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THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR
PIECEWISE FRACTIONAL IMPULSIVE DIFFERENTIAL EQUATIONS
WITH p-LAPLACIAN OPERATOR

XIAO CHEN, WENXUE ZHOU

ABSTRACT. We study the existence and uniqueness of solutions for three-point integral boundary-
value problems of piecewise fractional impulsive differential equations with p-Laplacian operator
and delay. We prove the existence of solutions, by using the ¢-Hadamard fractional definition,
the Leray-Schauder nonlinear alternative, and the Krasnosel’skiis fixed point theorem. Subse-
quently, we prove uniqueness of the solution using the Banach fixed point theorem. To verify
the feasibility of the main results, we give two examples.

1. INTRODUCTION

Fractional calculus, as an extension of classical calculus, originated from the conjectures of
Leibniz and Euler, and it has evolved to the present day. In recent decades, boundary value prob-
lems (BVPs) associated with fractional ordinary differential equations (FODEs) have garnered
significant attention, driving the rapid development and broad application of fractional calculus in
various fields such as fractional physics, viscoelastic mechanics, stochastic processes, and reaction-
diffusion equations. Additionally, as a crucial aspect of fractional calculus, fractional differential
equations with boundary conditions have garnered significant attention and produced a wide range
of research outcomes [8] [T11 19, 20, B0, BI]. In 1983, during studies on turbulence in porous me-
dia, Leibenson introduced the p-Laplacian operator. Since then, fractional differential equations
involving the p-Laplacian operator have attracted considerable attention from scholars. However,
most of the resulting research has been conducted under the standard definitions of Caputo and
Riemann-Liouville fractional derivatives [7, 17, 22] 25] 28] B2]. In many continuous gradual pro-
cesses, the state of a system undergoes sudden changes at certain moments due to disturbances
or external influences. This phenomenon is known as impulsive effects. Because of the significant
role of impulsive differential equations in describing such abrupt changes in electronic technology
and communication engineering, they have become an important subject of research in recent
years. Dynamical systems with impulsive phenomena have extensive applications in fields such
as physics, biology, economics, and engineering. Differential equations with impulsive conditions
are often used to simulate processes that exhibit discontinuous jumps and abrupt changes. The
significance of studying fractional impulsive differential equations lies in their extension of classical
differential equation theory, their ability to reveal new characteristics of complex systems, their
capacity to provide precise models for practical problems, and their promotion of innovation in
related mathematical methodologies. These theoretical achievements and application values make
them an important frontier topic in interdisciplinary research across modern mathematics, physics,
engineering, biology, and economics [2] 3], [14] 23] 24] [26].

In perfect conditions, state variables change over time following a consistent motion law, but
nearly all systems experience delays due to limited motion speeds. Different time intervals cause
variations in the motion laws of state variables, which interact through time lags 7 and time leads
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—7, thereby making the dynamics more realistic. In the real world, piecewise differential sys-
tems serve as effective mathematical models, reflecting the differing motion laws of state variables
across distinct time segments. Piecewise fractional differential systems can more accurately depict
complex dynamical phenomena characterized by discontinuities or abrupt changes prevalent in
reality. In application domains such as signal processing, image restoration, robotic path plan-
ning, and power system stabilization control, piecewise fractional differential systems offer more
precise models and algorithms. They better accommodate nonlinearity, time-varying behavior,
and discontinuities inherent in real data, thereby enhancing system performance and robustness.

Zhang et al. [34] studied the existence, uniqueness, and stability of solutions for piecewise
continuous fractional impulsive differential systems with delay:

D§ u(t) + g (t,u(t), ult + (=1)F7)) =0, t€ (th,trsr), k=0,1,...,m,
Au(t)|i=t, = Te(u(ty)), Au'(t)|s=e, = Ie(u(ty)), k=1,2,...,m,
w(0) =a, u'(1)=09,

where 1 < a < 2, Df is conformable fractional derivative of order « starting from 5 (k =
0,1,2,...,m).

Poovarasan et al. [27] investigated the existence and uniqueness of solutions to the three-point
impulsive boundary value problem with -Caputo fractional derivative

CDSYu(t) = g(t,u(t)), t € Jo:=(0,1), t#ty, kEN,
Au|t:tk = Ik(’ll,(tk)), Au/|t:tk = jk(ll?(tk)), k € Nm7
w(0) +u'(0) = u(1) + ' (9) = 0,

where 1 < ¢ <2, YD is the 1p-Caputo fractional derivative.
Ali et al. [4] studied the existence and uniqueness of solutions to a class of nonlinear implicit
impulsive fractional differential equations with three-point boundary-value problems

°Di u(t) = f(t,u(t),“D{ u(t)), te€ (tp,tpq], k=0,1,...,b, 1 <qg<2,
u(t)t=0 =0, u(t)li=1 = Au(t)|t=y, A,n€(0,1),
Au(t)|i=t, = Pr(u(ty)), Au'(t)|i=¢, = Qr(u(tr)), k=1,2,...,b,

where “Df is the Caputo fractional derivative of order ¢ starting from t;.

In 2024, Balachandran et al. [I0] defined a new class of Hadamard fractional integrals and
fractional derivatives for function . From existing research results, it has been found that there
are few achievements in piecewise fractional impulsive differential equation systems with delay and
p-Laplacian operator, thus having great research prospects.

