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STABILITY ANALYSIS OF THE PEACEMAN-RACHFORD

METHOD FOR PARABOLIC EQUATIONS WITH

NONLOCAL CONDITIONS

MIFODIJUS SAPAGOVAS, JURIJ NOVICKIJ, REGIMANTAS ČIUPAILA

Abstract. We consider an efficient finite difference method solving of two-

dimensional parabolic equations with nonlocal conditions. The specific feature

of the investigated problem is that the nonlocal condition contains the values of
solution’s derivatives at different points. We prove the stability of this method

in specific energy norm. The main stability condition is that all eigenvalues of
the corresponding difference problem are positive. Results of computational

experiments are presented.

1. Introduction

In this article, we solve a two-dimensional linear parabolic equation using finite
difference method (FDM),

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ], (1.1)

where Ω = (0, 1)× (0, 1), with nonlocal boundary conditions

γ
∂u(0, y, t)

∂x
=
∂u(1, y, t)

∂x
, γ ∈ (0, 1], (1.2)

u(x, 0, t) = u(x, 1, t) = u(0, y, t) = 0, (1.3)

and initial condition
u(x, y, t) = ϕ(x, y), (x, y) ∈ Ω. (1.4)

Intensive research of differential problems with various nonlocal conditions started
after Cannon and Kamynin had published their works [5, 16]. The authors, instead
of classical boundary condition u(0, t) = µ(t), formulate nonlocal condition∫ x

0

u(x, t)dx = E(t),

where E(t) is the known amount of heat in interval (0, x) at time t.
To the authors’ knowledge, boundary condition of type (1.2) first time was for-

mulated in [14] for one-dimensional parabolic equation. It was observed that mathe-
matical models with nonlocal conditions (1.2) are encountered in physical problems
describing processes of particles’ diffusion in turbulent plasma.
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For the one-dimensional problem

∂u

∂t
=
∂2u

∂x2
, 0 < x < 1, t > 0,

u(x, 0) = u0(x),

u(0, t) = 0, γ
∂u(0, t)

∂x
=
∂u(1, t)

∂x
, γ ∈ (0, 1],

the stability of finite difference schemes (FDS) is proved in rather complex energy
norms (see [9, 10, 12, 13] and references therein). The structure of FDS spectrum
is investigated in detail for this purpose. The equivalence between these energy
norms and L2-norm in vector space is proved in [10].

Subject of various type differential problems with nonlocal conditions like the
uniqueness and existence of a solution, numerical methods and applications, spec-
trum analysis is widely investigated (see e.g. [2, 8, 18, 19, 21, 33] and references
therein).

Problems with various types of nonlocal conditions are considered to be one of
modern areas of research in theory of differential equations and numerical analy-
sis. Mentioned research area is bound together with applications in science and
technology. Nonlocal problems have special feature. The structure of spectrum of
differential or difference operators with nonlocal conditions is more complicated and
substantive compared to respective spectrum of operator with classical (Dirichlet or
Neumann) boundary conditions (see e.g. [3, 17, 23, 28, 33] and references therein).

Problem (1.1)–(1.4) with f = 0 is solved in [11] using Crank-Nicolson difference
method with approximation error O(h2 + τ2). Stability of used method is proved
in special energy norm

‖u‖D = (Du, u)1/2,

where D is symmetric positive definite matrix depending on eigenvectors and asso-
ciated vectors of difference problem.

It is well known that stability is one of the most important properties of numerical
method both for theoretical research and practical applications. Another important
point arises for the two- and multi-dimensional parabolic problems with nonlocal
conditions: how to solve finite difference scheme efficiently at every time layer tk,
when the method is implicit.

The main task of this article is to construct efficient FDM for the two-dimensional
parabolic equation (1.1) with nonlocal boundary condition (1.2). The example of
FDM for problems with classical (Dirichlet or Neumann) boundary conditions is
Peaceman-Rachford alternating direcion implicit (ADI) method.

In this article we modify Peaceman-Rachford ADI method by applying it to the
special nonlocal condition (1.2) and investigate stability conditions. For this pur-
pose we use results about spectrum structure of one-dimensional difference problem
with nonlocal conditions.

To the authors’ knowledge, ADI method for the parabolic equation with (1.2)
type nonlocal condition has not been investigated earlier. For the two-dimensional
parabolic and elliptic equations with other type nonlocal conditions ADI methods
theoretically and practically were investigated in [7, 27, 30, 34].

