COMPACTNESS OF THE SET OF SOLUTIONS TO ELLIPTIC EQUATIONS IN 2 DIMENSIONS

SAMY SKANDER BAHOURA

ABSTRACT. We study the behavior of solutions to elliptic equations in 2 dimensions. In particular, we show that the set of solutions is compact under a Lipschitz condition.

1. Introduction

Let us define the operator

$$e_{\epsilon}^L := \Delta + \epsilon (x_1 \partial_1 + x_2 \partial_2) = \frac{\operatorname{div}[a_{\epsilon}(x) \nabla]}{a_{\epsilon}(x)}, \quad \text{with} \quad a_{\epsilon}(x) = e^{\epsilon |x|^2/2}.$$

We consider the equation

$$-\Delta u - \epsilon (x_1 \partial_1 u + x_2 \partial_2 u) = -L_{\epsilon} u = V e^u \quad \text{in } \Omega \subset \mathbb{R}^2,$$

$$u = 0 \quad \text{in } \partial\Omega.$$
(1.1)

where Ω is a starshaped set, $u \in W_0^{1,1}(\Omega)$, $e^u \in L^1(\Omega)$, $0 \le V \le b$, $1 \ge \epsilon \ge 0$.

For $\epsilon=0$ equation (1.1) has been studied by many authors with and without the boundary condition. This equation also has been studied in Riemann surfaces; see [1]–[20], where one can find some existence and compactness results. Also we have a nice formulation in the sense of the distributions of this problem in [7]. Among the known results we find the following Theorem.

Theorem 1.1 (Brezis-Merle [6]). If (u_i) and (V_i) are two sequences of functions in problem (1.1) with $\epsilon = 0$, and

$$0 < a \le V_i \le b < +\infty$$
,

then for all compact subset K of Ω it holds

$$\sup_{\kappa} u_i \le c,$$

with c depending on a, b, K and Ω .

We can find an interior estimate if we assume a = 0, but we need an assumption on the integral of e^{u_i} .

²⁰²⁰ Mathematics Subject Classification. 35J60, 35B44, 35B45.

Key words and phrases. Blow-up; compactness; boundary; elliptic equation;

Lipschitz condition; starshaped domain.

 $[\]bigodot{2022}.$ This work is licensed under a CC BY 4.0 license.

Submitted September 4, 2021. Published February 21, 2022.

Theorem 1.2 (Brezis-Merle [6]). Let (u_i) and (V_i) two sequences of functions in problem (1.1) with

$$0 \le V_i \le b < +\infty$$
 and $\int_{\Omega} e^{u_i} dy \le C$.

Then, for all compact subset K of Ω it holds

$$\sup_{K} u_i \le c,$$

with c depending on b, C, K and Ω .

The condition $\int_{\Omega} e^{u_i} dy \leq C$ is a necessary in Problem (1.1) as showed by the following statement for $\epsilon = 0$.

Theorem 1.3 (Brezis-Merle [6]). There are sequences (u_i) and (V_i) in problem (1.1) with

$$0 \le V_i \le b < +\infty, \quad \int_{\Omega} e^{u_i} dy \le C,$$

such that $\sup_{\Omega} u_i \to +\infty$.

To obtain Theorems 1.1 and 1.2 Brezis and Merle used an inequality [6, Theorem 1] obtained by an approximation argument, Fatou's lemma, and the maximum principle in $W_0^{1,1}(\Omega)$, which arises from Kato's inequality. Also this weak form of the maximum principle is used to prove the local uniform boundedness result by comparing a certain function and the Newtonian potential. We refer the reader to [5] for information about the weak form of the maximum principle.

Note that for problem (1.1), by using the Pohozaev identity, we can prove that $\int_{\Omega} e^{u_i}$ is uniformly bounded when $0 < a \le V_i \le b < +\infty$, $\|\nabla V_i\|_{L^{\infty}} \le A$, and Ω starshaped. When a = 0 and $\nabla \log V_i$ is uniformly bounded, we can find a uniform bound for $\int_{\Omega} V_i e^{u_i}$.

Ma-Wei [17] proved that those results remain valid for all open sets not necessarily starshaped when a > 0. Chen-Li [9] proved that if a = 0, $\int_{\Omega} e^{u_i}$ is uniformly bounded, and $\nabla \log V_i$ is uniformly bounded, then (u_i) is bounded near the boundary and we have directly the compactness result for the problem (1.1). Ma-Wei [17] extend this result in the case where a > 0.

