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UPPER SEMICONTINUITY OF UNIFORM ATTRACTORS FOR SINGULAR
PERTURBED SECOND ORDER NONAUTONOMOUS DELAY LATTICE
SYSTEMS

YAO ZHOU, HONGLIANG LIU

ABSTRACT. In this article, we consider the upper semicontinuity of the uniform attractors for
the singular perturbed second order nonautonomous delay lattice systems driven by the almost
periodic forces as the coefficient of second order derivative term tends to zero under the Hausdorff
semidistance. First we prove the existence of uniform attractors for the second order and the
corresponding first order nonautonomous delay lattice systems. Then we establish some prior
uniform estimations of solutions. Finally we study the upper semicontinuity of the uniform
attractors as the coefficient of second order derivative term tends to zero which showing the
relationship between the uniform attractors for second order and the corresponding first order
nonautonomous delay lattice systems.

1. INTRODUCTION

Let £k € N and
0 ={u= (Un)mezr :m = (m1,...,my) € Z* up € R, Z uz, < +oo},
mezk
be a Hilbert space endowed with the inner product and norm:
(w0) = 3 tmtm, ul® = (@0), = (un)mezes 0= (On)mezr € £

mezZk
Let C(R, £?) denote the space of continuous bounded functions from R into £ and go = (go,m )mezr
R — ¢% be an almost periodic function in the Bohr sense,

H(go) = {go(- +7): 7 € R}

Cp (R, £2)

(the closure in Cy(R, £2)).
In this article, we consider the family of second-order nonautonomous delay lattice systems
with singular perturbation

€l + U + V(AW + (A + A tim + i (uj]j € Ing)
Fhin(Uum(t —9)) = gm(t), t > 7, g(-) = (gm())mezr € H(go), € >0, .
U, (0) = U (T +0) = wom-(0), TER, (1.1)
U (0) = U (T + 0) = ug s (0), 6 € [-9,0], m € Z*,
where m € ZF, Ay, > 0, €, 9 > 0, v > 0, um, gn(t), fm(uj(O)|j € Ing)s hm(um(t — V) € R,
U = (Up)mezr, A is a linear coupled operator, I, = {j € ZF : ||j —m|| = maxi<;<k |51 —mu| < q},

q €N, fm(ujlj € Ing) indicates that the state at the m-th lattice point can be related to the
states at its surrounding (2¢ + 1)* — 1 lattice points (the relationship may be nonlinear).
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When e = 0, (1.1) becomes the following family of first order nonautonomous delay lattice
systems
U + V(A m + (AW + At + fin (U515 € Tig) + han (um (t — 0))

= gm(t)’ t>1, g= (gm)mEZ" € H(QO)? (12)
U 7 (0) = U (T + 0) = ug.mr(0), TER, 6€[-0,0], meZF.

The lattice systems (1.1)-(1.2) can be used as mathematical models for the various coupled oscil-
lator systems (such as the system of coupled pendulum motions) and the dynamic network systems
with infinite nodes etc.. The attractors of various different types of lattice systems (consisting of
infinite dimensional ordinary differential equations) have been studied by many publications in the
last more than 20 years from the work of Bate et al in 2001 [2], including the existence and related
properties of the global attractor, pullback attractor, uniform attractor and random attractor, see
1, 5, 17, 8, (10, (12, 13} [14) (15, 18, 19, 20, 22, 23, 24| 25, 26, 27, 28] and the references therein.

The relationship between the attractors of first-order and second-order lattice systems is of
interesting topic. For the case of autonomous and nonautonomous lattice systems (1.1)-(1.2)
without delay and the coupled term of first order derivatives (that is, ¥ = 0 and v = 0), the
relationship between the global attractors and uniform attractors of (1.1) and (1.2) as e — 0%
have been studied in [I3] 28], respectively. In the case of ¢ # 0 and v # 0, the phase space of
(1.1) and (1.2) are Banach spaces C([—9,0],¢? x £2) and C([—9,0],¢?) consisting of continuous
functions from a closed interval [—4J,0] into the spaces ¢? x ¢? and ¢2, respectively, which are
different from the Hilbert phase spaces in [13, 25]. As we know, there is no results about the
relationship between the uniform attractors of (1.1) and (1.2) until now.

Based on the works of [13, 25], here we consider the upper-semicontinuity of the uniform
attractors for the singular perturbated second order nonautonomous delay lattice system (1.1)
as € — 0T, which gives the relationship between the uniform attractors of (1.1) and (1.2). Since
the Banach phase spaces cannot be decomposed into a direct sum of a finite dimensional space and
an infinite dimensional space with a small norm, so in proving the key prior uniformly bounded
estimations of solutions of systems, the asymptotic compactness of the solutions processes and the
convergence of the solutions sequences et al., we have to use new techniques different from those

in [13, 25]. Notice that the uniform attractors .AGH('%) of (1.1) and Agt(go) of (1.2) are included
in different spaces C([—1,0], % x £2) and C([—9,0], £?), respectively, to compare the relationship

between them, we take them in the bigger space C([—,0], £2 x £2). For our purpose, we construct

a compact set BH(‘%) C C([—9,0], 2 x £?) such that AH(g‘)) is naturally embedded into BH(g“) as
0 0 0

the first component. It is worth mentioning that because of the lack of the structure of operator
(I +~A)~1, the equivalent first order lattice equations of (1.2) may be not a locally coupled
lattice system. Generally, the proof of the asymptotic compactness of the solutions process for a
non-locally coupled lattice system is difficult. Fortunately, the linear boundedness of (I 4+ yA4)~!
here is just enough to solve this challenging problem.

In section 2, we present some spaces, some assumptions and the vector forms of (1.1) and (1.2).
In section 3, we prove the existence of uniform attractors A7) of (1.1) and Aff(g‘)) of (1.2). In
section 4, we establish some prior uniform estimations for the solutions of (1.1). In section 5, we

consider the upper semicontinuity of Az{(go) as € — 0.

2. MATHEMATICAL SETTING

Firstly, we present some concepts related with the uniform attractor for a family of processes.
Let X be a Banach space with norm || - || x, B(X) be the union of all bounded sets of X and ¥ be
a parameter set.

Definition 2.1. A two-parameters family of mappings {U(¢,7) : X — X, ¢t > 7 € R} is said to be
a continuous process on X, if (i) U(t,s)U(s,7) = U(t, 1), for all t > s > 7; (ii) U(7,7) = I (unit
operator), for all 7 € R; (iii) for all ¢ > 7 € R, U(t,7) is continuous on X. {U°(¢,7)}i>rpex is
called a family of continuous processes in X with parameter o € X, if for each o € X, {U (¢, 7) }4>+
is a continuous process in X, where ¥ is called a symbol space and o € ¥ is a symbol.
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Definition 2.2. A subset Dy of X is said to be uniformly (with respect to (w.r.t.) o € X)
absorbing for a family of processes {U°(t,7)}i>roen, if for any 7 € R and each bounded set
B € B(X), there exists ¢, p > 0 such that |J, .5, U°(t,7)B C Dy for all t > 7+t .

Definition 2.3. A closed set As; C X is said to be a uniform (w.r.t. o € 3) attractor for a family
of continuous processes {U7(t,7)}i>r 0ex, if

(i) lim¢—y4 o0 SUP,ex dn (U7 (¢, 7)B, As) = 0 for any 7 € R and any bounded set B € B(X),
where “dj,(-,-)” is the Hausdorfl semidistance between two subsets of X;

(ii) Ay is the minimal set (for inclusion relation) among those sets satisfying (i).

Definition 2.4. A family of processes {U?(t,7)}i>r0ex is said to be asymptotically compact
in X if for any 7 € R, B € B(X), each sequence {t,} C [0,+00) with ¢, — +00 as n — oo,
each sequence {u,} C B and each sequence {o,} C X, the sequence {U’"(t,, + 7,T)u,} has a
convergent subsequence in X.