This article is organized as follows. In Section 2 we formulate Peaceman-Rachford
ADI method for differential problem (1.1)-(1.4). We prove that approximation er-
ror is O(h2 + τ2). In Section 3 we investigate stability of the method in a special



EJDE-2022/44 PEACEMAN-RACHFORD METHOD FOR NONLOCAL PROBLEMS 3

energy norm. We provide numerical examples for the ADI method in Section 4.
Remarks and generalizations are provided in Section 5.

2. Numerical method and approximation error

First, we define

Unij := U(xi, yj , t
n),

where xi = ih, i = 0, N ; yj = jh, j = 0, N ; h = 1/N ; tn = nτ , n = 0,M ; τ = T/M ;
N,M ∈ Z.

We denote differences approximating derivatives of solution as

δxU
n
ij :=

Uni+1,j − Unij
h

, δx̄U
n
ij :=

Unij − Uni−1,j

h
, δtU

n
ij :=

Un+1
ij − Unij

h
,

δ2
xU

n
ij :=

Uni−1,j − 2Unij + Uni+1,j

h2
, δ2

yU
n
ij :=

Uni,j−1 − 2Unij + Uni,j+1

h2
.

We formulate Crank-Nicolson difference method for the problem (1.1)–(1.4). We
emphasize that approximation accuracy of nonlocal condition (1.2) is O(h2 + τ2).

Un+1
ij − Unij

τ
=

1

2

(
δ2
xU

n+1
ij + δ2

yU
n+1
ij

)
+

1

2

(
δ2
xU

n
ij + δ2

yU
n
ij

)
+ f

n+1/2
ij ,

i, j = 1, N − 1,

(2.1)

Un+1
Nj − UnNj

τ
=

1

2

( 2

h

(
γδxU

n+1
0j − δx̄Un+1

Nj

)
+ δ2

yU
n+1
Nj

)
+

1

2

( 2

h

(
γδxU

n
0j − δx̄UnNj

)
+ δ2

yU
n
Nj

)
+ γf

n+1/2
0j + f

n+1/2
Nj , j = 1, N − 1,

(2.2)

Un+1
0j = Un+1

i0 = Un+1
iN = 0, i, j = 0, N, (2.3)

U0
ij = ϕij , i, j = 0, N. (2.4)

Equation (2.1) is written in standard form changing second derivatives with
differences. It approximates differential equation (1.1) at all inner Ω points i, j =
1, N − 1 with accuracy O(h2 + τ2), under the assumption that the solution of
differential problem is sufficiently smooth.

Equation (2.2), approximating nonlocal condition (1.2), is derived in the follow-
ing way. First, condition (1.2) is rewritten as

γ
(
δxu

n+1/2
0j − h

2

∂2u
n+1/2
0j

∂x2
+O(h2)

)
= δx̄U

n+1/2
Nj +

h

2

∂2u
n+1/2
Nj

∂x2
+O(h2). (2.5)

We make an assumption that differential equation (1.1) is valid not only in inner
Ω points, but also on boundaries, when x = 0 and x = 1 (i.e. i = 0 and i = N).
This assumption is usual for FDM if boundary condition has solution’s derivative
with respect to spatial variable [24]. In accordance with this assumption, we re-
place second order derivatives with respect to x in (2.5) by their expression from
differential equation (1.1). Further step is approximation of differential expression:
derivatives ∂u/∂t and ∂2u/∂y2 are replaced by differences with accuracy O(h2+τ2).
We also use the fact that Uij

n+1/2 = 1
2

(
Un+1
ij + Unij

)
+O(τ2). We obtain equation
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an approximating nonlocal condition (1.2) with accuracy O(h2 + τ2) by eliminat-
ing approximation errors. After some trivial transformations we obtain difference
equation of form (2.2).

Now we rewrite equations (2.1) and (2.2) in the form

Un+1
ij − Unij

τ
=

1

2

(
δ̃2
xU

n+1
ij + δ2

yU
n+1
ij

)
+

1

2

(
δ̃2
xU

n
ij + δ2

yU
n
ij

)
+ f̃

n+1/2
ij , (2.6)

where

δ̃2
xU

n
ij :=

{
δ2
xU

n
ij , i = 1, N − 1,

2
h

(
γδxU

n
0j − δx̄UnNj

)
, i = N,

(2.7)

f̃
n+1/2
ij :=

{
f
n+1/2
ij , i = 1, N − 1,

γf
n+1/2
0j + f

n+1/2
Nj , i = N.