Inspired by the aforementioned work and the [I8] 12} [T], [6 [T5], this paper uses Leray-Schauder
nonlinear alternative, Krasnosel’skiis fixed point theorem, and Banach fixed point theorem to
discuss the existence and uniqueness of solutions for a class of piecewise impulsive fractional
differential equations with p-Laplacian operator and delay under the definition of y-Hadamard
fractional derivatives

op(T DY (t)) = Ny (t, z(t), 2(t + (—1)"*)),
Ax(ty) = Pe(z(ty)), Ax'(ty) = Qr(z(tr)), (1.1)

2(0) = 2/(0), ac’(l):/ong(s,m(s))ds,

where 1 < o < 2, D?k’w is the ¥-Hadamard fractional derivative of order « starting from ¢
(k=0,1,2,...,m), A > 0 is a parameter, 1 < p < 2, n € (tq,tq+1), @ is a nonnegative integer,
V= SUP <icppinY(t) —In(tio)}. 0 <a < m, J =1[0,1,0 =1t <t <ty <--- <
m < tmir = 1, by € C([0,1] x RZR)(k =0,1,2,...,m), g € C(J xR,R), Pp,Qs € C(R,R)
(k=1,2,...,m),0 <7 <mini<g<mi1{ts — ts—1}, and Az(t)|i=s, = z(t)) —2(ty), A2/ (t)|i=t, =
o' () —2'(t,), o)), ' (tf) and z(t;,), 2’ (t;, ) represent the right and left limits of z(t), 2'(t) at
t=tr(k=1,2,...,m), respectively.
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2. PRELIMINARIES

This section includes crucial definitions and lemmas necessary for proving the primary results.
Let @y = [0,t1], w1 = (t1,t2], w2 = (t2,t3], ..y W1 = (tm-1,tm|s@m = (tm, 1], @' =

w\{t1,t2,...,tm}. We denote

$(w,R) = {w = R:2 € C(@,R), z(t)), z(t;,) exist, z(t;,) = 2(t]), k=1,2,...,m},
with norm ||z||g = supe, |2(t)], then S(ww, R) is a Banach space. p > 1, p~t +¢71 =1, ¢,(s) =
|s|P=2s, (¢p) ™" = ¢g, A > 0 is a parameter, let () be an increasing differentiable function on
S(w, R), then ¢’ (t) > 0. Let ¢* = minge ¢/ (t).

Definition 2.1 ([10]). Let f € C[a,b] and ¢ € C"[a,b] be an increasing function, with ¢’(x) # 0,
for all € [a,b]. The fractional integral of the left-sided Hadamard functional of order o > 0 is
defined as

H ra,e _ 1 0 ne(z) —In o=t
11 = gy [ S wela) ~ne(0)* f(0).

and the fractional integral of the right-sided Hadamard functional of order « is defined as

H ro,p T 7i b(pl(t) n —In T a—1
1 5@) = e [ S nelt) =) )

Definition 2.2 ([10]). Let n—1 < a <n,n €N, f € C" ![a,b], and p € C"[a,b] be an increasing
function, with ¢'(x) # 0, for all = € [a,b]. The left-sided Hadamard functional fractional derivative
of f of order « is defined as

H poy — QD(QC) i nH n—ao,p
Pat'1la) = <s0’(x) dx) L™ (@)
= 1 (P(SC) d n/x L)0/<t) n—a—1
" T(n—a) (wf(x) dz) o Inel@) —Ine(t) f(tyat,
and the right-hand sided of Hadamard functional fractional derivative of f of order « is

T n b
"D ta) = g (-5 a) [ S e — () e

Obviously, if 0 < a < 1, then we have

#pe p(a) = (8 L yost e i

Lp’(x)% a+t
- # QD(.%') i ‘ (pl(t) n r)—1n -«
~ e (b)) S ) ~me(0) " st

and

b
"D t) = e (S ) [ S ) a0y

Lemma 2.3 ([I0]). Letn—1< o, <n, f € Cla,b] and p € C™[a,b]. Then
HpopHp0% f(z) = H10H09 f(a)  and  HIFRIDY f(a) = HITP2 f(a).
For functions f € Cla,b],p € C"[a,b] andn —1 < a, 8 < n with n € N, we obtain
ADYPHIN? f(x) = f(z) and "DP#H I f(2) = f(a).

Lemma 2.4 ([10]). For each a function f € C" '[a,b] andn—1 < a, 8 < n withn € N, we have

n—1 k k
MDY ) = ) - X (55 ) sw) (el
k=0 t=a '
and
e k —Inp(z))"
MR ) = S = 3 [~ 5 p] | ()
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Lemma 2.5 ([29]). Let ¢, be the p-Laplacian operator, then we have

(1) If1<p<2 ¢,G >0, and [Ci],[¢| > p, then |¢p(Cr) — ¢q(C2)] < (p— 1)pP~2|C1 — ol
(i) Ifp>2 and [G1], |Gl < p, then [¢p(C1) — ¢q(C2)| < (p = 1)pP2|C1 — Cal-

Now we have the Leray-Schauder nonlinear alternative.

Lemma 2.6 ([I3]). Let (w,R) be the Banach space, B, C 3(w,R) is a convex closed set, By,
is an open set relative to B, and 0 € By,. If A : By, — (@, R) be a completely continuous
operator and A(U) is bounded, then it satisfies

(i) A has a fived point in By, ; or

(ii) there exists x € OBn,, and v1 € (0,1), such that x =y Az.

Now we have the Banach fixed point theorem.

Lemma 2.7 ([16]). Let S(w,R) be a Banach space, and mapping A : S(w,R) — S(w,R) be a
contraction on (w,R). Then there is a unique * € S(w,R) with Ax* = z*.

Now we have the Krasnosel’skiis fixed point theorem.

Lemma 2.8 ([9]). Let Br be a bounded closed convexr non-empty subset on Banach space (ww, R)
, where operators U, T satisfy
(i) Wzy + Tao € Br, where 21,29 € Br;
(ii) operator W is compact and continuous;
(iii) operator T is a contraction mapping,

Then there exists z € Bgr , such that z =Tz + Vz.
Now we have the Arzela-Ascoli theorem.

Lemma 2.9 ([21]). Let S(w,R) be the Banach space, If B, is a compact set of S(w,R), and
sequence {xn} is uniformly bounded and equicontinuous in By, then this sequence has uniformly
continuous subsequences in B,..

