h(r)
fγ(max{u, δrλd(r)})
max{u, δrλd(r)}γ

dr
)
ds

≥
∫ 1/4

0

ϕ−1
( λ

w∗

∫ 1
2

1
4

h(r)
fγ

( δ∥u∥∞
4

)
∥u∥γ∞

dr
)
ds

≥ 1

4
ϕ−1

(λh∗δγ
4γw∗ f

(δ∥u∥∞
4

))
.

By similar arguments, we can show that if tm < 1
2 then ∥u∥∞ ≥ 1

4ϕ
−1(λh∗δ

γ

4γw∗ f(
δ∥u∥∞

4 )). For case
(ii), we have

∥u∥∞ ≥ B(u)− b(Tλu)
′(1) +

∫ 1

3/4

ϕ−1
(
− w(0)ϕ((Tλu)

′(0))

w(s)
+

λ

w(s)

∫ s

0

h(r)f∗(u)dr
)
ds

≥
∫ 1

3/4

ϕ−1
( λ

w(s)

∫ s

0

h(r)
fγ(max{u, δrλd(r)})
max{u, δrλd(r)}γ

dr
)
ds

≥
∫ 1

3/4

ϕ−1
( λ

w∗

∫ 3
4

1
2

h(r)
fγ

( δ∥u∥∞
4

)
∥u∥γ∞

dr
)
ds

≥ 1

4
ϕ−1

(λh∗δγ
4γw∗ f

(δ∥u∥∞
4

))
.

For case (iii), we have

∥u∥∞ ≥ A(u) + a(Tλu)
′(0) +

∫ 1/4

0

ϕ−1
(w(1)ϕ((Tλu)′(1))

w(s)
+

λ

w(s)

∫ 1

s

h(r)f∗(u)dr
)
ds

≥
∫ 1/4

0

ϕ−1
( λ

w(s)

∫ 1

s

h(r)
fγ(max{u, δrλd(r)})
max{u, δrλd(r)}γ

dr
)
ds

≥
∫ 1/4

0

ϕ−1
( λ

w∗

∫ 1
2

1
4

h(r)
fγ

( δ∥u∥∞
4

)
∥u∥γ∞

dr
)
ds

≥ 1

4
ϕ−1

(λh∗δγ
4γw∗ f

(δ∥u∥∞
4

))
.

Hence we obtain ∥u∥∞ ≥ 1
4ϕ

−1(λh∗δ
γ

4γw∗ f(
δ∥u∥∞

4 )) for all cases. Since ∥u∥∞ = 4θ
δ , we have

λh∗δ
γf(θ)

4γw∗ =
λh∗δ

γ

4γw∗ f
(δ∥u∥∞

4

)
≤ ϕ

(
4∥u∥∞

)
≤ ψ

(16
δ

)
ϕ
(δ∥u∥∞

4

)
= ψ

(16
δ

)
ϕ(θ).

However, this is a contradiction for λ > λ∗. Hence ∥u∥∞ ̸= 4θ
δ for λ > λ∗.

We can choose R̂λ ≫ 1 such that R̂λ >
4θ
δ . Further, rλ < η < 4θ

δ and (λ∗, λ
∗) is nonempty by

(H8a) and (H7), respectively. Thus (1.1) has three positive solutions v1, v2 and v3 for λ ∈ (λ∗, λ
∗)

such that rλ < ∥v1∥∞ < η < ∥v2∥∞ < 4θ
δ < ∥v3∥∞ < R̂λ by Proposition 1.10 and Lemma 2.2. □

Proof of Theorem 1.3. We first show the existence result for λ < λ∞. If u ∈ C[0, 1] is a solution
of u = Tλu+ τ with τ ≥ 0, then u satisfies (3.3). Thus ∥u∥∞ ̸= rλ for λ > 0.
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Let σ ∈ (0, 1] and u ∈ C[0, 1] be a solution of u = σTλu. Assume ∥u∥∞ ≥ rλ. Then u satisfies

(3.1). Since lims→∞
fM (s)
ϕ(s) = f∞ ∈ (0,∞), there exists Rλ ≫ 1 such that Rλ > rλ and

λ

w∗
ψ
( 1 + a

1−G

)( c∥hγ∥1
δγsγϕ(s)

+
∥h∥1fM (s)

ϕ(s)

)
<

2λ∥h∥1f∞
w∗

ψ
( 1 + a

1−G

)
for s ≥ Rλ.