(2.8)

Remark 2.1. As noted above, difference equation (2.2) approximates nonlocal
condition (1.2) with accuracy O(h2 + τ2), assuming equation (1.1) is valid and on
boundary x = 0 and x = 1. The advantage of this approach is that difference
equation (2.2) formally (but only formally) has the same structure, as difference

equation (2.1). Actually, term δ̃2
xU

n
Nj is not an approximation of ∂2U/∂x2 at the

point (xN , yj , t
n). But, this term is a kind of generalized difference analogue of

derivative. Expanding Un1j and UnN−1,j in the Taylor series, when |∂3u/∂x3| ≤ C

and nonlocal condition (1.2) is valid, we have

δ̃2
xU

n
Nj =

2

h

(
γ
Un1j − Un0j

h
−
UnNj − UnN−1,j

h

)
=

2

h

(
γ
∂Un0j
∂x

+ γ
h

2

∂2Un0j
∂x2

−
∂UnNj
∂x

+
h

2

∂2UnNj
∂x2

+O(h2)
)

= γ
∂2Un0j
∂x2

+
∂2UnNj
∂x2

+O(h).

(2.9)

Similarly, we can write another form of this expression

δ̃2
xU

n
Nj = γ

∂2Ũn0j
∂x2

+
∂2ŪnNj
∂x2

, (2.10)

where Ũn0j = U(x̃0, yj , t
n), x̃0 ∈ [0, h]; ŪnNj = U(x̄N , yj , t

n), x̄N ∈ [1 − h, 1]. This
remark will be used for evaluation of ADI method’s aproximation error.

Now, taking into account approximation form of nonlocal condition (1.2) in
Crank-Nicolson method, we construct a following alternating direction method for
differential problem (1.1)–(1.4) (Peaceman-Rachford ADI method)

U
n+1/2
ij − Unij

τ/2
= δ2

xU
n+1/2
ij + δ2

yU
n
ij + f

n+1/2
ij , i, j = 1, N − 1, (2.11a)

U
n+1/2
Nj − UnNj

τ/2
=

2

h

(
γδxU

n+1/2
0j − δx̄Un+1/2

Nj

)
+ δ2

yU
n
Nj

+ γf
n+1/2
0j + f

n+1/2
Nj , j = 1, N − 1,

(2.11b)

U
n+1/2
0j = 0, j = 1, N − 1, (2.11c)

Un0j = Uni0 = UniN = 0, (2.11d)
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Un+1
ij − Un+1/2

ij

τ/2
= δ2

xU
n+1/2
ij + δ2

yU
n+1
ij + f

n+1/2
ij , i, j = 1, N − 1, (2.12a)

Un+1
Nj − U

n+1/2
Nj

τ/2
=

2

h

(
γδxU

n+1/2
0j − δx̄Un+1/2

Nj

)
+ δ2

yU
n+1
Nj

+ γf
n+1/2
0j + f

n+1/2
Nj , j = 1, N − 1,

(2.12b)

Un+1
i0 = Un+1

iN = 0, j = 1, N − 1, (2.12c)

U
n+1/2
0j = U

n+1/2
i0 = U

n+1/2
iN = 0. (2.12d)

The method, described for formulas (2.11) and (2.12), can be rewritten in another
form taking into account (2.7) and (2.8). We will use the following form in further
theoretical investigation

U
n+1/2
ij − Unij

τ/2
= δ̃2

xU
n+1/2
ij + δ2

yU
n
ij + f̃

n+1/2
ij , (2.13)

Un+1
ij − Un+1/2

ij

τ/2
= δ̃2

xU
n+1/2
ij + δ2

yU
n+1
ij + f̃

n+1/2
ij , (2.14)

for i = 1, N , j = 1, N − 1. One needs to solve N -th order system N − 1 times

(for every fixed j = 1, N − 1) with unknowns U
n+1/2
1j , U

n+1/2
2j , . . . , U

n+1/2
Nj to find

U
n+1/2
ij from system (2.13). Similarly, one can find Un+1

ij from system (2.14).

The matrix of system (2.14) is tridiagonal and boundary conditions are of Dirich-
let type. The matrix of system (2.13) differs from diagonal matrix only by one

element (U
n+1/2
1j coefficient in the N − th equation is not equal to zero). Systems

of such type usually arise in solving one-dimensional boundary value problem with
periodic boundary condition [26]. The number of arithmetic operations to solve
systems (2.13) and (2.14) is proportional to N . Therefore, number of arithmetic
operations to find Un+1

ij , when Unij are known, using algorithm (2.13), (2.14) is pro-

portional to N2 (that is proportional to the number of grid points). Such algorithms
are called efficient (or economical, see e.g. [24]).