Lemma 2.10. Let 1 < a < 2, y; € C(w,R) (k=0,1,2,...,m), pr,qx € R (k=1,2,...,m).
Then the linear piecewise fractional impulsive differential equation

& (D5 (1) = M (D),

Ax(ty) = pr,  AZ'(tk) = g, (2.1)
£(0) = 2(0), /(1) = O”g<svx<s>>ds,

is equivalent to the integral equation

v(1) [9/(0) )
(1) = (1)[¢(0)+lnw<> (0 M ds+2pz thtqz—

k
Y (s) -
I(e) zz:/t L Y(s) (ti) —Inp(s))™ dq(yi-1(s))ds

N (2.2)
W ] 1/}((5 —In9(5))* by (yk(s))ds
m—+1 t; s) .
) Z /tl 1 x(t,t;) o05) (Ine(t;) — Inep(s)* “dg(yi—1(s))ds,
where

w<(o> +Iny(s) ~Iny(0), 0<s<t<1,
X8 =1 (2.3)

oy TInw(t) —Iny(0), 0<t<s<l.
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Proof. Suppose © = x(t) represents the solution to BVP(2.1]),
H )
DY (t) = Adg(yn(t)),

HzngHng¢x(t)F?® | ﬁ'((j)) (Inp(t) — Inep(s))* ™ dg(yn(s))ds.

For each t € wy, there are constants cy g and cg ; that belong to the set of real numbers, we have

x(t) = co0 + co1(Inyp(t) —Ine(0)) + % ; zg((j)) (Inp(t) — lnz/J(s))afquq(yO(s))ds,
20 = o + e [ ) - ()" 2y n()as.
x(t7) = co,0 + co1(Inp(t1) — Iney(0)) + I’()\a) A 1 15;}((5)) (Iny(tq) — lnw(s))aflcbq(yo(s))ds,

Wt Ta-1Jy 9e)wh)

For each t € w;, there are real constants c;,9 and ¢; 1 such that

G PR
oy J,. i) 00~ Inv() 7 uaa(2))ds,

¥'(t) A ti//(é‘)i//()( it
() - Tla=1) Ji, ¢(s)9(t)

a(ty) =cro, 2'(tf) =c1a
a(ty) = cro +cra(Inep(tz) — Ine(ty))
A ta w/(s) o
(@) ). () (Ing(ta) —nep(s))* oy (ya(s))ds,
Vi) A [t
Y(te)  Dla=1) S, ¢(s)¥(t2)
From the impulsive conditions Ax(t1) = p1, Az'(t1) = g1, we have

pr = Ax(ty) = =(tf) —a(ty)
= Cl,O — CO 0 — Co, 1(1H1/)(t1) — lnw(()))

' (t1) A By (s) (1) (In(ty) — lnw(s))o‘_Qqﬁq(yo(S))d&

a'(ty) = con

CE(t) =C1,0 + 6171(1H¢(t) — lnil)(tl)) +

) —In9(s)* (1 (s))ds,
Y'(t1)
P(t)’

z'(t) =c11

¥(ty) = c1a (Inw(t2) —Inep(s))* g (ya(s))ds.

_L tlw(s) CIn(s))et Nds
I(a) Jo (S)( n(t) —Ine(s))*™ dq(yo(s))ds,
q = A2/ (t) = 2/ (1) — 2/ (t])
_ Y d(t)
1,1 W(th) 01¢(t1)
TS A O LA Y N
D(a—1) Jy  (s)(ty) (Inep(ts) — ()™ “dg(yo(s))ds.

Then
( ) —In(0))

€1,0 —Co,0 =P1 +Co1

—In ()" oq(yo(s))ds,

3
>
\ /\

v, A “ws) Bb(er) N an (o))
i~ cor = ¢(t1)+1“(a—1) / o n(t) ~ () o (e)ds. (25)
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For each t € wp, there are real constants cp o and co 1 such that

o10) = exo +enan ) — o) + s [ S o) - vl )
e PO N W
o) = ean S8+ s [ S ) — ()2 (o).

a(t3) = c20,
V' (t2)
7() = 211/1@2).

From the impulsive conditions Axz(ts) = pe, Az'(t2) = g2, we have
p2 = Ax(tz) = x(ty) — x(ty)
=0 — c1,0 — c1,1(InY(t2) — Inep(ty))
A
gy | S te) — ) o)
= A () = /() — (85
Y'(ta) Y'(t2)

—C1,1

= C2,1

¥(t2) Y(t2)
A 2 (s)y (t2) Iu(she-? Nds
Ta—1 ), o(s)b(ta) (I (t2) —Iny(s))* " dq(y1(s))ds.

Then
20— c10 = p2 +era(lny(te) — Iny(t))

A " ( ) a—1 (26)
@) J s 0 0) () gy (s))ds,
21— C1,1 = q2 Y (ta) + /\ 24/ (s) (Inp(ta) — 1nw(5))a72¢q(y1(5))ds. 27)

(t2)  Tla=1)J;, ¥(s)
In the same manner, for each ¢ € wy, there are constants cy o and cj,; that belong to the set of
real numbers, we have

x(t) = cpo+ ca(Inep(t) — In(ty))

2 [ ) — () (),

T(a) Ji, ¥(s) (2.8)
e VO A R
0 = en i+ Ry, ey ) ) (5
Ck0 — Ch—1,0 = Pk + Ch—1.1(InY(tx) —Ine(tr_1))

L " W'(s) n —Ine(s))et s))ds

F(a) - ’(/J(S) (1 ¢(tk) 1 T/’( )) ¢q(yk—1( ))da (29)

Y(tr) A "Y(s)

Ck,1 — Ck—1,1 = Gk +

Y(tr)  T(a—=1) S, ¥(s) (Inep(tk) — In9p(s))* g (yr—1(s))ds.