We make the following assumptions on the quantities in (1.1)- (1.2):
(A1) Ais a linear operator on ¢? with decomposition A = Zle Aj, Aj = B;B; = B; B}, where
the operators B; are defined by

l:m(]
(Bju)m = Z dj i, ,  |dji| < ag (constant), u = (Up,)mezr € €,
l:—mg
mj; = (m1,...,mj_1,mj + l,mjs1,...,my) € ZF, (Bju,v) = (u, Bjv) for u, v € 2,

i=1,.. k.

(A2) Vm € ZF, 0 < Ao < A < AV < 00, where )\g, A are two positive constants.

(A3) go = (9o,m)mezrs 96 = (Ghm)mezr © R — €% are both almost periodic functions in the
Bohr sense.

(A4) For all m € ZF, f,(-) € CHREHVER) f.(u; = 0|j € ILn,) = 0 and there exist
p€C(RL,RL), b= (by)mezr € €2, such that

sup  max | f, (uilf € Tmg)| < p(r),
mezk Ui €[=7r],i€Imq

Fin(ujli € Img)um > Gun(ujlj € Ing) > =i,
where G, (uj]j € Img) = Oum fn(r,ujlj € Lng \Am})dr,  fr, ;(u;lj € Ijng) = %(“J’U €
Ing) and fi, (7, ui|j € Img \ {m}) is the function f,,(u;|j € Ing) in which w,, is replaced

by r.
(A5) For all m € Z*, h,, € CY(R,R), hy,(0) = 0 and hy, (s) is Lipschitz continuous in s:

[P (1) — hm (82) | < Lpls1 — 82|, Lp >0, Vsi, ss€R, me ZF,

where
0< Ly < Fe i, =0,
—_ h i 1
%\/7/\0:0678%19 e >0,
5\ _ %7 \ Y= 07
min{%, 2}, >0,
A _
€0 = T+3ex N v7=0,
mln{s, 1_:372)\0}, v > 0.
(A6) For all € > 0, there exists a constant d. > 0 such that
oG . . )
|52 0515 € L] = |Gy (513 € Lng)| < Gclum, £ m € 2%,
J
where

60)\0 1 }
€2X5(29)%F +1)7  4(2¢)% 7

0 <6, §min{4
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Now we define some spaces. For each € > 0 and u, v € £2, we define the inner products

k
(u,v)sr =0 Z(Bju, Bjv) + (Au, v)

J

I
=

-

=0 Y (Bju,B;v)+ Z AmUmUm, 6=1— @'y € [0,1]
Jj=1 mezZk €
and
(U, 0)sxe = 6_1( _152 Bju, Bjv -1 Z AUV -
meZk
By (Al) and (A2), the three norms || - ||, || - ||5>\7 I - llsxe are equivalent to each other. Let

Gre = (. )ne), E=0x0, H=10, x,
then E, H are Hilbert spaces with the norms:
1w, 0) % = llul® + [lol?, ¥(u,v)" € E,
)T = lullZa + )2 = e8I Bul2 + e 3 A, + [0]2, ¥(u,0)T € A.

meZk

For the positive delay number ¢ > 0, write the Banach spaces (3 = C([-9,0],¢?), Ey =
C([-9,0], E) and Hy = C([—9,0], H) with norms, respectively, as follows:

(Il = _sup lu(@)I?,  Vu() € £,
(), v (D), = luCOIE + oGOz, Yul),v(-)T € By,
1Cu(-), v () I, = s @[55 + 10Oz (), ()T € Hy.

By (A3) and the Bochner-Amerio criteria, the sets {go(- +7)}rer, {96(- +7) }rer are both precom-
2

pact in Cy(RR, ¢%) [4]. Thus H(go) and H(g)) = {go(-+7) :r € R}nb(ﬂu ) are compact in Cy(R, £?).
We set

T(r):g—=T(r)g=g(-+r), VYg&H(g) reR,
then {T(r) }rer is a translation group acting on H(go), (r, g) — T(r)g is continuous and T'(r)H(go) =
H(go) for all r € R.

Finally, we present the equivalent vector forms of systems (1.1)-(1.2). By (Al) and the Lax-
Milgram theorem the operator (I +yA)~! exists and it is linear bounded from ¢? into ¢2: ||(I +
VA)” ||L 2,2) <

For 6 € [, 0] t € R, we write u = (Um)mez, AU = (AmUm)mez, f(0) = (fm(u]j € Lng))mez,

h(u(t = 9)) = (hn(um(t = 9))mez, 9(t) = (gm(t))mez, we(0) = u(t +0) = (unm(t + 0))mez,
u(0) = u(t+6) = (U (t+0))mez. Then (1.2) can be written as the following family of first order
delay lattice systems with initial condition:

= Fo(u(0),t), t>, 0¢€[=1,0], g€ H(go),

ur(0) =u(r+6)=uo.(0), 7€eR,el[-1,0], (2.1)

where
Fo(ug(0),t) = (I +~vA) " [—Au(t) — Mu(t) — f(u(t)) — b (u(t —9)) + g(t)], (2.2)
(I 4 AYi+ Au+ X+ f(u) + b (ult —9)) = g(t), 127, g € Hlgo), (2.3

and (1.1) can be written as the following family of second order delay lattice systems with initial
conditions:
eli + 4+ yAu+ Au+ du+ f(u) + h(u(t—9)) =g(t), t>7, g€ H(go),

ur(0) =u(r +0) =uop.(0), u (0)=u(r+0)=u1,(0), 7€eR, e[-0,0] (24)
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For a fixed g € H(go) and € > 0, let u.(t) be the solution of (2.4), set
Ve =it e, Uer(8) = uclt+0), veolf) =v(t+6), 0€[=0,0, teR (2.5)
where ¢ is defined in (A5). Then problem (2.4) is equivalent to the following vector forms:
Ve(t) + Hpe () = Fe(thes(0),1), t>7, 0. €[=0,0], g € H(go), T €R,
De(r)(0) = e(r +0) = (uc(T +6),  ve(T+0))" = (ucr(8),ve,- ()7,
where 1 (t) = (ue(t), ve(t)T, e s = (et ver) T,
Hetpe(t) = Hete,t(0)

(2.6)

- ( Luc(t) = vel?) )
L (t) + (1 = Lyeg) Aue(t) — Leg(1 — eo)uc(t) + (1 — g0)ve(t) + vAve(t)] )’

0
000 = (s s 0) 20 ) + 20
3. EXISTENCE OF UNIFORM ATTRACTORS

We first consider the existence of uniform attractors for the family of continuous processes
defined by the solutions of (2.1) and (2.6) on the spaces ¢2 and Hy, respectively. Then based on
the transformation (2.5), we obtain the existence of a uniform attractor for the family of continuous
processes of solutions ¢ ¢(-) = (uet(+), e s(-))T of (2.4) in Ey.