When $\epsilon = 0$ and if we assume V more regular we can have another type of estimates called $\sup + \inf$ type inequalities. It was proved by Shafrir [19] that, if $(u_i), (V_i)$ are two sequences of solutions to Problem (1.1), without assumption on the boundary and $0 < a \le V_i \le b < +\infty$, then it holds

$$C\left(\frac{a}{b}\right) \sup_{K} u_i + \inf_{\Omega} u_i \le c = c(a, b, K, \Omega).$$

We find in [10] the explicit value $C(a/b) = \sqrt{a/b}$. In his proof, Shafrir [19] used the blow-up function, the Stokes formula and an isoperimetric inequality. Chen-Lin [10] used the blow-up analysis combined with some geometric type inequality for obtaining the integral curvature.

Now, if we assume (V_i) is uniformly Lipschitzian with constant A, then C(a/b) = 1 and $c = c(a, b, A, K, \Omega)$ see Brezis-Li-Shafrir [4]. This result was extended for Hölderian sequences (V_i) by Chen-Lin [10]. Also we have in [15], an extension of the Brezis-Li-Shafrir result to compact Riemannian surfaces without boundary. One can see in [17] an explicit form, $(8\pi m, m \in \mathbb{N}^* \text{ exactly})$, for the numbers in front of the Dirac masses when the solutions blow-up. Here the notion of isolated

blow-up point is used. Also one can find in [11] refined estimates near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

Here we study the behavior of the blow-up points on the boundary, and give a compactness result with Lipschitz condition. Note that our problem is an extension of the Brezis-Merle Problem.

Brezis-Merle Problem [6]. Suppose that $V_i \to V$ in $C^0(\bar{\Omega})$ with $0 \le V_i$, and consider a sequence of solutions (u_i) of (1.1) relative to (V_i) such that

$$\int_{\Omega} e^{u_i} \, dx \le C.$$

Is it possible to have

$$||u_i||_{L^{\infty}} \leq C = C(b, C, V, \Omega)$$
?

Here we give a blow-up analysis on the boundary when V_i are nonnegative and bounded (similar to the prescribed curvature when $\epsilon = 0$). On the other hand, if we add the assumption that these functions (similar to the prescribed curvature) are uniformly Lipschitzian, we have a compactness of the solutions of problem (1.1) for ϵ small enough. (In particular we can take a sequence of ϵ_i tending to 0).

For the behavior of the blow-up points on the boundary, the following condition is sufficient,

$$0 < V_i < b$$
,

The condition $V_i \to V$ in $C^0(\bar{\Omega})$ is not necessary. But for the compactness of the solutions we add the condition

$$\|\nabla V_i\|_{L^{\infty}} \le A.$$

Our main results read as follows.

Theorem 1.4. Assume that $\max_{\Omega} u_i \to +\infty$, where (u_i) are solutions of (1.1) with $\epsilon = \epsilon_i$ and

$$0 \le V_i \le b, \quad \int_{\Omega} e^{u_i} dx \le C, \quad \epsilon_i \to 0.$$

Then, after passing to a subsequence, there are a function u, a number $N \in \mathbb{N}$, and N points $x_1, \ldots, x_N \in \partial \Omega$, such that

$$\partial_{\nu} u_i \to \partial_{\nu} u + \sum_{j=1}^{N} \alpha_j \delta_{x_j}, \quad \alpha_j \ge 4\pi,$$

in the sense of measures on $\partial\Omega$, and

$$u_i \to u$$
 in $C^1_{loc}(\bar{\Omega} - \{x_1, \dots, x_N\}).$

Theorem 1.5. Assume that (u_i) are solutions of (1.1) with $\epsilon = \epsilon_i$, and

$$0 \le V_i \le b$$
, $\|\nabla V_i\|_{L^{\infty}} \le A$, $\int_{\Omega} e^{u_i} \le C$, $\epsilon_i \to 0$.

Then

$$||u_i||_{L^{\infty}} < c(b, A, C, \Omega)$$
.

2. Proofs of main results

Proof of Theorem 1.4. First we remark that

$$-\Delta u_i = \epsilon_i (x_1 \partial_1 u_i + x_2 \partial_2 u_i) + V_i e^{u_i} \in L^1(\Omega) \quad \text{in } \Omega \subset \mathbb{R}^2,$$

$$u_i = 0 \quad \text{in } \partial\Omega.$$
 (2.1)

and $u_i \in W_0^{1,1}(\Omega)$.

