Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 77, pp. 1-15. Title: Kirchhoff systems involving fractional p-Laplacian and singular nonlinearity Author: Mouna Kratou (Univ. of Imam Abdulrahman Bin Faisal, Dammam, Saudi Arabia) Abstract: In this work we consider the fractional Kirchhoff equations with singular nonlinearity, $$ \displaylines{ M\Big( \int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}}dx dy\Big) (-\Delta)^s_p u \cr = \lambda a(x)|u|^{q-2}u +\frac{1-\alpha}{2-\alpha-\beta} c(x)|u|^{-\alpha}|v|^{1-\beta}, \quad \text{in }\Omega,\cr M\Big( \int_{\mathbb{R}^{2N}}\frac{|v(x)-v(y)|^p}{|x-y|^{N+sp}}dx dy\Big) (-\Delta)^s_p v \cr = \mu b(x)|v|^{q-2}v +\frac{1-\beta}{2-\alpha-\beta} c(x)|u|^{1-\alpha}|v|^{-\beta}, \quad \text{in }\Omega,\cr u=v = 0 ,\quad\text{in }\mathbb{R}^N\setminus\Omega, }$$ where Ω is a bounded domain in RN with smooth boundary, N> ps, s in (0,1), 0<α<1, 0< β< 1, 2-α-β<p≤ pθ<q<p*s, &p*s=2N/(N-2s) is the fractional Sobolev exponent, λ, μ are two parameters, a, b, c in C(overlineΩ) are non-negative weight functions, M(t)=k+lt&theta-1 with k>0, l,θ≥1, and (-Δsp is the fractional p-laplacian operator. We prove the existence of multiple non-negative solutions by studying the nature of the Nehari manifold with respect to the parameters λ and μ. Submitted September 11, 2022. Published November 21, 2022. Math Subject Classifications: 34B15, 37C25, 35R20. Key Words: Kirchhoff-type equations; fractional p-Laplace operator; Nehari manifold; singular elliptic system; multiple positive solutions,