Theorem 3.1. For the initial value problem (2.1), if (A1)—(A5) hold, then for each g € H(g,),
7 € R, and u.(-) € €%, (2.1) has a unique solution u(-) = u(t,7,u () € €% existing on t €
[T, 4+00), ut(+) is continuous in u.(-) and u(-) = u(-, 7,u,(0)) € C([r—3, +0), £)NC (|1, +00), £?),
0 € [—9,0]. Moreover, the solution maps:

US(t,7): 03 2 u, (1) = w(?) = ult,myur (1) €65, t>7, TER, (3.1)
generates a continuous process {UJ(t, )} > on €3 and the family of continuous processes
{US (t, 7) }i>r.9em(g0) POSSESSES 0 unique compact uniform attractor A?(go):

H(g,)

Ao 7 = Ugeryg) A8, = Uger(g) Ao C 65, VEER, (3.2)

where
Al = {ut cug(5) = u(t 4 ) : [<0,0] — £? is the global solution of (2.1),

us()lez <70, VEE R}

with the invariance in the sense that U§ (t,7)AL . = Al , fort > 7,7 € R andrg = 2 ”gf\uz + Hb:\”2.
: : 0

Proof. (i) By (A3), for any g € H(g,), g is almost periodic on R and H(g) = H(g,). By (Al)-
(A5) and the linear boundedness of (I + yA)~! from ¢2 into ¢2, it follows that for 7, t € R,
T >0,0¢€ [—9,0], u(0) = u(t +0), Fo(ue(-),t) is continuous from €2 x [r,7 + T into ¢* and
locally Lipschitz in u:(-). Therefore, for any u.(-) € ¢3, (2.1) has a unique (locally) solution
u(:) = u(,1,u-(0) € C(r — 9, Tomax), £2) N CH([7, To max), ), 0 € [=9,0], Tomax > T and
w(-) = u(t, 7,u,(-)) is continuous in u,(-) for t € [1,To max) [9, 2I]. u(t) satisfies the initial value
and integral equation:

u(1)(0) = u(r, 7,ur(0)) = u-(0),

u(t) = u-(0) +/ Fo(us (), s)ds,

for 0 € [—9,0] and t € [7,Tp max). Taking the inner product of u(t) = u(t,7,u,(-)) € 2 (t > 7)
with (2.3) and by (A1)-(A5), we have
d a a A
N 0
Z (@I +~ D IBu@P) + Alu@)l? + 7 > I1B;u@)|*) + 5

Jj=1 Jj=1

lu(®)]1? (3-4)
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< 2y gy 4 2900 L e, >,
0 Ao

(3.5)
where [|b]|> = 3, o5, b2, < 0o, and

lgll? = sup > g () <llgoll? = sup > Gomlt) < oo

mezk

mezk
Applying Gronwall’s inequality on [7,¢] (t > 7) to (3.5), we obtain
lu)l* < (lu(r ||2+WZHB u(r)[|?)e A=)
(3.6)
2
+ 2L£L AﬁHuT( )H2 —“A(t—7) + 0 7“0 t> T
AoA 27
Thus, for 8 € [—9,0], set t + 6 instead of ¢, it holds from (3.6) that for ¢t > 7
k
Jutt + )12 < ()P + 7Y I1Bju(r)2) e
j=1
2L2 - - - 2 (37)
+ =L (4|2 M= M=) L T0 g >,
AoA K

lu(t +O)1* < lur ()2, t+0<T.
So TO,max =

+00, and the solutions maps (3.1) generate a continuous process {U§ (¢t,7)}¢>- on £
By the definition of {T'(r)},cr, we have

USt+r7m+71)=Ul "¢, 1),

Vg € H(g,), t>7, 7, r €R.
By (3.7),

2L? %93 5

wr (1% < (JJur ()% + Bu(r)|]? + Z=2eN|u, 2)6”6_A(t_f)+*0
e )12 < (Jlur C)11 ”le” WPt S Ol 2 (39
=Bt (O)IE), >

1)

where b%(t, 7,u,(-)) is continuous in t. Let 7 € R, ¢V, ¢@ € H(g,), ur (), u @ (e t>r,

D () = u(t, 7,99, uP (), j=1,2

k(t, 7,90, g ulV (), uP () = u(t, T, g™

y US) ()) - u(t7 T, 9(2)7 uS_Q) ())7
then
(I +~A)ik+ Ak + Me+ f(u™M (1) — fF(uP (1))
+ h(uM (t —9)) — h(u® (t — )
=00 gD, 127 >
ke (0) = uM (@) —ul? (), TeR,e[-0,0.
By (3.8),

1F () = F@P @O < (g + 12 0> (152, 7, [ O3 |+ 116 7, [l ()l ) ID w12

Taking the inner product of k(t) € £2 (t > 7) with (3.9) and applying Gronwall’s inequality, we
have

k ~
Is@I2 < (162 +5 D 1Bn(r)[2) e I ot
j=1

2 . T ~
n 2L;, 5, ()% / o= [ Coltm)dl g,. (3.10)
AO P Jr—

4 ¢ t &
g = g [ e Gt ¢
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where

4 -
Colt,7) = A~ et D22 (Io(t, 7, [[ul N2+ 16t 7 [uf? ) ).

Setting t + 6 instead of ¢, where 6 € [, 0], it holds from (3.10) that
It + 01 < Gatt,7) (I (VI + 19 —g@2), 127, (311)

where
~ -~ 4 < t .~
Cl (t, T) = max {Clo(t7 7'), )\76)\19/ e fv‘ Co(l’T)dldT},
0 T

~ : 202 559 [T ta
Cro(t, ) = (1 + yk(2mo +1)%ad)e e fr ol T%W/ e r Gttty
0 T—9
and (3.11) implies that {Ug(¢,7)}i>r.gem(go) is a family of continuous processes from £3 x H(go)
into £2.

(ii) Let By = {u(:) € £3 : u()llez < o} C ¢% (independent of (7,g) € RxH(go)), then by
(3.8) , By is a uniformly bounded closed absorbing ball of {Ug(t,7)}i>r gem(qo) and there exists
Tp, > 0 such that for any g € H(g,), T € R, t —7 > Tp,, U§(t,7)Bo C By. Additionally, by (2.2)
and (3.8), it holds that there exist positive constants by, by (independent of (g,¢,7) ) such that
foranyt > 7,7 €R, g € H(g,),

IU§(t,7)Bollie = sup  [lue()llez
utEUg(t,‘r)Bg
= sup sup |lu(t + 0)|| < bo,
utEUo(t,T)Bo 96[719,0] (3.12)
sup sup || Fo(u(0), )| < b1

ut €Ug (t,7)Bo 0€[—19,0]

(iii) Choose a smooth increasing function o € C*(R4, [0, 1]) that satisfies
0(s)=0,0<s<1, 0<p(s)<1,1<s5<2,
o(s)=1,s>2, 0(s)] <Cp, s€RL,Co>0.

Let g € H(g,), T € R, u-(-) € By,
wlt) = U3 (4, 7y () = 0ty 7,1r()) = (i (b7, 07 (D)) € 2 £ 7.

B (3‘12), lu@®)|l < bo, |Ju(t —I)|| < bo, ||u(t)|| < by for ¢ > 7. Let K be a positive integer,
= o("% lml| U, & = (Zm),,ezx- Taking the inner product of (2.3) with x in (2, we have

d
az (H7 +’YZBU

meZk
| LMo llmll
3.13
03 3 bt 00 Smat + 2 5wl 813
mEZ" mezk
2
iy a0 e L S g Y B, iz
mezk O lIml>2K Iml>25

where ¢; = w(lﬁ + 3b2). Applying Gronwall’s inequality on [r,] to (3.13), we have

1202 5 5
S oz (1) < (3 + vkad(amo + 1770 4 L 2ERAE) =30
meZk K A Ao

(3.14)

1 2 C1 2
—i—f(—su E ,2nr + —=+2 E bm), t>T.
A0 TGE g ( ) K
[lm[|>K lm||>K
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Hance, set ¢ + 6 instead of ¢ in (3.14), § € [, 0], we have

Z g(@)u%(t%—@)Srle:\ﬂe_:\(t_”—i— }( sup Z Gin (7 +*+2 Z b, )

mezk 0 7R | n>K ml[>K

where r1 = r¢ + vka3(2mo + 1)%r3 + %%}iewr%. By (A3) and (A4), the compactness of H(g,) in

Cy(R, £2), it follows that for any n > 0, there exists Ko(n, go,70) € N (independent of g € H(g,))
and Ty(n,r9) > Tp, > 0 such that

5 oz i +0)

mezk
< re?e M) Lgup sup 2 Z g (t)+~cl —i—g Z b2
teR g€M(50) Mo iS¢ M A s
2
< %, VK > Ko(n,90,70), t>7+To(n,m0), 7€R.

