Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 01, pp. 1-17. Title: Existence and boundedness of solutions for a parabolic-parabolic predator-prey model Authors: Fengxiang Zhao (Yantai Univ., Yantai, Shandong, China) Haotian Tang (Univ. of Macau, Taipa, Macau, China) Jiashan Zheng (Yantai Univ., Yantai, Shandong, China) Kaiqiang Li (Yantai Univ., Yantai, Shandong, China) Abstract: This article concerns the fully parabolic pursuit-prey chemotaxis system $$\displaylines{ u_t=\Delta u-\chi\nabla\cdot\left(u\nabla w\right) +u\left(\lambda_1-\mu_1 u^{r_1-1}+av\right), \quad x\in\Omega,\; t>0,\cr v_t=\Delta v+\xi\nabla\cdot\left(v\nabla z\right)+v\left(\lambda_2-\mu_2 v^{r_2-1}-bu\right),\quad x\in\Omega,\; t>0,\cr w_t=\Delta w-w+v,\quad x\in\Omega,\; t>0,\cr z_t=\Delta z-z+u, \quad x\in\Omega,\; t>0, }$$ in a bounded domain $\Omega\subset\mathbb{R}^{N}$ $(N\geq1)$ with homogeneous Neumann boundary conditions, where $\chi$, $\xi$, $\lambda_i$, $\mu_i$, $a$, $b$ are positive constants and $r_i>1$ $(i=1,2)$. We show that if $(r_1-1)(r_2-1)\geq1$, the above system exists a unique global and bounded classical solution for all appropriately regular nonnegative initial data, which extends the previous global existence result in Qi and Ke [13]. Submitted April 11, 2024. Published January 04, 2025. Math Subject Classifications: 35K20, 35K55, 92C17. Key Words: Pursuit-evasion; parabolic-parabolic; boundedness; classical solution.