In particular, for each t € w,,, there are constants c,, o and ¢, that belong to the set of real
numbers, we have

(1) = o + enma(n0(t) ~ mlt)) + s [ ¢j )~ 10()" 94 (g () s,
2 1) = e U LI (1) — 015"~ (0 (5)) s,

t Ma—1) J;, w(s)w)
(2.10)
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Cm,0 = Cm—1,0 = Pm + Cm—1,1(INY(ty) — InY(tm_1))

/ w(< (I (t) — () by (g1 (5))ds,

(2.11)

Cm,1 — Cm—-1,1

o (tm) A ) (s)
T ) T T@-1) o, 005)
From —, we have

c1,0 — €00 = p1 + co1(Inep(t1) — Inep(0))

(Int(tm) — In9(5))* > dq(ym—1(s))ds.

) e
Ty ) ey et — In(s) 6y (uo(s))ds,
€20 —c1,0 =p2 +c11(Ine(ts) — Ine(tr))

A [P (s)

ny(ty) —In s‘quls S,
Foy D (mte) — () g ()

Ck0 — Ch—1,0 = Pk + Ch—1,1(InY(tr) — Ine(tr—1))

A ) — () e (9)ds,

[(a) Jy, ., (s)

Cm,0 — Cm—1,0 = Pm T Cm—1,1 1H¢( ) hlw( m— 1))

/ dj —n9p(5))* " dq(ym—1(s))ds,

and

P(t

C1,1 —Co,1 = (q1 1/)’(

)
)

Y(t2) A 2 4/ (s)
)

C21 —Cl1 = CI2¢,(

(In(ty) —Ine(s))* g (yo(s))ds,

(In(t2) = Ine(s))* g (ya(s))ds,

Ut) A )

Y (ty) T(a—1) e »(s) (Iny(tr) — Inep(s))*~ qu(ykfl(s))dS,

Ck,1 — Ck—1,1 = Qk

Y (tm) A g (s)
i

Cm,1 — Cm—-1,1 = dm '(/J/(tm) + F(Oé -1 B w(s) (lnw(tm) - h”ﬁ(s))(k ¢q(ym—1(s))ds

Then

k k
Ck,0 — Co,0 = Zpi + Zci—1,1(1n¢(ti) —Inv(ti—1))

o (2.12)
g o ) ) s
Cm,0 — €00 = Zpi + ZCif1,1(ln¢(tz‘) —Iny(ti—1))
= = (2.13)

S ) ) e (e (o) 1ds
@) 2 o, ol (0 ) T G wia ()
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and
Ck,1 — Co,1
k k
Y(t; o (2.14)
- ;q"w'(u:) @-1) Z/ o ()~ 6 a9
Cm,1 — Co,1
N Y I [y (s) w2, (2.15)
=2y T 1) g | ) — I g(s) 6 i (5))ds
Applying the boundary conditions z(0) = z'(0), z'( fo ))ds, we obtain
2'(0) = con zi/((g)) z(0) = co,0,
1y Y (s)¢'(1) o
#(1) = e =y / ey ()"0 (o (5)) s
Then
0,0 = Co,1 15}/;8))
_y(@) Y'(s) o
Cm,1 = 1//(1)/0 g(s, z( dsf Tla—1) / ne (Inep(1) — Inp(s))* 2y (ym(s))ds.

From ([2.15)), we have

€0,1 = Cm,1 — Z}qz' ¢I(ti) _ )\ Z 15}/((5)) () ]n’(/)(S))a_2¢q(yi71(S))d8
_ @ 7 ¢ (5) .
¢/(1) / Q(S 33 a — 1 / (3) ln¢( )) ¢q(ym(5))d3

m W(t) A P'(s) N Ina(s)) @2 - (s))ds
Xy r<a_1>; e W) — (s ey ())ds,

7

B ) [ . |
00 = Gty o) J, 900 o o0) 2= )

A ¢/(O) ! w/(s) —In S a—2 S S
B I(a—1) (0) /tm ¥(s) (In9p(1) —In(s))* “Pg(ym(s))d

A YO0~ [T Y(s) .
- D(a—1) 9(0) Z/tm (Inh(t;) — () g (yi_1(s))ds.

From and -, we have

o = s or [ ats.aos = HE S 0 e

A YOS Y G (6 (i ())ds
Mo =) 6(0) 2 J,,_, w(s) 00 ~ o) 00 (i (o))

k

k
+ Zpi + Z C¢71,1(lnw(ti) - lnw(ti,l))

k
F()\Ol Z zi((j)) <1n ¢(fi) - 1n¢(s))a_1¢q(yi71<5>)d5’
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IO N
okt = w(l)/o gls,o(s))d E%
A Al (s
F(Oé*l g (S) ( ( )_1 w( )) ¢q<yi*1(8)>d8
k k ti (s
X ff 2 ey bt~ o) a9
e g " )
- wu)/o o Z; t:)
m—+1
= . A ><lnw<ti> —Inp(5)° 2y (91 (5))ds.
2 )

So, for each t € wy,

_ AW YO [ e YO S ()
0= 5 w<o>/o als,2(e))ds = <0y 2 iy

i=1

~ )N [ (s)
F (a—1) — Ji P(s)

(I (t;) — Inep(s))* > dg(yi-1(s))ds

+ Zpi + ch;l@(lntﬂ(ti) — ln’(/J(ti,l))

k t;

L(a) 4 Z lfp((ss)) (Ine(t:) = Ine(s)™ " by (yimr(s))ds

=1

o) " b )
+ L) = w(te)) [ gts.a()ds - (nw(e) n(t)) 3 oy

A Tt (s a
~ ta e () — In(ty) Z - Zég;(lnqp(ti)—lnw(s)) %0q(yi1(s))ds

Thus

A [T (s
+@2/ S np(t) —Inv(s)* 6 (31 (5))ds

The proof is complete.