Each one of the systems (2.13) and (2.14) separately approximates differential
problem (1.1)–(1.4) with approximation error O(h2 + τ).

Now, we prove that the system (2.13)–(2.14) approximates differential problem
with accuracy O(h2 + τ2). For this purpose we use the method described in [24,
Ch. 9, §1] for parabolic equations with boundary conditions of Dirichlet type.

We eliminate intermediate values U
n+1/2
ij from the system (2.13)–(2.14). For this

purpose, we substract eq. (2.13) from (2.14) for every index pair (i, j). For every i
value we have

U
n+1/2
ij =

Un+1
ij + Unij

2
− τ

4
δ2
y

(
Un+1
ij − Unij

)
, i = 1, N, j = 1, N − 1. (2.15)
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By substituting this expression into system (2.13), after some transformations, we
obtain

Un+1
ij − Unij

τ
=

1

2

(
δ̃2
xU

n+1
ij + δ2

yU
n+1
ij

)
+

1

2

(
δ̃2
xU

n
ij + δ2

yU
n
ij

)
− τ

4
δ̃2
xδ

2
y

Un+1
ij − Unij

τ
+ f̃

n+1/2
ij , i = 1, N, j = 1, N − 1.

(2.16)

Systems (2.13)–(2.14) and (2.16) are equivalent.
Now, we can evaluate approximation error of the ADI method (2.13)–(2.14).

Suppose one more assumption is valid (except for the standard differential problem’s
smoothness conditions, which ensure approximation order O(h2 + τ2) of Crank-
Nicolson method)

| ∂5u

∂x2∂y2∂t
| ≤ C.

Then, the corresponding differences are also bounded, and

∣∣δ2
xδ

2
y

Un+1
ij − Unij

τ

∣∣ ≤ C
regardless of h and τ values.The following inequality is also valid (according to
(2.10))

∣∣δ̃2
xδ

2
y

Un+1
ij − Unij

τ

∣∣ ≤ 2C.

Therefore, the ADI method written in the form of (2.16) differs from Crank-
Nicolson method only in O(τ2) term. The approximation error of both methods is
of the O(h2 + τ2) order.

3. Stability of difference scheme

In this section we investigate the stability of the ADI method (2.13)–(2.14) with
boundary conditions (2.11c), (2.12c). First, we rewrite the ADI method in the
matrix form. We define N ×N matrix Λx and (N − 1)× (N − 1) matrix Λy by

Λx =



2 −1 0 · · · 0 0

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 −1 2 −1
−2 0 0 · · · −1 2


, Λy =



2 −1 0 · · · 0 0

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 −1 2 −1
0 0 0 · · · −1 2


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We denote Ix as an N ×N identity matrix and Iy as an (N − 1)× (N − 1) identity
matrix. Now, we construct block matrices

A1 =


Λx

Λx

. . .

Λx

Λx

 ,

A2 =


2Ix −Ix . . .
−Ix 2Ix −Ix

. . .
. . .

. . .

−Ix 2Ix −Ix
. . . −Ix 2Ix

 .

(3.1)

Every row and column of the matrices A1 and A2 has N−1 blocks of order N×N .
We use Kronecker (tensor) product to investigate the eigenvalues and eigenvec-

tors of the matrices A1 and A2.

Definition 3.1 ([32]). Let A = {aij} and B = {bij} be two rectangular matrices
of order m × n and p × q, accordingly. Matrix C of order mp × nq is called the
Kronecker (tensor) product of matrices A and B

C = A⊗B =


a11B a12B · · · a1nB

a21B
. . .

. . . a2nB

· · ·
. . .

. . . · · ·
am1B am2B · · · anmB

 .

We rewrite the matrices A1 and A2 using Kronecker product

A1 = Iy ⊗Λx, A2 = Λy ⊗ Ix. (3.2)

Furthermore, we directly check that these matrices commute

A1A2 = A2A1 = Λy ⊗Λx. (3.3)

Now, we rewrite the systems of difference equations (2.13) and (2.14) with boundary
conditions (2.11c) and (2.12c) in the matrix form(

I +
τ

2
A1

)
Un+1/2 =

(
I− τ

2
A2

)
Un +

τ

2
f̃n+1/2, (3.4)(

I +
τ

2
A2

)
Un+1 =

(
I− τ

2
A1

)
Un+1/2 +

τ

2
f̃n+1/2, (3.5)

where I is (N − 1)N × (N − 1)N identity matrix and

Un =
{
Unij
}
, f̃n+1/2 = {f̃n+1/2

ij }, i = 1, N, j = 1, N − 1.

