Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 09, pp. 1-17. Title: Global boundedness in an indirect chemotaxis-consumption model with signal-dependent degenerate diffusion Author: Chun Wu (Chongqing Normal Univ., Chongqing, China) Abstract: In this article, we consider the consumption chemotaxis system $$\displaylines{ u_t=\Delta(uv^\alpha)+au-bu^\gamma, \quad (x,t)\in\Omega\times(0,\infty), \cr v_t=\Delta{v}-uvw, \quad (x,t)\in\Omega\times(0,\infty),\cr w_t=-\delta w+u, \quad (x,t)\in\Omega\times(0,\infty), }$$ on a smooth bounded domain $\Omega\subset \mathbb{R}^n$, $n\geq 2$ with homogeneous Neumann boundary conditions, where $a>0$, $b>0$, $\gamma\ge2$, and $\delta>0$. We shown that for sufficiently regular initial data, the associated initial-boundary value problem possesses global bounded classical solutions. Submitted November 6, 2024. Published January 22, 2025. Math Subject Classifications: 35K35, 35B40, 35A01, 92C17. Key Words: Global boundedness; indirect chemotaxis-consumption; signal-dependent motility.