Thus,

w3 WO = s Yk (t+0)

OE=000 o 520 (1, 90,0) P00 im) > 20 (m,90,r0)

2
S%v vUTG-BO, t2T+TO(77,T'O)'

(iv) For each fixed 7 € R, any sequence {t, }Zoﬁ C [¥,400) with ¢, — +o0 as n — oo, any
sequence {u,},'> C By and any sequence {g,},;/> C H(g,), we use Arezla-Ascoli theorem to
prove that the sequence {ugiifT = Ud" (tn + 7,7)u, },-25 has a convergent subsequence in ¢2. By
(3.12), it follows that {u,(:il)r +29 is uniformly bounded in ¢2:

sup ||u§i'jHHez = sup sup ||u(g")(tn +740)| < bo. (3.15)
1<n<+oo <n<+oo —9<0<0
Taking 6y, 65 € [—9,0] with 6; < 05, where ¢, + 61 > 0, by (3.12), we have

tn+7402
Hu,ﬁglf(%)—u,ﬁglf(%)\\—Ht 0 Fo(u{®)(8), gn(s))ds|| < 1162 — 61], Vn,
nt+7+601

which implies the equicontinuity of {ugz’fT +o% in £2. For any n > 0, by (iii) and t,, — +oo as
n — 0o, there exists Ko, € N such that for n > Ky, it follows that ¢, > Ty(n, By) and

sup S Ut ) un)m(0)
OE[=90] ||| >2K0 (1,90,70)
2
n /]7
= sup > ‘“giﬁr,m(ew =
o€l

90 m | > 2K (n,g0,70)
By (3.15), the set

F(Qn (g9n)

n 4K, , , k
0,tn+7 (0 {“§i+r m(0) = (ug, " (0)) | <20 (n,g0,70) € R (4Ko(m.90,m0)+1) }

is precompact in R(4Ko(1.90.70)+1)k apd Fgg:)+7(9) can be covered by finite closed balls with radius 4

centered at the points in F(() ! )+ (9) C RAKo(m90,m0)+ 1)k Tt follows that for any n > 0, {ul(tgiT e
(gn)

is precompact in £2. So {u)"’ 1227 has a convergent subsequence in €2 Since By is absorbing in
05, {US (8, ) Yz rogeriq,) 18 umformly (wr.t. g € H(g,)) asymptotlcally compact in £3.
(v) According to [, [16] and (i)—(iv), {Ug (¢, 7) }i>r,gem(g0) POSSESSES & unique compact uniform

attractor A (90 satisfying (3.2)—(3.3). The proof is complete. O
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Remark 3.2. In view of [3, [4] 27], for any g € H(gp), t € R, {Ag?t}teR is the pullback attractor
of {UJ(t,7)}+>- and

Af ;= {utl{us(-),t € R} is a complete bounded trajectory of {Ug (t,7)}i>r}

= Nyr>0Us>»UJ (t,t — 8) By C By C £5.
that is, for all g € H(go), t € R, Af, is compact in (3; for all t > 7 € R, UJ(t,7)Af . = Af ;
for all B C B(£3), lim_ o0 dn(U§ (t,t — 5)B, AJ ;) = 0; moreover, if u; € Af,, then there exists
ur € Af . such that UJ(t, 7)u, = u; for t > 7 € R and [ue(-)[|;z < Cy (constant) for all ¢ € R.
We consider the system (2.6), for € > 0 and . in (A6), and can see that
1 g0 0.6(2N3(29)%F +1) 51
=1-26.(29)% > =, § =2 - <70 = .
ﬂ ( q) — 27 1 2 )\0 [4? 2 ]7 N €

Theorem 3.3. For the initial value problem (2.6) and € > 0, if (A1)—(A6) hold, then for any
g€ H(g,), T €R and ¥, (-) = (uer(-),ve-(-))T € Hy, (2.6) has a unique solution
we,t(') = we(thv we,r(')) = (ue(t77-7 1/)677'(.))71)6(1;) T, wS,T(')))T S H7 t Z T,
Ye1(+) s continuous in e () and
'1/15() :7,[16(37',1)/)677-(9)) € C([T_ﬁ»'f'oo)v ) 1([77+OO)’H)7 AS [_1970]'
The solutions maps UZ(t,7) : Hy — Hy, Ve () = Yer(-) = Ye(t, 7,7 -(-)), t > T, generate

a continuous process {UZ(t,7)}i>r on Hy, and {UZ(t,7)}i>r gen(g,) POSSEsses a unique compact

uniform attractor KCe Hso) C Hy defined by

KMo

€0 €o

o = UQEH(QO)’C Ugen(g /CE o C Hy, VteR,
where
K= {U’e,t(') =P (t+ ) : [-9,0] = H is the global solution of (2.6),
e (), <Tet € R}.

with UY(t, 7)K¢, = K2, fort > 7, g€ H(g,), and rc = 2\/uiﬁ

lgol|? + 22 [8]I2
m

Proof. (i) By (A1)-(A6), it holds that for any 7 € R, g € H(g,) and any ¢, -(-) € Hy, the system
(2.6) has a unique local solution ¥ ¢(-) = Ve (t, 7,0e +(*)) = (we(t, 7y e+ (+), ve(t, Ty 0e - (1)) T for t €
[7—7 Tl,max)v ws,t(') is continuous in 1/15,7(') and we() - ws('77—7 1/15,7(9)) € C([T - 197T1,max)7H) N
CH[7, T1 max), H), 0 € [—1,0], where 1. (t) satisfies the following initial value and integral equation

’(/)6(7—)(9) = we,‘r(e)’ AS [_1970]7

t (3.16)
we(t) = we,r(o) +/ (Fe(d)e,s(e)hg(s)) - He1/’e,s(0))d5a t € [Tv Tl,max)-
Taking the inner product of 1 (t) with (2.6) (¢ > T max) in H, by (A1)-A6), we have
d 2 . € )\
L+ 2 Gl (6715 € Fong) + )] + o e
meZk
+ pll[Ye(t, 7 HH +- Z m(Ue,j(t, )| € Imq) + by )] (3.17)
mEZ’C
212 5 2 5 2X0,, 10
— = > T
< 2Lt = D)+ Zlgol? + 22, 127
Applying Gronwall’s inequality to (3.17) on [7,t] (t > 7), we obtain
2(2q + V¥ p(||ue (7 u ()2 2|52 b
¢ (3.18)

2)\0

AL e, (e 4 2 g+ nWtw
) TG peps -
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Set ¢ + 6 instead of ¢ in (3.18), where 6 € [—1,0], it holds that for ¢t > T,
L 2@+ DFp(lucmDlluc(mI 2[00 -
et +0)113 < (Iee () I + S Jertemnlto)

€ €
4L2 2

by (B tT 4 e ihg>r

€0 9 2

(3.19)

and for ¢t + 60 < 7, |[¢(t + 0)]|3 < ||¢ET()||%119 Thus, Ti max = 400, the solution ¥.(-) €
C([r—9,+00), H)NCY((1,+00), H), 6 € [-1,0] and the solutions map UJ(t,T) (t > ) generates
a continuous process {UZ(t,T)}1>- on Hy. Moreover,

eI, = sup [t +0)|%

0e[—v,0]
k
— sup ( Z||Buet+9)||2 f\lue(t+9)||,\+||ve(t+0)|\)
0€[—9,0] (3.20)
2(2¢ + D*p([fue(m) Dllue(m)lI*  2[bl? —ult—r
< (ler O, + : 4 2O g mten