Expressing Un+1/2 from (3.4) and substituting into (3.5), we have

Un+1 = SUn +
τ

2
S1f̃

n+1/2, (3.6)

where

S =
(
I +

τ

2
A2

)−1 (
I− τ

2
A1

)(
I +

τ

2
A1

)−1 (
I− τ

2
A2

)
, (3.7)

S1 =
(
I +

τ

2
A2

)−1

+
(
I +

τ

2
A2

)−1 (
I− τ

2
A1

)(
I +

τ

2
A2

)−1

. (3.8)
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We further define norms of any matrix and any vector to investigate stability of
difference scheme (3.6). We also formulate theoretical proposition that we need to
investigate stability of the difference method.

Proposition 3.2 ([1, Th. 7.8]). Let ρ(A) be a spectral radius of an arbitrary square
matrix A. If ε > 0 is given, then there exists a matrix norm ‖A‖∗ for which

‖A‖∗ ≤ ρ(A) + ε.

Practically, we use a corollary of this proposition.

Corollary 3.3. For any square matrix A, there exists a matrix norm ‖A‖∗ < 1 if
and only if ρ(A) < 1.

Now, we investigate when the condition

ρ(S) < 1 (3.9)

is valid for scheme (3.6). We find eigenvalues and eigenvectors of the matrices
A1 and A2, as γ ∈ (0, 1). We formulate two eigenvalue problems (for the one-
dimensional difference operator)

ΛxV = µV, (3.10)

where V = {Vi}, i = 1, N , and

ΛyW = ηW, (3.11)

where W = {Wj}, j = 1, N − 1.
Suppose N is even. Then, the eigenvalues of the problem (3.10) are of the form

(see [11])

µ1 =
4

h2
sin2 ψh

2
,

µ2k =
4

h2
sin2

(
πk − ψh

2

)
, k = 1, N/2,

µ2k+1 =
4

h2
sin2

(
πk +

ψh

2

)
, k = 1, (N/2)− 1,

(3.12)

where ψ = arccos γ, 0 < ψ < 1. The corresponding eigenvectors V (k) := {V (k)
i },

i = 1, N of the problem (3.10) are defined as

V
(1)
i = sin(ψih),

V
(2k)
i = sin ((2πk − ψ)ih) , k = 1, N/2,

V
(2k+1)
i = sin ((2πk + ψ)ih) , k = 1, (N/2)− 1.

(3.13)

All the eigenvalues µ1, . . . , µN are positive and distinct and all the eigenvectors
V (1), . . . , V (N) are linearly independent. If N is odd, expressions (3.12) and (3.13)

are the same, except index k, which, in this case, is k = 1, (N − 1)/2.
The eigenvalues and eigenvectors of difference problem (3.11) are of the form

(see [24])

ηl =
4

h2
sin2 πlh

2
, l = 1, N − 1, (3.14)

W (l) =
{
W

(l)
j

}
= {sin lπjh} , j, l = 1, N − 1. (3.15)

All the eigenvalues (3.14) are positive and distinct and the eigenvectors (3.15) are
linearly independent.
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Lemma 3.4. The matrices A1 and A2 have a common system of eigenvectors.

Proof. Using eigenvectors V (k), k = 1, N of the matrix Λx and eigenvectors W (l),
l = 1, N − 1 we construct new vector

U (k,l) = W (l) ⊗ V (k) =
(
W

(l)
1 V (k),W

(l)
2 V (k), . . . ,W

(l)
N−1V

(k)
)′
. (3.16)

Using properties of tensor product (see [32]) we have

(Iy ⊗Λx + Λy ⊗ Ix) (W ⊗V) = (µ+ η) (W ⊗V) .

It means that the eigenvalues and the eigenvectors of a matrix A1 + A2 are µk + ηl
and W (l) ⊗ V (k), respectively.

Further, from the definitions of A1 and U (k,l) directly follows

A1U
(k,l) = µkU

(k,l). (3.17)

Using expressions (3.16) and (3.17) we have

A2U
(k,l) = ηlU

(k,l).

The eigenvectors W (l) ⊗ V (k) of the matrices A1 and A2 are the same. �

Corollary 3.5 ([32]). Since the eigenvectors V (k), k = 1, N of the matrix Λx and
the eigenvectors W (l), l = 1, N − 1 of the matrix Λy are linearly independent, then

U (k,l) = W (l) ⊗ V (k) is the linearly independent system of vectors.