By [6, Corollary 1] we have $e^{u_i} \in L^k(\Omega)$ for all k > 2 and the elliptic estimates of Agmon and the Sobolev embedding see [1] imply that

$$u_i \in W^{2,k}(\Omega) \cap C^{1,\epsilon}(\bar{\Omega}).$$

Also we remark that for two positive constants $C_q = C(q, \Omega)$ and $C_1 = C_1(\Omega)$, we have

$$\|\nabla u_i\|_{L^q} \le C_q \|\Delta u_i\|_{L^1} \le (C_q' + \epsilon C_1 \|\nabla u_i\|_{L^1}), \quad \forall i \text{ and } 1 < q < 2.$$

(see [7]). Thus, if $\epsilon > 0$ is small enough and by Holder's inequality,

$$\|\nabla u_i\|_{L^q} \le C_q'', \quad \forall i \text{ and } 1 < q < 2.$$

Step 1: Interior estimate. First we consider the equation

$$-\Delta w_i = \epsilon_i (x_1 \partial_1 u_i + x_2 \partial_2 u_i) \in L^q, \quad 1 < q < 2 \quad \text{in } \Omega \subset \mathbb{R}^2,$$

$$w_i = 0 \quad \text{in } \partial \Omega.$$
(2.2)

If we consider v_i as the Newtonnian potential of $\epsilon_i(x_1\partial_1u_i+x_2\partial_2u_i)$, we have

$$v_i \in C^0(\bar{\Omega}), \quad \Delta(w_i - v_i) = 0.$$

By the maximum principle $w_i - v_i \in C^0(\bar{\Omega})$ and thus $w_i \in C^0(\bar{\Omega})$.

Also we have by elliptic estimates that $w_i \in W^{2,1+\epsilon} \subset L^{\infty}$, and we can write the equation of the Problem as

$$-\Delta(u_i - w_i) = \tilde{V}_i e^{u_i - w_i} \quad \text{in } \Omega \subset \mathbb{R}^2,$$

$$u_i - w_i = 0 \quad \text{in } \partial\Omega,$$
(2.3)

with

$$0 \le \tilde{V}_i = V_i e^{w_i} \le \tilde{b}, \quad \int_{\Omega} e^{u_i - w_i} \le \tilde{C}.$$

We apply the Brezis-Merle theorem to $u_i - w_i$ to have $u_i - w_i \in L^{\infty}_{loc}(\Omega)$, and, thus $u_i \in L^{\infty}_{loc}(\Omega)$.

Step2: Boundary estimate. Let $\partial_{\nu}u_i$ be the inner derivative of u_i . By the maximum principle $\partial_{\nu}u_i \geq 0$. Then we have

$$\int_{\partial \Omega} \partial_{\nu} u_i d\sigma \le C.$$

We have the existence of a nonnegative Radon measure μ such that

$$\int_{\partial\Omega} \partial_{\nu} u_{i} \phi d\sigma \to \mu(\phi), \quad \forall \phi \in C^{0}(\partial\Omega).$$

We take an $x_0 \in \partial\Omega$ such that $\mu(x_0) < 4\pi$. Set $B(x_0, \epsilon) \cap \partial\Omega := I_{\epsilon}$. We choose a function η_{ϵ} such that

$$\eta_{\epsilon} \equiv 1, \text{ on } I_{\epsilon}, \ 0 < \epsilon < \delta/2,
\eta_{\epsilon} \equiv 0, \text{ outside } I_{2\epsilon},$$

$$0 \le \eta_{\epsilon} \le 1,$$

$$\|\nabla \eta_{\epsilon}\|_{L^{\infty}(I_{2\epsilon})} \le \frac{C_0(\Omega, x_0)}{\epsilon}.$$

We take a $\tilde{\eta}_{\epsilon}$ such that

$$-\Delta \tilde{\eta}_{\epsilon} = 0 \quad \text{in } \Omega \subset \mathbb{R}^2,$$
$$\tilde{\eta}_{\epsilon} = \eta_{\epsilon} \quad \text{in } \partial \Omega.$$

Remark 2.1. We use the following steps in the construction of $\tilde{\eta}_{\epsilon}$, taking a cutoff function η_0 in B(0,2) or in $B(x_0,2)$:

(1) We set $\eta_{\epsilon}(x) = \eta_0(|x-x_0|/\epsilon)$ in the case of the unit disk it is sufficient.