4L%L [ 2 —u(t—7) 72
L e (Hlze™ + 1< 5 N 20,7 e ()17

2.), t>T,

where D2(t, 7, |[Yer ()% ,) is continuous in ¢. Let 7 € R, g, g € H(g,), 5172(), 227)() € Hy,
@szmwﬂw>“N»y—1z
he(t) = fe(t, 7,90, g 00 (), 02 () = v (1) = P(1), t=,

then
() + Here() = FL(05)(0), 90 (1) = Fu(wl (0), 90 0), 127, s21)
re(r)(0) = w()(0) =9 2/0), 0€[-9,0], T €R.
Taking the inner product of k.(t) € H (t > 7) with (3. 21), we have
d ~ € )\
D 5e0) By + Celt, eI + 232 (1) — 2 (1) o
3.22
2L
< M (= 9)) — ul)(t ~ 19)||2 + *Ilg(” -9 >,
€ €
where
~ € 4 € ~
Ce(t;7) = 52 = =24+ 1) p*({ | = (be b, 7, 16 OIF, ) + be(t 7 192 ()I1F,)))-
2¢ )\0 )\O
Applying Gronwall’s inequality to (3.22) on [7,¢] (¢t > 7), we obtain
Iwe(®)I* < llme(r)[3ge™ I
4L2 T .
F R0 B [ e ety
€0 T—1
4 ¢ ¢
+ 2 = g2 [ eSO ¢z
Thus B
et + 2 < Cen(tr) (I Ol + 19 - g@[2). 127, (323
where

Contr) = mac {0 4 Wb [T o prirrgy Lo [ o= pitnigy ),
’ Mo Jr " o T
and (3.23) implies that {UZ(t,7)}i>r gem(go) is continuous from Hy x H(go) into Hy.
(ii) From (3.20), the family {UZ(, 7) }+>r gen(q,) has a (g, 7)-uniformly bounded closed absorb-
ing set B, = {¢ € Hy : |¢¥||g, < re} C Hy and for any g € H(g,), 7 € R, there exists Tp, > 0
(independent of (g,7)) such that Uyeyy(q ) UZ(t, 7)Be C Be for t > 7 + Tp,. Moreover, by (3.20)
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again, there exists a positive constants by, b1 (independent of (g,t,7)) such that for ¢t > 7,
9 € H(g,),

|U2(t, 7) sup e,
Pt EUE(t,7)Be
= sup sup  |[Ye(t +0)|[rr, < Do
G €US (t,7)B. 0€[~9,0] 7 (3.24)
sup sup HFE(we,t(a)at) - He/(/)e(t)” S bl,e-

'@be,teUeg(t’T)Be 06[_"9a0]
(iii) Fix g € H(g,), T € R, e +(-) € Be, and let

Ye(t) = Uf(tﬁ)we,r(-) = c(t, T, wéﬂ'('))
= (ue,m(tﬂ-v we,r('))ave,m(tﬂ-) we,T(')))?neZ € Hy, t>r,
|m| Im|

be the solution of equation (2.6). Let K € N, wp, (7 Jems Zem = 0(F )Vem, Je =
(we, )™ = ((We.m ) mezk» (Ze;m)mezr )T+ Taking inner product (-, )y of (2.6) with 7., we have

d m 2 m '
%{ Z Q(H H)|¢em|H+ Z g(%)((}m(uw’b S Imq)‘ben)}
mezk mEZk
oA m
+ 20 5 oz o
mezk
m m ;
+M[ > (H || el + Z g(%xam(umy eImq)+b3n)] (3.25)
mezk mezZk
212 | b9
< ZCh el (- =
; (T Jtem(t =9) + —
mezZk
9 2
+2 AO S, txT
P ml>K l[ml|> K

where ¢y = Comoa%(2m0+1)2, 0o = 2+2€/\0—|—)\L0, 03 = 2(/\056252k+’y02k+50252k)+5552(2q)2k6’0q.
Applying Gronwall’s inequality on [7,¢] to (3.25), we obtain

> o

mezZk
2 €(2¢+ 1)k € 4L bt
§@+4ii—lmmﬁﬂﬁ+W%+—%WMAM%eW  (3.26)
€ )\0 )\0 €0 9
4503, 16 L8
+ —su b t>T.
“eoK e TEE Z

llm H>K 0 > K
Hance, set t 4 6 instead of ¢ in (3.26), where 8 € [—9, 0], we have

ST [emlt+0)3

lm||>2K
2(2 1)k 2 41?2
sQ%Jiilmsiw+ﬂW+—%%®MfWﬂ (3.27)
Ao Ao €0
165 8>\0
+ —=b;. su Wi, t>T.
coK 60 re% Z Z

m||>K lml|>K

Thus, by (3.27), for any n > 0, there exist Tc(n,r.) > T, > 0 and K.(1, go,r.) € N (independent
of g) such that for ¢t > 7+ Tc(n,7¢), T € R,

2
"
sup  sup  sup > (U2, m)e,)m (O < -
9€H(90) Ver EB OO )12 K (1, g0,7)
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(iv) For any fixed 7 € R, any sequence {t,}/> C [J,+00) with ¢, — 400 as n — oo,
any Sequence {en}12 € B, and any sequence {g,}, > € H(g,), we show that the sequence
{wegt’;JrT = Ugﬂ( + 7, 7)en }129 has a convergent subsequence in Hy. By (3.24), it follows that
{ Egt” 7 by is uniformly bounded in Hy. Taking 60y, 02 € [—1,0] with 6, < 65, where t,, +-6; > 0,
by (3. 16) and (3.24), we have

( o " +T+62 e (
||¢€gt7;+7'( ) egtz—&-T 02 || - ||/ egtz,—‘rT(g) ) - 61/}egtn +T( ))dS”
+7+61
< by elb2 — 64,
which implies that {wigt" '+ 1124 is equicontinuous in Hy. For any n > 0, by (iii) and ¢, — 400
as n — 00, there exists K., € N such that for n > K. ,,, t, > 7+ T.(n,r.) and
sup Yo Ut T ) m (0)
OEI=9.00 )| > 2K (1,90,70)
gn) Uk
= Ssup Z |wetn+‘r( )| S Z
=000 i > 20 (1,90,70)
It follows that { egt" .+ (0)}.12] is precompact in H. By Arezla-Ascoli theorem, { egt" o fny has

a convergent subsequence in Hy, that is, {U¢(t,7)}i>rgen(g,) 18 uniformly (wrt. g € ’H(gn))
asymptotically compact in B C Hy.

(v) Tt is the results from (i)—(iv) and [4} 16} 27]. The proof is complete. O
) if e(t) = Vet (-) = (ue(t),ve(t))T € Hy, where v, = 1 + Sy, is a

By the transformation (2.5
) = @et(-) = (uei(), e s(-))T is the a solution of the following system

solution of (2.6), then ¢.(¢
(3.28) in By = C([—9,0),

E):
(t) (@Et( ) (t))a tz’l', gGH(QO)’ TGRa (3 28)
Pe,r(0) = (uE’T(G),ue’T(H))T = (Ue,r (T +0), e (7 + 9))Ta 0 € [-9,0], '

where
~ U (t)
Flper(8). 9(6)) = (—iuea) ~ Ly Ai(t) — LAu(t) - imt))

0
T (‘i (ue(t)) — Th(uc(t —9)) + ig(t)>

and [[oc(t)1% = [uc@®)* + @ (@)* < dallvpe(®)][7-
From Theorem 3.3 and (2.5), we have the following result.

Theorem 3.4. For the system (3.28) and € > 0, if (A1)-(A6) hold, then for any g € H(g,),
T E€R and pe,(*) = (te (), e -(-))T € Hy, (3.28) has a unique solution
Pet() = 0t 7,067 () = (et T, er () ety 7, 0 (D)) T € By, t 27,
©Ye.t(+) is continuous in e r(-) and
e(-) = e, 7, 0e,(0)) € C(IT = 9, +00), E) N C ([, +00), B), 0 € [-0,0].
The solution maps
VIt 7): By = By, 9er(l) = ¢ei() = 0e(t, 7 0e-(), =,

generates a continuous process {VI(t,7)}i>r on Ey, VI(t,7) = DU (t,7)D,, where
Dc:(a,b)" — (a,b+ =2a)" is a reversible operator from E into E.