Now, we define the norms of the matrices and vectors that we will use for inves-
tigation of stability of scheme (3.6). We generate the matrix P, which columns are
linearly independent eigenvectors U (k,l) of the matrix A1 (or A2).

We define the norm of any m×m matrix A as

‖A‖∗ := ‖P−1AP‖2, (3.18)

where ‖A‖2 = (max1≤i≤m λi(A
∗A))1/2 is the classical matrix norm and A∗ is the

adjoint matrix. We define the compatible vector norm by the formula

‖U‖∗ = ‖P−1U‖2 =
( m∑
i=1

|Ũi|2
)1/2

, (3.19)

where Ũi, i = 1,m are the coordinates of the vector P−1U. Indeed

‖AU‖∗ = ‖P−1AU‖2 = ‖P−1APP−1U‖2 ≤ ‖P−1AP‖2‖P−1U‖2 = ‖A‖∗‖U‖∗.
For the special (symmetric or nonsymmetric) (m×m) matrix S we have relation

‖S‖∗ = ‖P−1SP‖2 = ‖J‖2 = max
1≤i≤m

‖µi(S)‖ = ρ(S), (3.20)

where J = diag(µ1, . . . , µm), µi, i = 1,m are the eigenvalues and ρ(S) is the spectral
radius of matrix S.

One should not interpret (3.20) as the norm of any nonsymmetric matrix. This
formula means that the norm of any matrix could be defined (see (3.18)) in a way
that for particularly chosen matrix S equality ‖S‖∗ = ρ(S) is valid.

We rewrite the vector norm (3.19) in an other form

‖U‖∗ =
(
P−1U,P−1U

)1/2
2

=
(
(PP∗)−1U,U

)1/2
2

= (DU,U)
1/2
2 , (3.21)

where D is a positive definite matrix. The norm, defined as (3.21), is usually called
energy norm, generated by the matrix D.
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Now, we return to the stability analysis of the scheme (3.6). We have

‖Un+1‖∗ = ‖S‖∗‖Un‖∗ +
τ

2
‖S1‖∗‖f̃n+1/2‖∗.

Since the matrices A1 and A2 have the common system of eigenvectors, then, taking
into account expressions (3.7) and (3.8), we have

‖S‖∗ = ρ(S) = max
k,l

∣∣∣ (1− τ
2µk

) (
1− τ

2ηl
)(

1 + τ
2µk

) (
1 + τ

2ηl
) ∣∣∣ := q < 1,

where µk > 0 and ηl > 0.
Similarly,

‖S1‖∗ = ρ(S1) = max
k,l

∣∣∣ 1

1 + τ
2ηl

+
1− τ

2µk(
1 + τ

2µk
) (

1 + τ
2ηl
) ∣∣∣ < 1,

where µk > 0 and ηl > 0. Therefore, we obtain the classical estimate for solution
of the difference scheme

‖Un+1‖∗ ≤ q‖Un‖∗ +
τ

2
‖f̃n+1/2‖∗, 0 < q < 1, (3.22)

which implies the stability of difference method in norm ‖U‖∗. So, the following
theorem is valid.

Theorem 3.6. If 0 < γ < 1, then the ADI method (2.13)–(2.14) for the differential
problem (1.1)–(1.4) is stable in the norm ‖U‖∗.

Proof. Proof of theorem follows from the above stated investigation. Really, if
0 < γ < 1, then all the eigenvalues µ1, . . . , µN are positive [11]. The eigenvalues
η1, . . . , ηN are positive regardless of γ value. So, ρ(S) < 1 and ρ(S1) < 1. �

Remark 3.7. In this article, the stability of ADI method, with nonsymmetric
matrices A1 and A2, is based on the assumption that eigenvalues of these matrices
are positive. To the authors’ knowledge, first time for the parabolic equations with
nonlocal conditions this assumption to prove the stability of ADI method was used
in [27]. However, several attempts to find suffiecient conditions for the stability or
convergence of the ADI method with nonsymmetric matrices A1 and A2 were in the
past (not for nonlocal boudary problems). One of these results is described in [24,
Ch. 10, § 4.5]. It is proved that ‖S‖ < 1, if (Aαu, u) ≥ δα(u, u), δα > 0, α = 1, 2.
It is easy to see that these assumptions are inappropriate for investigating the
stability of ADI method presented in this article. All the eigenvalues of the matrix
A1, defined as (3.1), are positive. Nevertheless, if u = {ui}, ui ≡ 1, then

(A1u, u) =

N∑
i,j=1

αij = 0.