(2) Or, in the general case: we use a chart $(f, \tilde{\Omega})$ with $f(0) = x_0$ and we take $\mu_{\epsilon}(x) = \eta_0(f(|x|/\epsilon))$ to have connected sets I_{ϵ} and we take $\eta_{\epsilon}(y) = \mu_{\epsilon}(f^{-1}(y))$. Because f, f^{-1} are Lipschitz, $|f(x) - x_0| \le k_2 |x| \le 1$ for $|x| \le 1/k_2$ and $|f(x) - x_0| \ge k_1 |x| \ge 2$ for $|x| \ge 2/k_1 > 1/k_2$, the support of η is in $I_{(2/k_1)\epsilon}$.

$$\begin{split} \eta_{\epsilon} &\equiv 1, \quad \text{on } f(I_{(1/k_2)\epsilon}), \ 0 < \epsilon < \delta/2, \\ \eta_{\epsilon} &\equiv 0, \quad \text{outside } f(I_{(2/k_1)\epsilon}), \\ 0 &\leq \eta_{\epsilon} \leq 1, \\ \|\nabla \eta_{\epsilon}\|_{L^{\infty}(I_{(2/k_1)\epsilon})} &\leq \frac{C_0(\Omega, x_0)}{\epsilon}. \end{split}$$

(3) Also, we can take: $\mu_{\epsilon}(x) = \eta_0(|x|/\epsilon)$ and $\eta_{\epsilon}(y) = \mu_{\epsilon}(f^{-1}(y))$, we extend it by 0 outside $f(B_1(0))$. We have $f(B_1(0)) = D_1(x_0)$, $f(B_{\epsilon}(0)) = D_{\epsilon}(x_0)$ and $f(B_{\epsilon}^+) = D_{\epsilon}^+(x_0)$ with f and f^{-1} smooth diffeomorphism.

$$\begin{split} \eta_{\epsilon} &\equiv 1, \quad \text{on the connected set } J_{\epsilon} = f(I_{\epsilon}), \ 0 < \epsilon < \delta/2, \\ \eta_{\epsilon} &\equiv 0, \quad \text{outside } J_{\epsilon}' = f(I_{2\epsilon}), \\ 0 &\leq \eta_{\epsilon} \leq 1, \\ \|\nabla \eta_{\epsilon}\|_{L^{\infty}(J_{\epsilon}')} &\leq \frac{C_{0}(\Omega, x_{0})}{\epsilon}. \end{split}$$

And $H_1(J'_{\epsilon}) \leq C_1 H_1(I_{2\epsilon}) = C_1 4\epsilon$, because f is Lipschitz. Here H_1 is the Hausdorff measure. We solve the Dirichlet Problem

$$\Delta \bar{\eta}_{\epsilon} = \Delta \eta_{\epsilon} \quad \text{in } \Omega \subset \mathbb{R}^2,$$

 $\bar{\eta}_{\epsilon} = 0 \quad \text{in } \partial \Omega.$

and finally we set $\tilde{\eta}_{\epsilon} = -\bar{\eta}_{\epsilon} + \eta_{\epsilon}$. Also, by the maximum principle and the elliptic estimates we have

$$\|\nabla \tilde{\eta}_{\epsilon}\|_{L^{\infty}} \le C(\|\eta_{\epsilon}\|_{L^{\infty}} + \|\nabla \eta_{\epsilon}\|_{L^{\infty}} + \|\Delta \eta_{\epsilon}\|_{L^{\infty}}) \le \frac{C_1}{\epsilon^2},$$

with C_1 depending on Ω .

As we said in the beginning, see also [3, 7, 13, 20], we have

$$\|\nabla u_i\|_{L^q} \le C_q, \quad \forall i, \ 1 < q < 2.$$

We deduce from the above estimate that, (u_i) converge weakly in $W_0^{1,q}(\Omega)$, almost everywhere to a function $u \geq 0$ and $\int_{\Omega} e^u < +\infty$ (by Fatou lemma). Also, V_i

weakly converge to a nonnegative function V in L^{∞} . The function u is in $W_0^{1,q}(\Omega)$ solution of

$$-\Delta u = Ve^u \in L^1(\Omega) \quad \text{in } \Omega \subset \mathbb{R}^2,$$
$$u = 0 \quad \text{in } \partial\Omega.$$

According to [6, Corollary 1], we have $e^{ku} \in L^1(\Omega), k > 1$. By the elliptic estimates, we have $u \in W^{2,k}(\Omega) \cap C^{1,\epsilon}(\bar{\Omega})$.

