Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 35, pp. 1-13. Title: Positive solution to quasilinear Schrodinger equations via Orlicz space framework Authors: Rui Sun (Lanzhou Univ., Lanzhou, China) Duchao Liu (Lanzhou Univ., Lanzhou, China) Abstract: This article concerns the existence of solutions for the generalized quasilinear Schrodinger equation $$ -\text{div}(g^2(u)\nabla u)+g(u)g'(u){|\nabla u|}^2+V(x)u=f(x,u),\quad x\in\mathbb{R}^N\,. $$ We obtain a positive solution by using a change of variables and a minimax theorem in an Orlicz space framework. Submitted April 22, 2021. Published April 29, 2022. Math Subject Classifications: 35B38, 35D05, 35J20. Key Words: Quasilinear Schrodinger equation; Orlicz space; change of variables.