(90)

{‘/eg(t7T)}t2T7g€'H(g0) possesses a unique compact uniform attractor A Z{ C Hy given by

H Y
A) = Ugert(ay) ALt = Ugen(gy)ALo = Do Ke @) cHy, vier, (3.29)
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where

Al = {{ape,t Ve t(r) = @e(t + ) : [-9,0] = E is the global solution of (3.28),

l0ea Ol < 7o for t € R},

with VI(t,7)AS . = A?, fort > 1, g€ H(g,) and 7c = \/%7\/52||go||2 + Aod2[|b]|%.

4. PRIOR UNIFORM ESTIMATIONS OF SOLUTIONS

H(gy)

To 1nvest1gate the upper semicontinuity of uniform attractors Ae and the relationship be-

tween A6 %) and AO (90) as € — 07, in this section, we establish some prior uniform estimations
for the Solutions of (3.28) with respect to finite e. Let the conditions (A1)—(A6) hold and € > 0
be a given positive constant.

Lemma 4.1. For each e € (0,€], g € H(g,), t € R and a constant ¢; >0, let s > 0,
Pe(t) = Pet() = @e(t,t — 5, 0ct-5("))
= (uee() s ()" = VIt = 8)pei—s(-) € By,
be a solution of (3.28) with the initial value pet—s(-) € Ey satisfying
elltie—s( )7z + lluee—s()lIf = sup  (ellie(t — s+ 01 + [lue (t — s +6) %)
—9<6<0

(4.1)
S q1, S Z 0.

Then there exist positive constants My = M, (€), i = fi(€), Ci(q1,€), K1(&, q1), Ka( q1), My =
Ms(€,q1), M3 = M3(€,q1) > 0 (independent of (g,t,€)) and Ca(q1,€), C3(q1,€) > 0 (depending on
€) such that for any s >0, t € R,
ellties ()72 + lluee (V7 = sup (elle (t+0) * + Jue (t+6) 1)
9<6<0

< Ml + Cl(qla )6 #Sa

t+1 B t ~
/ e (r)|*dr < K1(E, q), / e (r)[dr < Ka(E qv),
t 7

€||ﬁe,t(')||3§ + Hae,t(')||§2 = _sup. ( i (£ 4 0) [|* + [|ie (¢ +6) [1?)
~0< ) (4.2)
< M, + 02((]1, e)e 1,

elliic.e (172 + e (V72 + lluee (7 < Ms + Cs(qr, e)e™. (4.3)
Proof. For g € H(g,), t € R, let ve = e + Zuc, where e 4(-) = (ue,(-), we(-))" is the solution
of problem (3.28) with initial data ¢.;—s(-) € Ey satisfying (4.1), then () = ves(-) = Ve(t,t —

8, Detpet—s(1)) = (uc(t),ve(t))™ € Hy (s > 0) is a solution of problem (2.6). It follows from (3.20)
that

A
sup (22 uclt +0) |2 + loc(t +6) )

0e[—v,0]
2(2¢ + 1)k (t— A(t=9)%  2|b?
< (H'(/Je t—s(')quﬁ + ( q+ ) p(”u ( - S)”)HU’( S)H + HGH )epﬂe—ps (44)
412 2 2\
+ e“ﬂHuet é)()||de‘“9e ne —HQOHQ 0||b||2 s> 0.
€0 HE
Multiplying both sides of (4.4) by €, we have
sup  (Aolluc(t +0)[1> + elloc(t + 6)|1%)
0e[—9,0]
< (elltpei—s()lr, + 220 + D*p([Jue(t — )| l|ue(t = o)[I* +2[[b]|*) e+ (4.5)
4L2€ 2 2\
¢ luea—s (e e ™ + Sllgol* + 2Bl 5> 0.
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Since (1 + 3eXg)? > 12e)g,and ? <20 <L

Ao Ao
4 2

A .
sup (Aol\us(tw)\\z+6Hve(t+9)ll2)>30Hust()llp+ et ()17
0e[—v,0]

. Ao
ellvel? < 2ellic] + 7Huell2,
A
elee—s Ol < (ag(2mo+1)%k + A"+ 2+ 50)%

y (A5)—(A6), we have

A _

o o IA4350) y=0, . _ <0

~ | min{t, 2o} >0 H ’
Iy 1(1+3en) S0 )

et < e%ﬁ, e M < e m Vee (0,¢, s>0, (4.6)

By (4.5) and (4.6), we have

A -
FluceO)lE + Sl E < Cular, e ™™ + Mo(e), s 20,
where
9 € 2 2 0 )\0 k iQﬂ
Ci(q1,) = ( (ad(2mo + 1%k + X +2+ 2> +2(2 + 1) p(Var) ) €3
+ALZeF P )gr + 2plPe F,
Mo(€) = 16/illgo|I* + 872 Xob]>.
Hance
lue.eOi7s + ellie (I < Crlqr,©)e™ + My, Vs >0, tE€R, (4.7)
where )
2C1(91,€) 20y ()
_ T 7 M — =0\
Ci(q) min{ o, 1}’ 1= inho, 17
In particular,
et (izg + ellivee ()l < Ci(g1,€) + My, VEER, €€ (0,8, (4.8)

Then

I = Aue(t) = Mue(t) = f(ue(t)) = h (uc(t = 0)) + g(t)|I?
< 5lag(2mo +1)* + (X%)? + (2¢ + 1)**p*(V/Ci(a1,©) + M)(Cr(ar,€) + M)
+5L3(C1(q1,€) + M) + 4l|gol* = K3(€,q1), s> 0.
Taking the inner product of (2.4) with ., we have

d . =
e lic®? + [ac®)]? < K3(€.q1), tER, s>0. (4.9)

Integrating both sides of (4.9) over [¢,¢ + 1] and [t — ¥, t], respectively, we have

t+1 N
e([[ae(t + D = flac(®)]?) +/ [ (r)|[*dr < K3(€,q1), t € R,
t
and

ellae(®)* = llie(t —9)?) + /H9 lie(r)|*dr < 9K3(€ 1), t € R.
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Then for t € R, € € (0,€], we have

t+1 B
/ i ()| Pdr < Beqr) + ell ()]
t

< K3(&,q1) + Ci(q1) + My = K1 (5, q1),

(4.10)

and

t
e (r)||2dr < VK. € q1) + €|t (t —9)|?
JREE] s(Ear) + elic(t ~ D) i

< IK3(e,q1) + Ci(qn) + My = Ka(€,q1).
(ii) Set [|¢']|* = supyer Yopmez 9ia(t) < 00, Cc(t) = tc(t). We differentiate equation (2.4), with
respect to ¢, to obtain
e+ Gt VAL 4 ACH A+ (D0 finj(egli € Tma)Ces)
. mezZk
J€Imq (412)
+ (Mo (tem(t = 9)) Cean(t = 9))imeze = g (1),

where
Ce(t — ) = iie(t — )
1
= —(g(t = 5) = h(uc(t =5 =) = f(ue(t = 5)) = Auc(t - 5)
— Au(t — 8) — YAU(t — 8) — Uc(t — 8)),
Cepms(l) =tey—s(0), s>0, teR, 6el-9,0]
Then
sup  |[Ce,e—s(0)]1> + €| S (t — )12
—9<6<0
< % 2+ 7lllgl? + Li, + (20 + 1) p*(Var) + (A°)? + ag(2mo + 1)*k)
+ % ('kaag(Qmo + 1)4 + 1) = q2(q1, €).
Let

’56 = Ce + E?OCE; /lLe = (Cez’ae)T-

Then problem (4.12) can be written as
Yo+ Hoe = Fe(dhe, g’ 1), tER, s>0, (4.13)
where
H ’l; _ E?Oge - f)e
TG (- 20 AG = Beo(l - 20)Ge + (1 - 20)B + AT
- - 0
FE € ,7t = .
We.g1) (—1<2j€1mq Fiiatesli € Imq><e,j>mew>
+( 0 )
%[(h;n (ue,m (t—1)) Ce,m (t = 9))mezr + gl(t)] )