From the definition of x (¢, s) we obtain

¢'(0)
$(0)

x(t,s)] < | +Ing(1) —Iny(0)].
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We define operator A : (w, R) — S(w, R) as

(A2)(0)
1 n k
= LD o) -] [ ots.o(9)ds + Y- Rlalt0)
N Vo (e L&) A
;X(t’ tl)Ql( (tZ))/l/)l(tl) + F(a)

" i/tt 15)((8; (Inep(t) = Inp(s))" 6 (i (s,2(5). (s + (1) 7'7)) ) ds

o [ ) — ) (s, (5 + (17 - P
w v'(s) -
x ;/tilx(t,t,;)w<s) (I () = () g (hioa (s, 2(s), 2(s + (=1)7'7)) ) ds.

Therefore, the existence of a solution to BVP (|1.1)) can be transformed into the existence of a
fixed point of the operator A on §(w,R). For convenience in calculations, we define

v'(0) i
Do) e (o),

®1 = (¢ = 1)(0")"2(My; + Nyy),
A(m +1)(v* + O1av*~ 1)
I'a+1)

0, =

by =

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We obtain the existence and uniqueness of solutions for BVP (|1.1)) by applying three fixed point
theorems. First, we state some assumptions needed.

(H1) There exist functions o, € C(wy, [0, +0)) (k=0,1,2,...,m), such that for all ug, vy € R
(k=0,1,2,...,m) and t € wy, we have |hy(t, uk, vi)| < ok(t); and we denote

o* = max { sup oo(t), sup o1(t), sup oa(t),..., sup on(t)}.
tEwo tEwy tEwa ETWm

(H2) There exist constants M7, N1, Mo, Ny > 0, such that, for any u € R,
|Pe(u)| < Mifu| + Ny,
|Qr(uw)|] < Malu| + Noy k=1,2,...,m.

(H3) There exist constants M, N} > 0, such that, for any wux, vg, tx, Ux € R, t € wy,
(k=0,1,2,...,m), we have

|hk(t7Uk-,’Uk.) - hk(tﬂkal_}k” S M;”uk - Uk| + N;ﬂﬂk — ’l_)k|, k= O, 1,2, oo, M.
(H4) There exist constants [,[* > 0, such that, for any u, @ € R,
|Pe(u) = Pe(u)| < llu—ul,
|Qk(u)7Qk(a)|§l*|uiﬂ|a k:LQa"'am'

(H5) Function g € C(w x R,R), and there exists a function ¢, (t) € L'/?(w,R"), such that,
for all u,u € R, t € w, we have

lg(t,u) — g(t,u)] < @1 (t)|u — 1,

1
where [lp1[| = ([ 17(s)ds)'/>.
(H6) There exist constants 3, ¢35 > 0, such that, for all u € R, ¢ € w,

lg(t, u)| < @5 + p3lul.
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(H7) There exists a constant N, > 0, such that
Ny
L001(g5 + 93N2)n + m(Mi Ny + Np) + O1(MaNy + No) ™o 4 (01 N, + 6y (K)] @2
.,m).
Theorem 3.1. Under assumptions (H1)-(H7), BVP has at least one solution.

> 1,

where sup;c, [hx(t,0,0)] = K < oo, (k=0,1,2,..

Proof. When t € wy, (k=0,1,2,...,m), for any 21,22 € $(w,R), according to conditions (H1),
(H3), and lemma [2.5] we have

[ b (B (b 1 (8), 21 (¢ + (=1)°7)) = g (Rt 22(8), 22t + (=1)"7)))|
< (¢ = 1)(0") 2 (M |w2(t) — 21(8)] + Ni |1 (t + (1)) — 2a(t + (—1)"7)))
< (g = D(@") "2 (My; + Np) |22 — a1 s,
according to the definition of operator A and the continuity of hy (kK =0,1,2,...,m), operator A

is continuous. For any r > 0, denote B, = {z € $(w,R) : ||z|| < r}, it is easy to check that B, is
a bounded closed ball in $(w, R).

Firstly, prove that operator A maps a bounded set in (o, R) to a bounded set. There exists
a constant py, for any x € B,., we have ||Az|| < p;.

Let sup;e, [hx(t,0,0)] = K < co. For any t € wy(k =0,1,2,...,m), x € B,, we have
|[(Az)(?)]

B(1) 19/(0)
< 50 90

+ Z IX(t, t:)||Qi(2(t:))]

+Iny(t) —Iny(0 / lg(s, z( |ds—|—Z|P

k

XZ
- lm - 1<s 2(s).x(s + (=1)'"'7))) = @y (hi1(s,0,0)|ds

F(Aa Z/t AL (t:) — () g (hi—1(s,0,0))|ds
A [T (s)

@) J,, o(s) V0
— lIIw(s))a_l’¢q<hk(8vx(s)’w(s + (_1>k7-))) - ¢q(h/€(37070))’d8

A [P () ()2 g (s, 0,0))|ds + ——

T(a) J,, ¢(s) I(a—-1)

m+1 t; 8)
S [ el e

—lnw(s “_2|¢q hi—1(s,z(s), m(s

(=1)""7))) = G4 (hi-1(5,0,0))|ds

m+1
T > / ) i (t2) — ()10 i (5,0,0)) s
v(1) (¥'(0) *
< S (S0 + ) = mo0)(e5 + gilleln-+ m(ay o] + 5)
V() N )
+ (D v - (o) (e + )L
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L o s
w0 (m + 0!
+ (U8 + ) - 1p(0) (- D)2 085 + N U
v'(0) (m+ D

n <w(0> Flng(l) — lnw(O)) T%(K)
Then

1;/}/((13) ©1(5 + )+ m(Myr + N1) + O1(Mar + NZ)mz’El)

o *\q—2 * * vt + @1ava71
+A(m+1)(g—1)(c™)T (M} JrNh)r—F(a—l—l)

[Az]| <

A(m +1)(v* + a0 1)
INa+1)

Pq(K) = p1.