If ∥u∥∞ = Rλ, then 1 < 2λ∥h∥1f∞
w∗

ψ( 1+a
1−G ) from (3.1). However, this is a contradiction for λ < λ∞.

Hence ∥u∥∞ ̸= Rλ for λ < λ∞.
By Proposition 1.10 and Lemma 2.2, (1.1) has a positive solution v for λ < λ∞ such that

rλ < ∥v∥∞ < Rλ. Further, we obtain ∥v∥∞ → 0 as λ→ 0 from (3.1).
Next we show the multiplicity result for λ ∈ (λ∗,min{λ∗, λ∞}). The following were proven

in the proof of Theorem 1.2: (i) if u ∈ C[0, 1] is a solution of u = σTλu with σ ∈ (0, 1], then
∥u∥∞ ̸= η for λ < λ∗, and (ii) if u ∈ C[0, 1] is a solution of u = Tλu + τ with τ ≥ 0, then
∥u∥∞ ̸= 4θ

δ for λ > λ∗. Further, we can choose Rλ ≫ 1 such that Rλ >
4θ
δ . Since rλ < η < 4θ

δ
and (λ∗,min{λ∗, λ∞}) is nonempty by (H7), (H8a), and (H9a), (1.1) has three positive solutions
v1, v2 and v3 for λ ∈ (λ∗,min{λ∗, λ∞}) such that rλ < ∥v1∥∞ < η < ∥v2∥∞ < 4θ

δ < ∥v3∥∞ < Rλ.
Now we show the nonexistence result for λ≫ 1. Assume to the contrary that (1.1) has a positive

solution u for λ≫ 1. Then u satisfies (3.4) since lims→0
fm(s)
ϕ(s) = ∞ and lims→∞

fm(s)
ϕ(s) = f∞ > 0.

However, this is a contradiction for λ≫ 1. Hence (1.1) has no positive solution for λ≫ 1. □

4. Proofs of Theorems 1.4–1.6

In this section, we consider the case f0 = 0. Since f0 = 0 implies lims→0 f(s) = 0, we can define

f∗M (s) := maxr∈[0,s] f(r). Noting that lims→0
f∗
M (s)
ϕ(s) = 0 since f0 = 0, there exists r∗λ ∈ (0, 1) such

that
f∗
M (s)
ϕ(s) < w∗

λ∥h∥1ψ(
1+a
1−G )

for s ≤ r∗λ. Then we define ρλ = r∗λ in Tλ. Additionally, r∗λ < min{η, 4θδ }
is assumed to show the multiplicity results in Theorem 1.4 and Theorem 1.6.

Proof of Theorem 1.4. We first show the existence result for λ > 0. Let σ ∈ (0, 1] and u ∈ C[0, 1]
be a solution of u = σTλu. Assume ∥u∥∞ ≥ r∗λ. Following the arguments in the proof of Theorem
1.1, we obtain

∥u∥∞ ≤ A(u) + (1 + a)ϕ−1
( λ

w∗

∫ 1

0

h(r)f∗(u)dr
)

≤ A(u) + (1 + a)ϕ−1
( λ

w∗

∫ 1

0

h(r)f∗M (max{u, δr∗λd(r)})dr
)

≤ G∥u∥∞ + (1 + a)ϕ−1
(λ∥h∥1f∗M (∥u∥∞)

w∗

)
.

Then u satisfies

ϕ(∥u∥∞) ≤ ψ
( 1 + a

1−G

)
ϕ
( (1−G)∥u∥∞

1 + a

)
≤ λ∥h∥1f∗M (∥u∥∞)

w∗
ψ
( 1 + a

1−G

)
.

