Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 55, pp. 1-21. Title: Non global solutions for non-radial inhomogeneous nonlinear Schrodinger equations Authors: Ruobing Bai (Henan Univ., Kaifeng, China) Tarek Saanouni (Qassim Univ., Buraydah, Saudi Arabia) Abstract: This work concerns the inhomogeneous Schrodinger equation $$ \mathrm{i}\partial_t u-\mathcal{K}_{s,\lambda}u +F(x,u)=0 , \quad u(t,x):\mathbb{R}\times\mathbb{R}^N\to\mathbb{C}. $$ Here, $s\in\{1,2\}$, $N>2s$ and $\lambda>-(N-2)^2/4$. The linear Schr\"odinger operator is $\mathcal{K}_{s,\lambda}:= (-\Delta)^s +(2-s)\frac{\lambda}{|x|^2}$, and the focusing source term can be local or non-local $$ F(x,u)\in\{|x|^{-2\tau}|u|^{2(q-1)}u,|x|^{-\tau}|u|^{p-2} \big(J_\alpha *|\cdot|^{-\tau}|u|^p\big)u\}. $$ The Riesz potential is $J_\alpha(x)=C_{N,\alpha}|x|^{-(N-\alpha)}$, for certain $0<\alpha0$ gives an inhomogeneous non-linearity. One considers the inter-critical regime, namely $1+\frac{2(s-\tau)}N