From this we infer that A maps the bounded set in J(z, R) to a bounded set.
Secondly, we show that A is equicontinuous. For any x € B,., t1,ts € wi (k=0,1,2,...,m),
where t; < t, we have

|(Az)(t2) — (Az)(t1)]
1/}(1) , (L Y(t)
w 1) Inv(te) — Ine(tr) / lg(s, z(s))|ds + X_: [x(t2,t:) — x(t1,6:)]|Qi( (tZ))‘w/(ti)
by 12 w/(s) o
T ) Sy, s V) T Inls)) \%(’%(W(s),ﬂw<f1>’“7>))‘ds
by ty w/(s) o
T T Jy, <s>( n(t) = ()" |6 (b (5 25), 25 + (1)) ) ds + 52y
m—+1
¥'(s) ‘
<X / ol 2 e
— () 2\%( (s (), a (s + (-1)77))) Jds
(1) -
< v )[1n¢(t2) Int(ty) / lg(s,x(s))|ds + [In)(te) — lnl/}(tl)};@z( (tZ))|¢'(ti)
)\ to 7/]/(3) o
+@ L U(s) (In9p(tz) —Ing(s)) 1\¢q(hk(s,x(s),x(s+(71)’“7)))—¢q(hk(s,o,0))‘ds
)\ ta 1/,/(3) (In ) o . s .
L 1 ’l/)’( ) 1’1 n s a—1 s 2(s). (s _ k’r B 5 .
I'(a) /tk o) (Ingp(t1) —nep(s)) g (hi(s, 2(s), (s + (=1)"7))) — ¢q(hi(s,0,0))|d
X (s (In nep(s))*! . . A
I(a) /t sy ) = ()" g (hi(s,0,0)) ds + Frrs Inp(t2) — ()]
m+1 ¢, w/(s) - | . |
x 121/7& ) (In(t;) — () 2| (hioi(s, z(s),2(s + (=1)" 7)) = pg(hi_1(s,0,0))|ds
bttt o] 3 [ D (e — ()™ s (5,000 s
I(a—1) — Jti Y(s) ? I
< ¥(1) v (t2) — Inv(t1)](95 + @ir)n + [In(ts) _1n¢(t1)]m(M2r+N2)@

w*
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+ (g = 1)(0") 2 (My; + Nyy)r {Inep(t2) = Inep(t)]™ — [Inep(ts) — Inwp(tx)]"}

D(a+1)
* ﬁ%(m{[lnwtz) — ()] — n(t) — Ina(ty)]*}
+(m+Dng(tz) = nyp(t)l(g = 1)) (M + N,:V%

Ava—l
Therefore, |(Ax)(t2) — (Az)(t1)] — 0, as t1 — t2. By Arzela-Ascoli theorem, A is compact, thus
A S(w,R) — S(w, R) is a completely continuous operator.
If = is a solution to the BVP(1.1)), for any ¢t € wy(k =0,1,2,...,m), similar to the previous
proof method, we have

_|_

ol < w'(< ))@1(%+903||x||)77+m(M1||x+N1)+@ (Maz] + No) ZE”
o A ° 4 a@00
A ) o 2 A E DR RO ) g (1,
thus,
Il

<1,

S501(e3 + @3llaln + m(M ]| + Ni) + O1 (Mol + Na) 258 + [ ]| + ¢ (K)] P
according to (H7), there exists a constant N, such that ||z| # NI.

Assume By, = {z € S(w,R): ||z|]| < N}, because A is a completely continuous operator,
considering the choice of By, , with respect to a particular 7; € (0,1). There is no x € By,,
such that x = y3Az. From Lemma [2.6] it can be inferred that A has at least one fixed point
r € By,, which means that the BVP has at least one solution. The verification has been

accomplished. O
Theorem 3.2. Under assumptions (H3)—(H5), if
Y(1) (1) . 2O (m 4 Dot 4+ X(m + 1)
My = C) O1ml* + Dy < 1,
1 ’(/J/(l) 1\/77”901 b 1m F(Oz n 1) 1

then BVP (1.1)) has a unique solution.
Proof. For each x1,x2 € S(w,R) and ¢t € wi(k =0,1,2,...,m), by (H5), we obtain

/ 195, 22(5)) — g(s, 21 (s))|ds < ||x2—x1||/ s

< ez =zl ([ %)1/ (f o)™

1 ) 1/2
<l —arllvi( [ er(s)as)

0
< Jles — aal gl

From this inequality we have

\(sz)() (Az1)(t)]
/ (s, 2(s)) — g(s, x1(s |ds+Z|P 22(t;)) — Pz (8))]

o Z |Qi(w2(t:)) — Qi(z1(t:))] qf/((izz))

A= (s
F(OZZ/ 12)((5)) (In9(t:)
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1 (5))° 6 (hima (5. 22(5), (s + (-1 1)) )

= 0y (i (5.2 (8). (s + (<1 '7) ) [as + F(Aa) /tt ‘g(f)) In (t)

“lnd(s)* g, (hk (s wa(s), T2 (s + (—1)’%))
— g (hk (57 x1(s),21(s + (—1)k7)>> ‘ds
T )
s >/ 1‘;(8) (1n (8
— Intp(5))* 2| dg(hi—1 (s, 22(s), 22(s + (1) '7)))
7(;5(1( (s x1(8),r1(s + (*1)2-717')))‘&9

¥(1) ¥(1) . AaO(m+ 1D)ve 4+ A(m + 1)v®
< { @ Villerl +mi+ SE0uml” + et @ Yz — o]
Then
[(Az2)(t) — (Azy) (@)l
a—1 o
< {;p/((ll))@l\/ﬁﬂwﬂ ¢(1) Oyml* + Aa®©1(m + 1121()04 - :3 A(m + v R
Thus,

[(Az2)(t) — (Az1)(@)[| < Miflzg — 24
Therefore, by lemma [2.7] it can be inferred that A is compressed and has a unique fixed point on
$(w, R), that is, the BVP (1.1)) has a unique solution. O
For the next theorem we need the following assumptions;
(H8) There exists a constant ¢ > 0, such that for any ug, vy € R (k=0,1,2,...,m) and t € wy,

we have
‘¢q(hk(taukavk))| <¢, k=0,1,2,...,m;
(19)
Y06l mi -+ mont UL < 1,

Theorem 3.3. Under assumptions (H2), (H4)-(H6), (H8), (H9), the BVP (1.1) has at least one
solution.

