Electronic Journal of Differential Equations, Vol. 2023 (2023), No. 50, pp. 1-13. Title: Evolution equations on time-dependent Lebesgue spaces with variable exponents Author: Jacson Simsen (Univ. Federal de Itajuba, Minas Gerais, Brazil) Abstract: We extend the results in Kloeden-Simsen [CPAA 2014] to $p(x,t)$-Laplacian problems on time-dependent Lebesgue spaces with variable exponents. We study the equation $$\displaylines{ \frac{\partial u_\lambda}{\partial t}(t)-\operatorname{div}\big(D_\lambda(t,x)|\nabla u_\lambda(t)|^{p(x,t)-2}\nabla u_\lambda(t)\big) +|u_\lambda(t)|^{p(x,t)-2}u_\lambda(t) =B(t,u_\lambda(t)) }$$ on a bounded smooth domain $\Omega$ in $\mathbb{R}^n$, $n\geq 1$, with a homogeneous Neumann boundary condition, where the exponent $p(\cdot)\in C(\bar{\Omega}\times [\tau,T],\mathbb{R}^+)$ satisfies $\min p(x,t)>2$, and $\lambda\in [0,\infty)$ is a parameter. Submitted February 18, 2023. Published July 24, 2023. Math Subject Classifications: 35K55, 35K92, 35A16, 35B40, 35B41, 37B55. Key Words: Non-autonomous parabolic problems; variable exponents; p-Laplacian; pullback attractors; upper semicontinuity.