This implies
w∗

λ∥h∥1ψ( 1+a
1−G )

≤ f∗M (∥u∥∞)

ϕ(∥u∥∞)
. (4.1)

Thus ∥u∥∞ ̸= r∗λ for λ > 0 by the definition of r∗λ.
If u ∈ C[0, 1] is a solution of u = Tλu+ τ with τ ≥ 0, then u satisfies (3.3). Then ∥u∥∞ ̸= Rλ

(> 1) for λ > 0, where Rλ is the constant found in the proof of Theorem 1.1. By Proposition 1.10
and Lemma 2.2, (1.1) has a positive solution v for λ > 0 such that r∗λ < ∥v∥∞ < Rλ. Further, we
obtain ∥v∥∞ → 0 as λ→ ∞ from (3.3) and ∥v∥∞ → ∞ as λ→ 0 from (4.1).

Next we show the multiplicity result for λ ∈ (λ∗, λ
∗). Following the arguments in the proof of

Theorem 1.2, we can show that (i) if u ∈ C[0, 1] is a solution of u = σTλu with σ ∈ (0, 1], then
∥u∥∞ ̸= η for λ < λ∗, and (ii) if u ∈ C[0, 1] is a solution of u = Tλu+τ with τ ≥ 0, then ∥u∥∞ ̸= 4θ

δ

for λ > λ∗. Further, we can choose Rλ ≫ 1 such that Rλ > η. We note that r∗λ <
4θ
δ < η and
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(λ∗, λ
∗) is nonempty by (H8b) and (H7), respectively. Hence (1.1) has three positive solutions v1,

v2 and v3 for λ ∈ (λ∗, λ
∗) such that r∗λ < ∥v1∥∞ < 4θ

δ < ∥v2∥∞ < η < ∥v3∥∞ < Rλ. □

Proof of Theorem 1.5. We first show the multiplicity result for λ ≫ 1. Let τ ≥ 0 and u ∈ C[0, 1]

be a solution of u = Tλu + τ . Then u satisfies (3.3). If ∥u∥∞ = 1, we have
fm( δ

4 )

ϕ( δ
4 )

≤ w∗ψ( 16
δ )

λh∗
.

However, this is a contradiction for λ≫ 1. Hence ∥u∥∞ ̸= 1 for λ≫ 1.
Let σ ∈ (0, 1] and u ∈ C[0, 1] be a solution of u = σTλu and ∥u∥∞ ≥ r∗λ. Then u satisfies (4.1).

This implies ∥u∥∞ ̸= r∗λ for λ > 0. Further, since lims→∞
f∗
M (s)
ϕ(s) = 0, we can find R̃λ ≫ 1 such

that R̃λ > 1 and
f∗M (s)

ϕ(s)
<

w∗

λ∥h∥1ψ( 1+a
1−G )

for s ≥ R̃λ.

Thus we obtain ∥u∥∞ ̸= R̃λ for λ > 0 from (4.1). By Proposition 1.10 and Lemma 2.2, there exist

positive solutions v1 and v2 for λ ≫ 1 such that r∗λ < ∥v1∥∞ < 1 < ∥v2∥∞ < R̃λ. Further, we
obtain ∥v1∥∞ → 0 and ∥v2∥∞ → ∞ as λ→ ∞ from (3.3).

Next we show the nonexistence result for λ ≈ 0. If u is a positive solution of (1.1), then u
satisfies (4.1). Thus we have

w∗

λ∥h∥1ψ( 1+a
1−G )

≤ sup
s∈(0,∞)

f∗M (s)

ϕ(s)
<∞. (4.2)

However, this is a contradiction for λ ≈ 0. Hence (1.1) has no positive solution for λ ≈ 0. □

Proof of Theorem 1.6. We first show the existence result for λ > λ∞. If u ∈ C[0, 1] is a solution
of u = σTλu with σ ∈ (0, 1] and ∥u∥∞ ≥ r∗λ, then u satisfies (4.1). This implies ∥u∥∞ ̸= r∗λ for
λ > 0.