We denote by $f \cdot g$ the inner product of any two vectors f and g of \mathbb{R}^2 . Then we can write

$$-\Delta((u_i - u)\tilde{\eta}_{\epsilon}) = (V_i e^{u_i} - V e^u)\tilde{\eta}_{\epsilon} - 2\nabla(u_i - u) \cdot \nabla\tilde{\eta}_{\epsilon} + \epsilon_i(\nabla u_i \cdot x)\tilde{\eta}_{\epsilon}.$$
 (2.4)

We use the interior estimate in Brezis-Merle [6].

Step 1: Estimate of the integral of the first term of the right-hand side of (2.4). We use Green's formula between $\tilde{\eta}_{\epsilon}$ and u, to obtain

$$\int_{\Omega} V e^{u} \tilde{\eta}_{\epsilon} dx = \int_{\partial \Omega} \partial_{\nu} u \eta_{\epsilon} \le C \epsilon = O(\epsilon)$$
(2.5)

then we have

$$-\Delta u_i - \epsilon_i \nabla u_i \cdot x = V_i e^{u_i} \quad \text{in } \Omega \subset \mathbb{R}^2,$$
$$u = 0 \quad \text{in } \partial \Omega.$$

We use Green's formula between u_i and $\tilde{\eta}_{\epsilon}$ to have

$$\int_{\Omega} V_{i} e^{u_{i}} \tilde{\eta}_{\epsilon} dx = \int_{\partial \Omega} \partial_{\nu} u_{i} \eta_{\epsilon} d\sigma - \epsilon_{i} \int_{\Omega} (\nabla u_{i} \cdot x) \tilde{\eta}_{\epsilon}$$

$$= \int_{\partial \Omega} \partial_{\nu} u_{i} \eta_{\epsilon} d\sigma + o(1)$$

$$\rightarrow \mu(\eta_{\epsilon}) \leq \mu(J'_{\epsilon}) \leq 4\pi - \epsilon_{0}, \quad \epsilon_{0} > 0$$
(2.6)

From (2.5) and (2.6) we have that for all $\epsilon > 0$ there is i_0 such that, for $i \geq i_0$,

$$\int_{\Omega} |(V_i e^{u_i} - V e^u) \tilde{\eta}_{\epsilon}| \, dx \le 4\pi - \epsilon_0 + C\epsilon \tag{2.7}$$

Step 2.1: Estimate of integral of the second term of the right hand side of (2.4). Let $\Sigma_{\epsilon} = \{x \in \Omega, d(x, \partial\Omega) = \epsilon^3\}$ and $\Omega_{\epsilon^3} = \{x \in \Omega, d(x, \partial\Omega) \geq \epsilon^3\}$, $\epsilon > 0$. Then, for ϵ small enough, Σ_{ϵ} is an hypersurface.

The measure of $\Omega - \Omega_{\epsilon^3}$ is $k_2 \epsilon^3 \leq meas(\Omega - \Omega_{\epsilon^3}) = \mu_L(\Omega - \Omega_{\epsilon^3}) \leq k_1 \epsilon^3$.

Remark 2.2. For the unit ball $\bar{B}(0,1)$, our new manifold is $\bar{B}(0,1-\epsilon^3)$. To prove this fact, we consider consider $d(x,\partial\Omega)=d(x,z_0),z_0\in\partial\Omega$, which implies that $(d(x,z_0))^2\leq (d(x,z))^2$ for all $z\in\partial\Omega$. This is equivalent to $(z-z_0)\cdot(2x-z-z_0)\leq 0$ for all $z\in\partial\Omega$. Let us consider a chart around z_0 and $\gamma(t)$ a curve in $\partial\Omega$, we have $(\gamma(t)-\gamma(t_0)\cdot(2x-\gamma(t)-\gamma(t_0))\leq 0$ if we divide by $(t-t_0)$ (with the sign and tend t to t_0), we have $\gamma'(t_0)\cdot(x-\gamma(t_0))=0$. This implies that $x=z_0-s\nu_0$ where ν_0 is the outward normal of $\partial\Omega$ at z_0)

From the above remark, we can say that

$$S = \{x, d(x, \partial \Omega) \le \epsilon\} = \{x = z_0 - s\nu_{z_0}, z_0 \in \partial \Omega, -\epsilon \le s \le \epsilon\}.$$