Therefore, assumption (Aαu, u) ≥ δα(u, u), δα > 0 is not fulfilled.

4. Numerical experiments

Numerical experiments are performed to illustrate and confirm theoretical re-
sults. We consider examples, where exact solution U of the problem (1.1)–(1.4) is
not known. We compare two difference solutions U and U∗. U∗ is obtained twice
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reducing h and τ values. From theoretical investigation we know that approxima-
tion error is O(h2 + τ2). So, it is presumed that if h and τ are reduced twice,
maximum relative error

∆U :=
∣∣∣max0≤i,j≤N U

n
ij −max0≤i,j≤N U

∗n
ij

max0≤i,j≤N Unij

∣∣∣,
should be decreasing four times in each step.

Case 1. γ = 0 (classical boundary condition), f(x, y, t) = 0, ϕ = y(1−y2)(π2 sin π
2x).

h τ
T = 1 T = 5

∆U ∆U ratio ∆U ∆U ratio
0.1 0.1 1.07 · 10−6 1.25 · 10−6

0.05 0.05 2.81 · 10−7 3.81 3.29 · 10−7 3.8
0.025 0.025 7.26 · 10−8 3.87 8.55 · 10−8 3.85
0.0125 0.0125 1.85 · 10−8 3.92 2.20 · 10−8 3.89
0.00625 0.00625 4.66 · 10−9 3.97 5.58 · 10−9 3.94

Case 2. γ = 0.5, f(x, y, t) = 0, ϕ = y(1− y2)(π2 sin π
2x+ γ x

2

2 ).

h τ
T = 1 T = 5

∆U ∆U ratio ∆U ∆U ratio
0.1 0.1 2.83 · 10−6 2.06 · 10−6

0.05 0.05 7.47 · 10−7 3.79 5.47 · 10−7 3.78
0.025 0.025 1.96 · 10−7 3.81 1.43 · 107 3.82
0.0125 0.0125 5.09 · 10−8 3.85 3.72 · 10−8 3.85
0.00625 0.00625 1.31 · 10−8 3.88 9.62 · 10−9 3.87

Case 3. γ = 1, f(x, y, t) = 0, ϕ = y(1− y2)(π2 sin π
2x+ γ x

2

2 ).

h τ
T = 1 T = 5

∆U ∆U ratio ∆U ∆U ratio
0.1 0.1 3.54 · 10−6 2.88 · 10−6

0.05 0.05 1.01 · 10−6 3.51 8.14 · 10−7 3.54
0.025 0.025 2.80 · 10−7 3.60 2.27 · 10−7 3.59
0.0125 0.0125 7.51 · 10−8 3.73 6.19 · 10−8 3.66
0.00625 0.00625 1.93 · 10−8 3.89 1.64 · 10−8 3.78

Case 4. Unstable example γ = 2, f(x, y, t) = 0, ϕ = y(1− y2)(π2 sin π
2x+ γ x

2

2 ).

h τ
∆U

T = 1 T = 2 T = 5
0.025 0.025 1.80 · 10−4 1.80 · 10−3 3.01 · 10−2

0.025 0.0125 2.29 · 10−2 7.16 · 102 1.62 · 103

0.025 0.00625 3.17 · 102 4.76 · 104 6.12 · 104

0.025 0.003125 9.15 · 104 2.03 · 105 2.23 · 106

Remark 4.1. In this section we include examples with various γ values, starting
from classical boundary conditions case (γ = 0) and some examples of nonlocal
boundary conditions (γ = 0.5 and γ = 1). We also provide examples of experiments
with different T values and show that stability does not depend on T choice. It
follows from practical experiment that the constructed ADI method is stable and
approximation error is of order O(h2 + τ2).

In Case 4 the example of unstable scheme with γ = 2 is provided. It is known
that if γ > 1, then the difference scheme for one-dimensional parabolic equation
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with nonlocal condition (1.2) is not stable with respect to the initial data [13]. It
means that the second equation of the ADI method (2.13)–(2.14) is unstable. If
the scheme is unstable, then ∆U grows while increasing the number of layers on
the t axis. One can see from the experiment that either if τ decreases (h = const,
T = const), or T increases (h = const, τ = const), then the relative error ∆U grows
indefinitely.