By computations,
~ EO ~ 1 -
2o v > 25l + - el (114)
Taking the inner product of (4.13) with Y. in H, by (4.14), we get that for t € R, s > 0,
d, ~ 2 €0 7 2
—||Ye(t —||Ye(t
3+ IO

< 2 (20 + )2 (Vrla) T M) (0 + L et — 9)] + )

€

(4.15)
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By (4.10) and (4.11), for t € R, we have
t+1 t+1 t
[ =< [ i o) P [ o) P
t t t—1

§K1(E,Q1)+K2(E7Q1)> €€ (076]7

and
/ (g + )% p2(\/Crqn) + M) liee(r) |2 + L2 [t (r — 9) 12 + | gh)12)dir
(2 + 1% 2 (V/Cr(qr) + M) KA (& 1) + L2 (B (& 01) + Ko, q0)) + b 12)

= EK4(€7 Q1)7 €€ (Ova'

By applying Gronwall’s inequality on [t — s,t] (s > 0) to (4.15), we have

<

Hm\w

- - I B 3
[0 17r < et — )| 7" + “Ka(@q)(1+20), teR, s=0.
where

- . A
llges—s (), < (aB(2mo + 12k +20)Cers()IE +2elams OO + 2 cers ()3

A
< (ap(2mo + 1%k + 2" + 2+ T)aa(ar. ).

Therefore,
)\0 €
7||Ce,t(')||§§; + §||Ce,t(')||§3;
< sup ellye(t+0)[F
0e[—9,0]
Ao L
< (ag(2mo +1)%k + X+ 2+ 5 D)agalqr, €)e ™ + Ku(6, 1) (1 +201), 5> 0.
Then )
elliiee (I3 + laee (7 < Mz + Calqr, )™, tER, s >0, (4.16)
where
2K, (€, q1) (1 + 271) 4+ 2a2(2mo + 1)%k + 200 + X\o
2 min{\g,1} 2@ €) min{Ag, 1} a2(q1,€)
Combining (4.7) and (4.16), we conclude (4.3). The proof is complete. O

Lemma 4.2. For any g € H(g,), t € R, s >0, e € (0,€], let
(pe,t(') = 306(t7t - S, (Pe,tfs(')) = (ue,t(')7u6,t('))T = Vg(t t— S)Spe,tfs(') € E19;

be the solution of problem (3.28) with the initial value pet—s(-) € A? s C B., where B, = {v e
H19 : H/l/)”Hﬂ S 7:6} C Hﬂ. Then
(i) there exists a positive constant My > 0 (independent of (g,¢€)) such that

clicaCII, + NieaO)IE, + leca O <20, Vi€ R, e (0,4 (417
(ii) For any n > 0, there exists a I2(n) = I2(n, go) € N (independent of (g,€)) such that

sup > |ucem(@))? <n?, VtER, €€ (0,4
—19<6<0
SOZ0, i >215 ()

Proof. (i) Since VI(t,t —s)A?, = A?, and o, (-) € A, C B., we have
Pet(r) = et +) = (we(), e () = VIt t = 5)pes-s(-) € A, C B,

and

Yer() = (Wer()ea() + Pres()T = U2t = 9)eros()
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=DVI(t,t —5)pei—s() €KL, S B, VteR, s2>0,
is the solution of (2.6). Again,

ellte e (V2 + e OI1

2e 2 . €0 2
< min{ro, 17 (”uﬁ,t*S(')Hé)\e + [|tte,e—s () + ?Ue,tfs(')Heg)

26 2 4)\0
< -
< oy g Il + 22 ?)
324 . _ .
< m (2||90||2 + /\0||bH2) = q4(€) = q4 (independent of (g, ¢)).

Therefore, by Lemma 4.1, there exist positive constants My = My(€), @ = ii(€) (independent of
(g,€)) and a finite positive constant Cy(qq4,€) (depending on €) such that for any ¢ € R,

elie ()12 + e O, + luea()E < M+ Calane™, ¥s 20, e (0.2

So, for each fixed ¢ € R and ¢ € (0, ¢, there must exists a large number 7. > 0 (depending on ¢)
such that Cy(gy,€)e " < My for all s > 7, thus

ellties ()72 + et (7 + lluee (e < 2Ma,  VEER, €€ (0,8, (4.18)

which implies that for any solution ¢, (-) of (3.28) in A? ,(-), (4.17) holds.
(ii) Similar to the proof of (3.27), it follows from (4.18) that there exists positive constants
qs(My, €) > 0, gs(My,€) > 0 (independent of €) such that for K e N, t € R, s > 0, 0 € [, 0],

S Wemlt+ 0 = 3 (Bl +0)+ A (i +6) + 02, (1 4 6)

€
[lm||>2K |m||>2K
Im|
S Z (K )‘wem(t+9)|H
mezZk
My, € . My, e 1 A
< elMed o, 0l 10, P2
€ r
0 0 el H>K 0K
Thus,
Ao o € .9
Z (7u5m(t + 9) + §ue,m(t + 9))
||m|>2K
< >« (t+0)+ev?, (t+0))
HmH>2K
<e Z ‘¢e,m(t+0)|3{
Ilm||>2K
s, Pgs(My, €) 2
< g5(My, €)e —&—T—i—musup Z g2, (1) + 8ot Z b,
"R iz K l[m | >K
and
2 o Nofigs(My,E) 32
> (b4 6) < 2 gs(My @)oo 4 2000 M0E) | 32, g2.(r)
’ Ao K Ao" reR
Il >25 Imil= & (4.19)
+160 Y b2,
lm||>K

It follows that Vn > 0, there exists Is(n) = I2(n, My, go,€) € N and To(n) = Ta(n,, My, €) =

max {0, % In %ﬁ‘f;"a} (independent of (g, €)) such that for any t € R, K > Iy(n), s > Ta(n), we
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have
2 (M peis < T Aofgs(Ma,6) Msup I ACER I <
AO 5 4, = 2> K reR m = 27
ml|>K [lm||>K

u2m(t—|—0) < 77 , teR, K >1Iyn), s> Ta(n).
[lm||>2K

In particular,

sup sup E [ue m(t+0)|> <n?, Vee (0,8.
teR —9<0<0
lm||>212(n)

The proof is complete. U

I;Lemma 4.3. For each ¢.(-) = (uc(+), We(-))T = ((wem () mezrs (@em () meze)T € Al ) it holds
that

18O, = lluc()II7 + 1De()lI7 < 2Ma, Ve € (0,4,
and for any n > 0 there exists Is(n) € N (independent of (g,€)) such that

sup Z [ue m(0))> = sup Z [ue m(0))? < n?, Ve e (0,8.

—9<6<0 —9<6<0
= = Iml>213(n) = = ImlI>213(n)

Proof. From Theorem 3.4, it follows that

H ~
Ae (@) _ UQGH(QO)AZO C B. C Hy.