It is sufficient to work on $\partial\Omega$. Let us consider charts $(z, D = B(z, 4\epsilon_z), \gamma_z)$ with $z \in \partial\Omega$ such that $\cup_z B(z, \epsilon_z)$ is cover of $\partial\Omega$. One can extract a finite cover

 $(B(z_k, \epsilon_k)), k = 1, \ldots, m$, by the area formula the measure of $S \cap B(z_k, \epsilon_k)$ is less than a $k\epsilon$ (a ϵ -rectangle). For the reverse inequality, it is sufficient to consider one chart around one point of the boundary). We write

$$\int_{\Omega} |\nabla(u_i - u) \cdot \nabla \tilde{\eta}_{\epsilon}| \, dx = \int_{\Omega_{\epsilon^3}} |\nabla(u_i - u) \cdot \nabla \tilde{\eta}_{\epsilon}| \, dx + \int_{\Omega - \Omega_{\epsilon^3}} |\nabla(u_i - u) \cdot \nabla \tilde{\eta}_{\epsilon}| \, dx. \quad (2.8)$$

Step 2.1.1: Estimate of $\int_{\Omega-\Omega_{\epsilon^3}} |\nabla(u_i-u)\cdot\nabla\tilde{\eta}_{\epsilon}| dx$. First, we know from elliptic estimates that $\|\nabla\tilde{\eta}_{\epsilon}\|_{L^{\infty}} \leq C_1/\epsilon^2$, C_1 depends on Ω .

We know that $(|\nabla u_i|)_i$ is bounded in L^q , 1 < q < 2, we can extract from this sequence a subsequence which converge weakly to $h \in L^q$. But, we know that we have locally the uniform convergence to $|\nabla u|$ (by Brezis-Merle's theorem), then, $h = |\nabla u|$ a.e. Let q' be the conjugate of q.

We have that for all $f \in L^{q'}(\Omega)$,

$$\int_{\Omega} |\nabla u_i| f \, dx \to \int_{\Omega} |\nabla u| f \, dx$$

If we take $f = 1_{\Omega - \Omega_{\epsilon^3}}$, for each $\epsilon > 0$ there exists $i_1 = i_1(\epsilon) \in \mathbb{N}$, such that $i \geq i_1$ implies

$$\int_{\Omega - \Omega_{\epsilon^3}} |\nabla u_i| \le \int_{\Omega - \Omega_{\epsilon^3}} |\nabla u| + \epsilon^3.$$

Then, for $i \geq i_1(\epsilon)$,

$$\int_{\Omega - \Omega_{\epsilon^3}} |\nabla u_i| \le \max(\Omega - \Omega_{\epsilon^3}) \|\nabla u\|_{L^{\infty}} + \epsilon^3 = \epsilon^3 (k_1 \|\nabla u\|_{L^{\infty}} + 1) = O(\epsilon^3).$$

Thus, we obtain

$$\int_{\Omega - \Omega_{3}} |\nabla(u_{i} - u) \cdot \nabla \tilde{\eta}_{\epsilon}| \, dx \le \epsilon C_{1}(2k_{1} \|\nabla u\|_{L^{\infty}} + 1) = O(\epsilon)$$
 (2.9)

The constant C_1 does not depend on ϵ but on Ω .

Step 2.1.2: Estimate of $\int_{\Omega_{\epsilon^3}} |\nabla(u_i - u) \cdot \nabla \tilde{\eta}_{\epsilon}| dx$. We know that, $\Omega_{\epsilon} \subset\subset \Omega$, and (because of Brezis-Merle's interior estimates) $u_i \to u$ in $C^1(\Omega_{\epsilon^3})$. We have

$$\|\nabla(u_i - u)\|_{L^{\infty}(\Omega_{c^3})} \le \epsilon^3$$
, for $i \ge i_3$.