Let τ ≥ 0 and u ∈ C[0, 1] be a solution of u = Tλu+τ . Then u satisfies (3.3). We note that there

exists R∗
λ ≫ 1 such that R∗

λ > 1 and fm(s)
ϕ(s) > f∞

2 for s ≥ R∗
λ since lims→∞

fm(s)
ϕ(s) = f∞ ∈ (0,∞).

If ∥u∥∞ =
4R∗

λ

δ , then we have

f∞
2

≤ fm(R∗
λ)

ϕ(R∗
λ)

≤
w∗ψ( 16δ )

λh∗
(4.3)

from (3.3). However, this is a contradiction for λ > λ∞. Hence ∥u∥∞ ̸= 4R∗
λ

δ for λ > λ∞. By
Proposition 1.10 and Lemma 2.2, (1.1) has a positive solution v for λ > λ∞ such that r∗λ < ∥v∥∞ <
4R∗

λ

δ . Further, we obtain ∥v∥∞ → 0 as λ→ ∞ from (3.3).
Next we show the multiplicity result for λ ∈ (max{λ∗, λ∞}, λ∗). The following were proven in

the proof of Theorem 1.2: (i) if u ∈ C[0, 1] is a solution of u = σTλu with σ ∈ (0, 1], then ∥u∥∞ ̸= η
for λ < λ∗ and (ii) if u ∈ C[0, 1] is a solution of u = Tλu + τ with τ ≥ 0, then ∥u∥∞ ̸= 4θ

δ for

λ > λ∗. Further, r∗λ <
4θ
δ < η and (max{λ∗, λ∞}, λ∗) is nonempty by (H7), (H8b), and (H9b),

and we can choose R∗
λ ≫ 1 such that

4R∗
λ

δ > η. Hence (1.1) has three positive solutions v1, v2 and

v3 for λ ∈ (max{λ∗, λ∞}, λ∗) such that r∗λ < ∥v1∥∞ < 4θ
δ < ∥v2∥∞ < η < ∥v3∥∞ <

4R∗
λ

δ .
Now we show the nonexistence result for λ ≈ 0. If u is a positive solution of (1.1), then we can

show that u satisfies (4.2) following the arguments in Theorem 1.5. However, this is a contradiction
for λ ≈ 0. Hence (1.1) has no positive solution for λ ≈ 0. □

5. Proofs of Theorems 1.7–1.9

Proof of Theorem 1.7. We choose ρλ = rλ in Tλ, where rλ ∈ (0, 1) is such that
f∗
M (s)
ϕ(s) < 2f0 for

s ≤ rλ. To show the multiplicity result, we also assume rλ < min{η, 4θδ }.
We first show the existence result for λ < λ0. Let σ ∈ (0, 1] and u ∈ C[0, 1] be a solution of

u = σTλu. If ∥u∥∞ = rλ, then u satisfies (4.1). Thus we have

w∗

λ∥h∥1ψ( 1+a
1−G )

≤ f∗M (rλ)

ϕ(rλ)
< 2f0. (5.1)

However, this is a contradiction for λ < λ0. Hence ∥u∥∞ ̸= rλ for λ < λ0.
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If u ∈ C[0, 1] is a solution of u = Tλu+ τ with τ ≥ 0, then u satisfies (3.3). Then ∥u∥∞ ̸= Rλ
(> 1) for λ > 0, where Rλ is the constant found in the proof of Theorem 1.1. By Proposition 1.10
and Lemma 2.2, (1.1) has a positive solution v for λ < λ0 such that rλ < ∥v∥∞ < Rλ. Further,
we obtain ∥v∥∞ → ∞ as λ→ 0 from (4.1).

