Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 56, pp. 1-10. Title: Positive solutions for n-dimensional fourth-order systems under a parametric condition Authors: Pablo Alvarez-Caudevilla (Univ. Carlos III de Madrid, Spain) Cristina Brandle (Univ. Carlos III de Madrid, Spain) Devashish Sonowal (Univ. Carlos III de Madrid, Spain) Abstract: We establish the existence of positive solutions for a system of coupled fourth-order partial differential equations on a bounded domain $\Omega \subset \mathbb{R}^n$, $$\displaylines{ \Delta^2u_1 +\beta_1 \Delta u_1-\alpha_1 u_1=f_1({ x},u_1,u_2),\cr \Delta^2 u_2+\beta_2\Delta u_2-\alpha_2 u_2=f_2({ x},u_1,u_2), }$$ for $x\in\Omega$, subject to homogeneous Navier boundary conditions, where the functions $f_1,f_2 : \Omega\times [0,\infty)\times [0,\infty) \to [0,\infty)$ are continuous, and $\alpha_1,\alpha_2,\beta_1$ and $\beta_2$ are real parameters satisfying certain constraints related to the eigenvalues of the associated Laplace operator. Submitted August 14, 2024. Published May 29, 2025. Math Subject Classifications: 35J70, 35J47, 35K57. Key Words: Coupled system; higher order operator.