Proof. We denote Br = {z € $(w,R) : |z|| < R}, where

o5 + L0103 + mNy + 61 N ™2

R>
1 — 71??/((11)) @1@;;7] — li — Mg@lingl)

Then Bp is a bounded closed convex non-empty subset on Banach space $(w, R).
We define the two operators ¥, T on Bpg as

(Wz)(t)
k t; ,
~m | S ) )y (s (s, s+ (1) 7)) s
+/\)/tt ﬁ’((j))(lnw(t)—lnw( )~ 1¢)q(hk(3 w(s),x(s + (—1)*r )))ds_r(a,\_l)

NG
x mf /tt X(, ti)ﬁl((;)) (Inw(t;) — In () 2, (hi_l (s,x(s),x(s n (71)"*17)))113,
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and
k

(T)0 = iy gy + oo~ [ gtosatsds + 3 Pia)

_ixtth ) (())

€ Br. Whent € wy, (k=0,1,2,...,m), for any

Firstly, we verify that (Px1)(t) + (Tx2)(¢
r1,x9 € Bgr, we have

|(W21)(8) + (Tz2) (2)]

) / E o)~ o) o (s (s, () + (1) 10) s

(In(t) = ()" | (s, 21(5), xl(s+(—1)kT)))‘d8+m

A '(s)

I'(a) te Y(s)
m+1 ., (s 9
8 Z/ ettt 2 () — m(s)

¢q( (s 21(s), 21 (s + (—1)"—17)))‘615

=1 Jti—1 ¢(S)
/ l9(s, (s 'dHZ\P za(t I+lett Qi (at >>|;f((fjf)
¢((11))@1(<P§+<P§|$||)n+m(M1||x+N1)+@)1(M2||33||+N2) Zil)
Paet ’((11))@“0277+"”V1 +@1N2m$£ Ly (1/)((1)> O1557 + mM, +M2®1mifl))|\ [
< Boys + ¢((1))@1s02?7+mN1 + O, wi ) . (w,((l))@lsoEnerMl +M2®lmz£1))R.

Therefore, |(Vx1)(t) + (Tz2)(t)| < Bgr, and (Vz1)(t) + (Tz2)(t) € Bg.
Secondly, we prove that operator T is a contraction mapping within Bg, when t € wy, for any

Z1,%9 € Bg, from (3.1]), we have

((Tx2)(t) — (Tx1)(t)] < ¥(1) @1/0” 1g(s,22(5)) — g(s, 21 (s |ds+Z|P (z2(t;)) — Pi(z1(t;))]

Y'(1)
- w(ti)
+ ; Ix(t,t:)]|Qi(z2(t:)) — Qi(xl(ti)”’(/}/(ti)
P(1) LP(1)
§[¢< )@1||901H\f+ml+m@l = Jze — 1.

By (H9), operator T is a contraction mapping within Bg.

Finally, verify that operator ¥ is a completely continuous operator. From the definition of
operator ¥ and the continuity of function h, it can be inferred that operator ¥ is continuous,
thus, we only need to prove that operator W is compact. The process is divided into the following
two steps.

Step 1. U is uniformly bounded. When t € wy, (k =0,1,2,...,m), for any x € Bp, there exists a
constant &, such that |(Px)t| < £. According to (H8), for any t € wi(k =0,1,2,...,m), x € Bg,
we have

[(Wz)(2)]

et (s
D MO Ol

04 (-1 (s.2(s). 2(s + (1) '7) ) |as
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+ :ﬁ((j))(lnw)—lnw( Do (et (5+ (-0 ) s + 2
xmil/ 5))(1n¢( ) — Inw(s)* 2’%( i (s a(s)2(s + (1) T)))‘ds
< A(m + 1)s(v™ + O1av®~1) —¢

- Ia+1)
From this, we infer that operator W is uniformly bounded.

Step 2. U is equicontinuous. For any x € Bpg, t1,t2 € wi(k =0,1,2,...,m), where t; < ta, we
obtain

(Wz)(t2) — (Vz)(t1)]

<ﬁ § E D n(ta) ~ () o (1 (s,0(6) (5 + (-1"7)) )|
- ﬁ "2 i) - 1nw<s>>a-1\¢q (il 2(s). 2+ (~1)"7)) )|
i i [t = xton 0 S (e
—Ind(s)" |¢>q(h 1(s(s >,x<s+<—1>“7>))]ds
< Ty 0(ta) = ()" — (m () ~ I o(ee)))

As(m + 1)ve~t
I(a)
Therefore, |(Vz)(t2) — (Pz)(t1)| — 0 as t3 — to. Thus, the operator ¥ is equicontinuous on Bp.

In line with lemma operator ¥ is a compact operator within Bpg, satisfying the conditions
required by Lemma In conclusion, there is at least one solution to BVP ([1.1)). U

[Ineh(ta) — Inep(ty)].

4. EXAMPLES

In this section we verify the main results through two examples.