Next we show the multiplicity result for λ ∈ (λ∗,min{λ∗, λ0}). Following the arguments in the
proof of Theorem 1.2, we can show that (i) if u ∈ C[0, 1] is a solution of u = σTλu with σ ∈ (0, 1],
then ∥u∥∞ ̸= η for λ < λ∗, and (ii) if u ∈ C[0, 1] is a solution of u = Tλu + τ with τ ≥ 0, then
∥u∥∞ ̸= 4θ

δ for λ > λ∗. Further, rλ <
4θ
δ < η and (λ∗,min{λ∗, λ0}) is nonempty by (H7), (H8b)

and (H9a), and we can choose Rλ ≫ 1 such that Rλ > η. Hence (1.1) has three positive solutions
v1, v2 and v3 for λ ∈ (λ∗,min{λ∗, λ0}) such that rλ < ∥v1∥∞ < 4θ

δ < ∥v2∥∞ < η < ∥v3∥∞ < Rλ.
Now we show the nonexistence result for λ ≫ 1. If u is a positive solution of (1.1), then u

satisfies (3.4). However, this is a contradiction for λ≫ 1. Hence (1.1) has no positive solution for
λ≫ 1. □

Proof of Theorem 1.8. We choose ρλ = r̃λ in Tλ, where r̃λ ∈ (0, 1) is such that fm(s)
ϕ(s) > f0

2 for

s ≤ r̃λ. To show the multiplicity result, we also assume r̃λ < min{η, 4θδ }.
We first show the existence result for λ > λ0. Let τ ≥ 0 and u ∈ C[0, 1] be a solution of

u = Tλu+ τ . If ∥u∥∞ = r̃λ, then we have

f0
2
<
fm( δr̃λ4 )

ϕ( δr̃λ4 )
≤
w∗ψ( 16δ )

λh∗
(5.2)

from (3.3). However, this is a contradiction for λ > λ0. Hence ∥u∥∞ ̸= r̃λ for λ > λ0.
Let σ ∈ (0, 1] and u ∈ C[0, 1] be a solution of u = σTλu with ∥u∥∞ ≥ r̃λ. Then u satisfies (4.1).

Since lims→∞
f∗
M (s)
ϕ(s) = 0, we obtain ∥u∥∞ ̸= R̃λ (> r̃λ) for λ > 0, where R̃λ is the constant found

in the proof of Theorem 1.5. By Proposition 1.10 and Lemma 2.2, (1.1) has a positive solution v

for λ > λ0 such that r̃λ < ∥v∥∞ < R̃λ. Further, we obtain ∥v∥∞ → ∞ as λ→ ∞ from (3.3).
Next we show the multiplicity result for λ ∈ (max{λ∗, λ0}, λ∗). Following the arguments in the

proof of Theorem 1.2, we can show that (i) if u ∈ C[0, 1] is a solution of u = σTλu with σ ∈ (0, 1],
then ∥u∥∞ ̸= η for λ < λ∗ and (ii) if u ∈ C[0, 1] is a solution of u = Tλu + τ with τ ≥ 0, then
∥u∥∞ ̸= 4θ

δ for λ > λ∗. Further, r̃λ < η < 4θ
δ and (max{λ∗, λ0}, λ∗) ̸= ∅ by (H7), (H8a) and

(H9b), and we can choose R̃λ ≫ 1 such that R̃λ >
4θ
δ . Hence (1.1) has three positive solutions v1,

v2 and v3 for λ ∈ (max{λ∗, λ0}, λ∗) such that r̃λ < ∥v1∥∞ < η < ∥v2∥∞ < 4θ
δ < ∥v3∥∞ < R̃λ.

Now we show the nonexistence result for λ ≈ 0. If u is a positive solution of (1.1), then u
satisfies (4.2). However, this is a contradiction for λ ≈ 0. Hence (1.1) has no positive solution for
λ ≈ 0. □

Proof of Theorem 1.9. We first consider the case f0 > f∞. Then λ0 = min{λ0, λ∞} and λ∞ =
max{λ0, λ∞}. We choose ρλ = r̃λ, which is the constant in the proof of Theorem 1.8.

