Electronic Journal of Differential Equations, Vol. 2024 (2024), No. 44, pp. 1-12. Title: Caffarelli-Kohn-Nirenberg type problems with Berestycki-Lions type nonlinearities Authors: Giovany M. Figueiredo (Univ. de Brasilia, Brazil) George Kiametis (Univ. de Brasilia, Brazil) Abstract: In this article we use a Palais-Smale sequence satisfying a property related to Pohozaev identity to show the existence of solution for the elliptic Caffarelli-Kohn-Nirenberg type problems $$ -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u) + |x|^{-bp^{*}}|u|^{p-2}u= |x|^{-bp^{*}}h(u) \quad \text{in }R^N $$ and $$ -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u) = |x|^{-bp^{*}} f(u) \quad \text{in }R^N, $$ where $1