Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 61, pp. 1-14. Title: Ground state solutions for fractional p-Kirchhoff equation Authors: Lixiong Wang (Central South Univ., Changsha, Hunan, China) Haibo Chen (Central South Univ., Changsha, Hunan, China) Liu Yang (Hengyang Normal Univ., Hengyang, Hunan, China) Abstract: We study the fractional p-Kirchhoff equation $$ \Big( a+b \int_{\mathbb{R}^N}{\int_{\mathbb{R}^N}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}\, dx\, dy\Big) (-\Delta)_p^s u-\mu|u|^{p-2}u=|u|^{q-2}u, \quad x\in\mathbb{R}^N, $$ where $(-\Delta)_p^s$ is the fractional p-Laplacian operator, a and b are strictly positive real numbers, $s \in (0,1)$, 1 < p< N/s, and p< q< p^*_s-2 with $p^*_s=\frac{Np}{N-ps}$. By using the variational method, we prove the existence and uniqueness of global minimum or mountain pass type critical points on the $L^p$-normalized manifold $S(c):=\big\{u\in W^{s,p}(\mathbb{R}^N): \int_{\mathbb{R}^N} |u|^pdx=c^p\big\}$. Submitted April 11, 2022. Published August 19, 2022. Math Subject Classifications: 35J20, 35J60. Key Words: Variational method; L^p-normalized critical point; fractional; p-Kirchhoff equation; uniqueness.