We show the existence result for λ ∈ (λ0, λ
∞) = (min{λ0, λ∞},max{λ0, λ∞}). Let τ ≥ 0 and

u ∈ C[0, 1] be a solution of u = Tλu + τ . If ∥u∥∞ = r̃λ, then (5.2) is satisfied. This implies
∥u∥∞ ̸= r̃λ for λ > λ0. Let σ ∈ (0, 1] and u ∈ C[0, 1] be a solution of u = σTλu. Since

lims→∞
f∗
M (s)
ϕ(s) = f∞, there exists R⋄

λ ≫ 1 such that R⋄
λ > r̃λ and

f∗
M (s)
ϕ(s) < 2f∞ for s ≥ R⋄

λ. If

∥u∥∞ = R⋄
λ, then

w∗
λ∥h∥1ψ(

1+a
1−G )

≤ f∗
M (R⋄

λ)
ϕ(R⋄

λ)
< 2f∞ from (4.1). However, this is a contradiction for

λ < λ∞. Thus ∥u∥∞ ̸= R⋄
λ for λ < λ∞. Since (λ0, λ

∞) is nonempty by (H10a), (1.1) has a positive
solution for λ ∈ (λ0, λ

∞).
Now we show the multiplicity results. We have (i) if u ∈ C[0, 1] is a solution of u = σTλu

with σ ∈ (0, 1], then ∥u∥∞ ̸= η for λ < λ∗ and (ii) if u ∈ C[0, 1] is a solution of u = Tλu + τ
with τ ≥ 0, then ∥u∥∞ ̸= 4θ

δ for λ > λ∗. Further, r̃λ < min{η, 4θδ } and we can choose R⋄
λ ≫ 1

such that R⋄
λ > max{η, 4θδ }. Since (max{λ∗, λ0},min{λ∗, λ∞}) is nonempty by (H7), (H10a) and

(H10b), (1.1) has three positive solutions v1, v2 and v3 for λ ∈ (max{λ∗, λ0},min{λ∗, λ∞}) such
that r̃λ < ∥v1∥∞ < η < ∥v2∥∞ < 4θ

δ < ∥v3∥∞ < R⋄
λ.
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Next we consider the case f0 < f∞. Then λ∞ = min{λ0, λ∞} and λ0 = max{λ0, λ∞}. We
choose ρλ = rλ, which is the constant in the proof of Theorem 1.7.

We show the existence result for λ ∈ (λ∞, λ
0) = (min{λ0, λ∞},max{λ0, λ∞}). Let σ ∈ (0, 1]

and u ∈ C[0, 1] be a solution of u = σTλu. If ∥u∥∞ = rλ, then (5.1) is satisfied. This implies

∥u∥∞ ̸= rλ for λ < λ0. Let τ ≥ 0 and u ∈ C[0, 1] be a solution of u = Tλu + τ . If ∥u∥∞ =
4R∗

λ

δ ,

then (4.3) is satisfied. This implies ∥u∥∞ ̸= 4R∗
λ

δ for λ > λ∞. Since (λ∞, λ
0) is nonempty by

(H10a), (1.1) has a positive solution for λ ∈ (λ∞, λ
0).

Since (max{λ∗, λ∞},min{λ∗, λ0}) is nonempty by (H7), (H10a) and (H10c), we can also show
that (1.1) has three positive solutions v1, v2 and v3 for λ ∈ (max{λ∗, λ∞},min{λ∗, λ0}) such that

rλ < ∥v1∥∞ < 4θ
δ < ∥v2∥∞ < η < ∥v3∥∞ <

4R∗
λ

δ following the above arguments.
The proofs of the nonexistence results for λ ≈ 0 and for λ ≫ 1 follow the arguments in the

proofs of Theorem 1.5 and Theorem 1.1, respectively. □

6. Example

In this section, we discuss an example of a mixed nonlocal boundary value problem involving a
nonhomogeneous operator and a singular nonlinear term. We consider the (p, q)-Laplacian problem

−(w(t)(|u′|p−2u′ + |u′|q−2u′))′ = λh(t)
( A

uγ1
+Buγ2 + Ce

γ3u
γ3+u +D

)
, t ∈ (0, 1),

u(0)− au′(0) =

∫ 1

0

g0(s)k
0
0(s, u)ds+

m∑
i=1

αik
0
i (ζi, u(ζi)),

u(1) + bu′(1) =

∫ 1

0

g1(s)k
1
0(s, u)ds+

n∑
j=1

βjk
1
j (ξj , u(ξj)),

(6.1)

where 1 < p < q < ∞, γ1 > 0, γ2 > 0, γ3 > 0, A > 0, B ≥ 0, C ≥ 0, D ∈ R and C +D ≥ 0. We
assume a ≥ 0, b ≥ 0, 0 ≤ αi < 1, 0 ≤ βj < 1, w and h satisfy (H3), g0 and g1 satisfy (H4), and
k00, k

1
0, k

0
i , and k

1
j satisfy (H5), where i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.