5. Remarks and generalizations

Stability of alternating direction method is proved in a special, quite complex
vector norm ‖U‖∗ (see (3.19)). The equivalence of the same norm to the L2-norm
for the one-dimensional parabolic equation with the nonlocal condition, similar
to (1.2), is proved in [10]. To the authors’ knowledge, there was no investigation
of stability, norms and spectrum for two-dimensional parabolic nonlocal problems
of type (1.1)–(1.4). Nevertheless, introduced and investigated norm has important
advantage. It follows from Proposition 3.2 and Corollary 3.3 that if difference
method is not stable in norm ‖U‖∗, than ρ(S) > 1, and difference scheme is not
stable in every other norm. This fact, for problems with nonlocal conditions, has
been noticed and commented a lot previously (see, [13, 4, 29]).

In this article, we theoretically investigated stability of alternating direction
method in a case, when parameter γ in nonlocal condition is from interval (0, 1).
With these γ values eigenvectors of both matrix S and matrix A1 +A2 are linearly
independent, that is eigenvectors form a basis in vector space H(N−1)N . However,
if γ = 1, then matrix Λx, the ADI method’s matrix S and Crank-Nicolson ma-
trix A1 + A2 all have multiple eigenvalues corresponding to only one eigenvector.
Therefore, these eigenvectors do not form basis in H(N−1)N (see [11]). This means
that one cannot define norms ‖A‖∗ and ‖U‖∗ using formulas (3.18) and (3.19),
because P−1 does not exist. Nevertheless, results of numerical experiments show
that in sense of approximation accuracy variants γ ∈ (0, 1) and γ = 1 are both
suitable. Not diving into the theoretical proofs, we explain this situation in two
aspects.

First, notice that Lemma 3.4 is valid for the case γ = 1 (see [32]). Therefore,
according to Proposition 3.2 and Corollary 3.3, the same way as in case γ ∈ (0, 1),
we have inequality ρ(S) < 1. From this inequality follows that norm ‖S‖∗ < 1 can
be defined (without providing the method). In other words, in the case γ = 1 the
ADI method is also stable. In this article we do not specify exact ‖S‖∗ and ‖U‖∗
expressions in the case γ = 1. This can be done at least in two ways. Just notice
that the aim is not equality ‖S‖∗ = ρ(S), but ‖S‖∗ = ρ(S) + ε, ε < 0. One of the
techniques is described in [25, Ch. 2, §3]. Another technique can be found in [15].

Second, in one-dimensional case problem (1.1)–(1.4) for both cases γ ∈ (0, 1)
and γ = 1 has the same important property, related to concept of strong regularity
of boundary conditions [20, 22]. Let γ = 1. Consider eigenvalue problem for
nonlocal problem (1.1)–(1.4) in one-dimensional case. Define system of functions
{ϕk(x)}, k = 1, 2, . . . for this eigenvalue problem, which consists of eigenvectors
and associated vectors. Similar system {ψl(x)}, l = 1, 2, . . . consists of eigenvectors
and associated vectors of adjoint eigenvalue problem. It is proved in [11] that both
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these systems are biorthonormal

(ϕk, ψl) =

∫ 1

0

ϕk(x)ψl(x) dx =

{
1, k = l,

0, k 6= l.

In other words, the system of root functions of differential problem forms Risz
basis in L2(0, 1), what is typical for problem with γ ∈ (0, 1) and, in general case, for
problems with strongly regular boundary conditions. In more detail this property
for two-dimensional hyperbolic equation with nonlocal condition is discussed in [22].

Furthermore, while investigating alternating direction method in this article,
only stability is proved and nothing is said about convergence of difference method.
We notice that similar situation occurs also in other papers, where difference meth-
ods for differential equations are considered (see e.g. [11] and references therein).
Often, as well as in this article, approximation of differential problem and stabil-
ity of difference scheme with nonlocal conditions are considered in different vector
norms. Additional investigation is required to prove equivalence of these norms. It
is proved in one-dimensional case (see [10]) that the norm ‖U‖∗ is equivalent to
vector L2-norm for all γ ∈ (0, 1) and γ = 1 values. This implies the convergence
of the ADI method in L2-norm. To the authors’ knowledge, there are no investiga-
tions for the two-dimensional case. It is obvious that matrices Λx, Λy, A1 and A2,
defined in this article, are M -matrices [32]. Therefore, convergence of difference
methods can be proved, by using properties of M -matrices [31, 6].

In the authors’ opinion, both of the ways to consider convergence of difference
schemes with nonlocal conditions are worth separate investigation.
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