Thus, for any fixed @¢(+) = (ue(-), We ()T = ((Uem (*))mezrs (Wem(-))mezr)T € Al there must
exists a g € H(g,) such that ¢.(-) € A? ;. According to Lemma 4.2, the statements in Lemma 4.3
follow. O

5. UPPER SEMICONTINUITY OF UNIFORM ATTRACTORS
Now, we consider the upper semicontinuity of the uniform attractor AZ{(%) C Ey C 03 x 03 for
the second order delay lattice system (3.28) as € — 07. When € = 0, (2.4) is the first order delay

lattice system (2.1) with a uniform attractor A, Hao) /2. Notice that A0 anq Azf(go)
in different spaces, to compare the relationship between them, we should take them in the same

are

bigger space ¢4 x {%. For this purpose, basing on the structure of AZ{( and AH(QO we introduce
the following set in ¢% x ¢%:

B ={ (1) ) € AL, and (6) = (7 +94) = ule) = Nalt) = (0]

+ (I +5A) 7 [hu(t = 9)) + g(8)),0 € [-9,0] |
CEy, teR, gecHt(g,),
where Af , is embedded into B, as the first component, that is, T, Bj, = A{,, where II; :
(ur(-),wi(+)) € €2 x €2 — uy(-) € £3 is the projector from ¢3 x % to (3. Since (I +~vA)"'g(-) €

CHR,0?) and (I +~yA)"H—Au — A — f(u) — h (u(t —¥))] is continuous in u, so for fixed ¢ € R,
that B, is compact in (3 x 5. Set

Bg{(go) = Ugen(g) B+ C Eo.

Then .A;L(g“) is naturally embedded into B;rl(g“) as the first component, that is, HlBg{(go) = .Az){(g").
In the following, we show the upper semicontinuity:

lim dh(.AH(g") Bg{(go)) =0.

e—0t
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Lemma 5.1. Let € > 0 be a given constant, conditions (A1)~(A6) hold and {e,} > C (0,¢€
be an arbitrary sequence of positive numbers with €, — 0 as n — 4o0. Taking 90(”)(«) =

(u™ (), w™(NT € Az-i(go), then there exists a subsequence {n;} of {n} such that
" " i N _ H ‘

P () = (), ()T = @), 5()T = B() € By (n; = +00)  strongly in Ey.
Proof. By (3.20), A% = Uycp(0) A 4 = Ugenio) A% 4+ C By, for all t € R, then for any
n € N and any goé )() = (u(()")(~),w(()n)(-))T € Az-i(go)7 there exists ¢g(") € H(g,) such that @én)(-) =
() ()l ()T € AL 5. Let

() =Mt +) = o™ (10,057 ()
= (" ()" ) = (e (), e, ()
= V2" (1006 () € By
be the solution of problem (3.28) with value gpo ( ) e Ag 0 at t = 0; that is, cpg )() satisfies
@™ + 0™ 4y AG™ + Au™ 4 x4 fu™) +h( (¢ — 19)) =g (1),
u" (=0 = ug” (0), i (Vom0 = w5 (6), 6 € [~0,0].
By Theorem 3.4, we have
AV =M +) = @O " ()T € AL C B, C By, VEER (5.1)

By the compactness of H(g,) in Cy(R, £2), there exists a subsequence of {g(™ (-)},7> (still denoted
by {g™)}29) such that

g™ () = g(-) € H(g,) (n — +00) strongly in Cy(R, £2).
In what follows, we prove that there exists a subsequence {n;} of {n} such that
P () = @ (), ()T = (@t ), + )T € BY, (ni — +oo) in By
for t € R, by using Arezla-Ascoli theorem and dlagonal sequence method.

From (5.1) and Lemma 4.2(i), {(pgn)( 0) = o (t +0)},12 is uniformly bounded in £2 x ¢2 with
respect to 6 € [—1,0] and ¢ € R:

=sup sup  sup (||, (t+0)[* + uc, (t+6) ) < 2My.

sup sup [t ()II%

Ey

teER 1<n<+o0 teER 1<n<+o00 —9<O<0
In particlualr,
sup sup ([ (1) |1° + ([ (8) [|IP) < 2My. (5.2)
teER 1<n<+oo
Let J; = [—i,1i], i € Z4, be a sequence of closed interval of R such that J; C J;41, UzeZ+ J; =

Taking 1, to € J;, by mean value theorem and (5.2), we have

[ (1) — u™ (t2)|| < V/2Maylts — ta,

which implies the equicontinuity of {u(™(-)};/>5 ¢ CY(R,¢?) in C(J;,¢?). Since E is a Hilbert

space, by (5.2), there exists a subsequence of {(u(™ (¢), (™ (t))T} (denoted still by {(u(™ (¢), (™ (t))T})

and ((t),w(t))T € E such that
(W™ (1), a™ENT = (at),a(t))T (n — 4o00) weakly in £2 x £2, Vt € R,
sup [[(a(t), a(t)) " |72 e < 2Ma.
teR
By Lemma 4.3, for any n > 0, there exists I4(n) € N (independent of €, and n) such that for

uM () = (u) (1)) mez,
sup > [luP ()] < 0

teR
llml>La(n)
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It obtain from the characteristics of a precompact set in £2 that {u(™ (¢)}°, is precompact in 2,
i.e. for any fixed t € R, {u(™(#)}°2, has a subsequence u(")(t) strongly convergent to @(t) in £2.
By Arezla-Ascoli theorem, {u(™(-)} has a subsequence {u(™V)(-)}72 such that

u™V () 5 a(-) (n— 4o0) strongly in C(Jy,£?)
and for any k € N, {u(™?(-)} has a subsequence {u(™**1)(.)} such that
w5 a(s)  (n— 4o0)  strongly in C(Jiy1, ).

Taking the diagonal sequence of {u(™%(-)}, we obtain a subsequence {u(*9(-)} = {u(*)(.)}, where
; — +00 as ¢ — +o00 and the corresponding subsequence €(;,) — 0 as i — +o00, such that for any
compact subset J C J; C R,

w9 () = a(-) (i — 400) strongly in C(J, £?),
w9 (- —9) = a(- —9) (i = +o00) strongly in C(J, ), (5.3)
W) = a(-) (i — +o0)  weak star in L=(J, ).
By (2.4),

A0 (£) = (T + 7 A) = e (£) — Auti) (£) — Al (£) — F(ul(1))]

) . 5.4
+ (I +~A)" =h (u(“)(t - 19)) +gU )], teR (54
By (4.17) and 0 < ¢;, — 0" (i — 400), we have
sup /e, | (1) || < v/2My < 0o, lim sup(e;, ||i()(2)]]) = 0. (5.5)
teR i—=+00 teR

By (5.4), (5.5), the continuity of f and h, the bounded linearity of A and (I + vA)~!, for any
compact subset J C R, ¢t € R, it follows that

a(t) = (I +7A) " [=Aa(t) — Malt) — f(@(t) — h(alt = 9)) +g(t)] (5.6)

as 1 — 400. By the uniqueness of the limit, it follows that
() =u() = (I +yA) " [=Au() — Ma() = f(a()) = h(@( - 9) +30)] € (R, €%).  (5.7)
Thus, u(t), t € R, is a global bounded solution for the system (2.1) defined on R. By (5.2), we

have

sup sup (||la(t+0)]*+ ||a(t+0)|*) < 2M;.
teR —9<6<0

By the structure of Agt and Bg,t, (a(t +-),a(t+-)" € Bg,t for any t € R. From (5.6), (5.7), we
have

(Wl (), 400 (¢ + )T = (e + )it + )T (i +oo)) in By for t € R.

Specially,
6 () = (ug” (g (DT = (ug (), ()"
— (0(-), ()" = po0(-) € Bly € By'®) (i = +00) in Ey.
The proof is complete. O

According to Lemma 5.1 and the contradiction, we obtain the following upper semicontinuity
H(go)
of Ac 707,

Theorem 5.2. Let conditions (A1)—(A6) hold. Then

lim dh(AZ{(go),B;ﬂ(g“)) =0 and lzm€_>0+dh(H1AH(g°) Ag{(go)) =0.

e—0t
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Proof. Iflim, o+ dp (.Az{(go), Bg{(g")) # 0, then there exist 19 > 0 and {e, };/>5 € (0,1] with e, — 0
as n — +o0, and (u(™(-),w™ ()T € AZV(QO) such that

(@™ (). 0™ ) B 2, n e Ly (5.8)
From Lemma 5.1, we obtain that {(u(™(-),w(™(-))T},cz, has a subsequence converging to a point
in BS{(QO), which contradicts with (5.8). O
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