Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 25, pp. 1-29. Title: Fractional Kirchhoff Hardy problems with weighted Choquard and singular nonlinearity Authors: Sarika Goyal (Bennett Univ., Greater Noida, Uttar Pradesh, India) Tarun Sharma (Bennett Univ., Greater Noida, Uttar Pradesh, India) Abstract: In this article, we study the existence and multiplicity of solutions to the fractional Kirchhoff Hardy problem involving weighted Choquard and singular nonlinearity $$ \displaylines{ M(\|u\|^2)(-\Delta)^su - \gamma\frac{u}{|x|^{2s}} = \lambda \frac{l(x)}{ u^q} + \frac{1}{|x|^{\alpha}} \Big({\int_{\Omega}\frac{r(y)|u(y)|^p}{|y|^{\alpha}|x-y|^\mu}\,dy}\Big)r(x)|u|^{p-2}u \quad \text{in } \Omega, \cr u>0 \text{ in } \Omega, \quad u = 0 \text{ in } \mathbb{R}^N\setminus\Omega, }$$ where $\Omega\subseteq \mathbb{R}^N$ is an open bounded domain with smooth boundary containing 0 in its interior, $N>2s$ with $s\in(0,1)$, $0