The operator of this problem is u 7→ (|u′|p−2u′ + |u′|q−2u′)′. It is a nonhomogeneous operator
and ϕ(s) = |s|p−2s + |s|q−2s satisfies (H1) with ψ(s) = max{sp−1, sq−1}. The nonlinear term is

f(s) = A
sγ1 +Bsγ2 +Ce

γ3s
γ3+s +D. It is singular at 0 and f0 = ∞ since A > 0. Further, it satisfies

(H2) and (H6) with γ = γ1. Hence, (6.1) satisfies (H1)–(H6), f0 = ∞ and γ = γ1 under the above
conditions.

1. If B > 0 and γ2 > q− 1, then f∞ = ∞. Thus (6.1) has no positive solution for λ≫ 1 and
has two positive solutions u1 and u2 for λ ≈ 0 such that ∥u1∥∞ → 0 and ∥u2∥∞ → ∞ as
λ→ 0.

2. If γ2 < q − 1, then f∞ = 0. Thus (6.1) has a positive solution u for λ > 0 such that
∥u∥∞ → 0 as λ → 0 and ∥u∥∞ → ∞ as λ → ∞. In addition, if C > 0, η = 1 and θ = γ3,
then we have

f(θ)

ϕ(θ)
/
f(η)

ϕ(η)
=

A
γ
γ1
3

+Bγγ23 + Ce
γ3
2 +D

γp−1
3 + γq−1

3

2

A+B + Ce
γ3

γ3+1 +D

≥ Ce
γ3
2 +D

2γq−1
3

2

A+B + Ce+D

≥ Ce
γ3
2 +D

γq−1
3 (A+B + Ce+D)

≫ 1

(6.2)
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for γ3 ≫ 1. Thus (H7) and (H8a) are satisfied for γ3 ≫ 1. Further, we have

λ∗ =
4γ1w∗( 16δ )

q−1(γp−1
3 + γq−1

3 )

h∗δγ1(
A
γ
γ1
3

+Bγγ23 + Ce
γ3
2 +D)

,

λ∗ =
2w∗δ

γ1

∥hγ1∥1( 1+a
1−G )

q−1(A+B + Ce
γ3

γ3+1 +D)
.

(6.3)

Hence if γ3 ≫ 1, then (6.1) has three positive solutions for λ ∈ (λ∗, λ
∗).

3. If B > 0 and γ2 = q − 1, then f∞ = B ∈ (0,∞) and λ∞ = w∗
2B∥h∥1(

1+a
1−G )q−1

. Thus (6.1)

has no positive solution for λ ≫ 1 and has a positive solution u for λ < λ∞ such that
∥u∥∞ → 0 as λ→ 0. In addition, if C > 0, η = 1 and θ = γ3, then we have

f(θ)

ϕ(θ)
=

A
γ
γ1
3

+Bγq−1
3 + Ce

γ3
2 +D

γp−1
3 + γq−1

3

≥ Ce
γ3
2 +D

2γq−1
3

≫ 1,

f(θ)

ϕ(θ)
/
f(η)

ϕ(η)
≥ Ce

γ3
2 +D

γq−1
3 (A+B + Ce+D)

≫ 1

for γ3 ≫ 1 from (6.2). Thus (H7), (H8a) and (H9a) are satisfied for γ3 ≫ 1. Noting that
λ∗ and λ∗ are the same as those in (6.3), if γ3 ≫ 1 then (6.1) has three positive solutions
for λ ∈ (λ∗,min{λ∗, λ∞}).
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