Example 4.1. Consider the BVP

. . 1

H 13/2,62 4141 )_ 1 ( t tsinz t81nx(t+§)) 1

D ) = —(— " 1

o("D3 ®@)=1%Got 150 T 10 ) €O

2 . . 1
H 13/2,67+t+1 )_ 1 ( t t’sinz tsmx(t—§)> 1
p D) =1 te (1
¢p( 1/2 x(t) 10 100+t+150+t+ 100 , e ( )
|2(1/2)] , 2(1/2)]

_1 / e s as)

10 14+2s 1+s

where m =1, « =3/2, to =0, t1 = 1/2, to =1, 7 = 1/3, A = 1/10, n = 1/2, and p = 3/2. From

p=3/2and ¢ +p~ =1, we obtain g = 3, P(t) = t* + 1+ 1 ¢'(t) = 2t + 1, and ¢* = 1. Then
(t) = t2 +t + 1, is an increasing function in ¢ € [0, 1], v = 0.81,

)

t  tsinz tsinz(t+ %) 2t
hat, (t), 2(t + 7)) = 155 + 50 00 <7
t t?sinz  tsinz(t— 1) < t2 4+ 3t
100 +¢ 150 +¢ 100 = 150

ho(t,z(t),z(t — 7)) =

)
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where o1(t) = 2, 02(t) = tzl'ggt, then

2t t2 4 3t 2

oc* = max{ sup

+€(0,1/2) 75)36(5}}271)( 50 )} = 75
_ _ [=(1/2)] o =(1/2)]
P(x(1/2)) = 300 + [o(1/2)]" Q(z(1/2)) = 00+ 1oL/
1 /etsin'/?¢ z(t)
g(t=(0)) = E(Wl +t)'

17

Obviously, hy(k = 1,2) is a continuous function. For each wuy,v1, 41,71, ug, v2, Ug, U2, u, & € R and

t € [0,1], we have

2
hy(t < =
R E=g=
t2 4+ 3t

150

IN

|ha(t, uz, v2)]
1

=
=
=
e
=
=4
=
S~—
\
>
=
—
\,@F
|
=
4]
=
(A

|ha(t, uz,v2) — ha(t, tz, U2)| < —|ug — 2| + ﬁh}g — T,

1 efsin'/?¢
tu) —g(t,a)| < ———r
glt,) — g03)] < 5

So that conditions (H1)—(H6) hold, where
1 1 1 1 1
300 10’ 200°
A S U D
300 2000 72T 1000 Y810
After calculations, it can be concluded that

1 2
1 Sainl/2 1/2

w1l = / —e’sin’/7s) ds ~ 0.1265,
leal=( /(55 ) ds)

' (0)

@ =
L)

®1 = (¢ — 1)(0™)T (M} + N;) =~ 0.00089,
A(m +1)(v® + O1av*7 1)

INa+1)

+In1p(1) — Inep(0) = 3.09,

Py =

~ 0.7283.

From the definition of hy, k = 1,2, it can be inferred that K = 7=, then ¢,(K) = 555-. Then

10000 *

100°
there exists a constant N, = 10 > 0, such that

NI/<1/1(1)

~ 1.5163 > 1.

,(/)*

Ni=—, My=—, Ny=—, Mi=—, Nf=-—

0165 + i Na) + mN, + ) + 010N, + No) "I 1 [0, + 0,(K)]02)
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Therefore, all the assumptions in Theorem [3.1] are satisfied, so there is at least one solution to the
BVP (4.1). Because

Y1) ¥(1) . Aa©O1(m+ Do+ A(m + 1)v®
M, = w’(l)el\/m%” +ml + e Or1ml* + Mol P,
~0.3267 < 1,

all the assumptions in Theorem are satisfied, thus, BVP (4.1)) has a unique solution.
Example 4.2. Consider another BVP

(TP a0) = gt g+ s 1€ 0)
("D 0) = gy et ) <Gy
("D 20) = 55 (i ot ) (G 62
Ax(tl/g) = 3()"3|i(|133/(31)/|3)|7 Az (ty/3) = 40|i(|1x/(31)/|3)|’

1 1/3
z(0) =2'(0), 2'(1) = E/o 62581n1/28f(7—s)sd57

where m =1, a = 3/2, tg = 0, t, = 1/3, ts = 2/3, t5 = 1, 7= 1/3, A = 1/20, = 1/3, p = 3/2,
From p = 3/2 and ¢~! + p~! = 1, we obtain ¢ = 3, ¥(t) =t + 2t + 1, ¢/(t) = 2t + 2,¢* = 2.
Then 9 (t) = t? 4+ 2t + 1 is an increasing function in ¢ € [0, 1],

t  tsinz tsinx(t+§)<2t

hi(t,z(t),z(t + 7)) =

© 100 100 150  ~ 75
t 2sing  tsinz(t—1) 2 43¢
ho(t,z(t),z(t — 7)) = 32 <
2ba® 2t =m) = G Y moee T 100 S 150
t sin x tsinzx(t+1)  3t+1
ha(t, z(t), x(t =— 32 < :
st 2t +7) =15+ Hoarp T 100 S 150
Obviously, hy (k=1,2,3) is a continuous function, and
2 4
t —1)*k 2=
|6q(hie(t, 2(t), 2(t + (1)) < (72)° = g
let ¢ = ==, then the inequality |¢g(hy(t, z(t), z(t + (=1)*7)))| < < holds, that is, condition (HS)
is satisfied.
12(1/3)
Plz(1/3)) = ———F—F—
(x( / >) 30 + [2(1/3)]
2(1/3)
1/3)) = ——————
Qa(1/3) = 5 T
1 t
g(t,z(t)) = 1—Oe2tsin1/2tf(—+)t.

For each u, @ € R,t € [0, 1], we have

|P(u) — P(a)] < o [u — ],

<yl
— U
10"

1
lg(t,u) — g(t,@)| < Ethsinl/Qﬂu —al,

1
t < —
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therefore, conditions (H1)—(HT7) are satisfied, where

11 1, e
T30 Ta Y 3= 100

10°

N ¥

After calculation, we concluded that

1 2
1 1/2
o1l = (/ (—1062351n1/23> ds) ~ 0.2844
0

_ YO n —1In = !
01 = gy (1) ~ (o) = 339

For assumption (H9), we have

P(1)
P(1)

v()

*

~ 0.8442 < 1.

O1|le1llv/m + ml + mOq1*

In conclusion, all assumptions of Theorem are satisfied, hence BVP (4.2) has at least one
solution.
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