We write

$$\int_{\Omega_{\epsilon^3}} |\nabla (u_i - u) \cdot \nabla \tilde{\eta}_{\epsilon}| \, dx \le \|\nabla (u_i - u)\|_{L^{\infty}(\Omega_{\epsilon^3})} \|\nabla \tilde{\eta}_{\epsilon}\|_{L^{\infty}} = C_1 \epsilon = O(\epsilon)$$

for $i \geq i_3$. For $\epsilon > 0$, and $i \in \mathbb{N}$, with $i \geq i'$, we have

$$\int_{\Omega} |\nabla (u_i - u) \cdot \nabla \tilde{\eta}_{\epsilon}| \, dx \le \epsilon C_1(2k_1 \|\nabla u\|_{L^{\infty}} + 2) = O(\epsilon) \tag{2.10}$$

From (2.7) and (2.10), for $\epsilon > 0$, there is i'' such that $i \geq i''$, we have

$$\int_{\Omega} |\Delta[(u_i - u)\tilde{\eta}_{\epsilon}]| dx \le 4\pi - \epsilon_0 + \epsilon 2C_1(2k_1 \|\nabla u\|_{L^{\infty}} + 2 + C) = 4\pi - \epsilon_0 + O(\epsilon) \quad (2.11)$$

Now we choose $\epsilon > 0$ small enough to have a good estimate of (2.4). Indeed, we have

$$-\Delta[(u_i - u)\tilde{\eta}_{\epsilon}] = g_{i,\epsilon} \quad textin\Omega \subset \mathbb{R}^2,$$
$$(u_i - u)\tilde{\eta}_{\epsilon} = 0 \quad \text{in } \partial\Omega.$$

with $||g_{i,\epsilon}||_{L^1(\Omega)} \leq 4\pi - \epsilon_0/2$.

We can use [6, Theorem 1] to conclude that there are $q \geq \tilde{q} > 1$ such that

$$\int_{V_{\epsilon}(x_{0})}e^{\tilde{q}|u_{i}-u|}\,dx\leq\int_{\Omega}e^{q|u_{i}-u|\tilde{\eta}_{\epsilon}}\,dx\leq C(\epsilon,\Omega),$$

where, $V_{\epsilon}(x_0)$ is a neighborhood of x_0 in $\bar{\Omega}$. Here we have used that in a neighborhood of x_0 by the elliptic estimates, $1 - C\epsilon \leq \tilde{\eta}_{\epsilon} \leq 1$.

Thus, for each $x_0 \in \partial\Omega - \{\bar{x}_1, \dots, \bar{x}_m\}$ there is $\epsilon_0 > 0, q_0 > 1$ such that

$$\int_{B(x_0,\epsilon_0)} e^{q_0 u_i} \, dx \le C, \quad \forall i.$$

By elliptic estimates see [14], we have

$$||u_i||_{C^{1,\theta}[B(x_0,\epsilon)]} \le c_3 \quad \forall i.$$

We have proved that there is a finite number of points $\bar{x}_1, \ldots, \bar{x}_m$ such that the sequence (u_i) is locally uniformly bounded in $C^{1,\theta}$, $(\theta > 0)$ on $\bar{\Omega} - \{\bar{x}_1, \ldots, \bar{x}_m\}$.

Proof of theorem 1.5. The Pohozaev identity gives

$$\int_{\partial\Omega} \frac{1}{2} (x \cdot \nu) (\partial_{\nu} u_i)^2 d\sigma + \epsilon \int_{\Omega} (x \cdot \nabla u_i)^2 dx + \int_{\partial\Omega} (x \cdot \nu) V_i e^{u_i} d\sigma = \int_{\Omega} (x \cdot \nabla V_i + 2V_i) e^{u_i} dx.$$

We use the boundary condition, that Ω is starshaped, and that $\epsilon > 0$ to have

$$\int_{\partial\Omega} (\partial_{\nu} u_i)^2 \, dx \le c_0(b, A, C, \Omega). \tag{2.12}$$

Thus we can use the weak convergence in $L^2(\partial\Omega)$ to have a subsequence $\partial_{\nu}u_i$, such that

$$\int_{\partial\Omega} \partial_{\nu} u_{i} \phi \, dx \to \int_{\partial\Omega} \partial_{\nu} u \phi \, dx, \quad \forall \phi \in L^{2}(\partial\Omega),$$

Thus, $\alpha_j = 0, j = 1, ..., N$ and (u_i) is uniformly bounded.

Remark 2.3. If we assume the open set bounded starshaped and V_i uniformly Lipschitzian and between two positive constants we can bound, by using the inner normal derivative $\int_{\Omega} e^{u_i}$.

If we assume the open set bounded starshaped and $\nabla \log V_i$ uniformly bounded, by the previous Pohozaev identity (we consider the inner normal derivative) one can bound $\int_{\Omega} V_i e^{u_i}$ uniformly.

One can consider the problem on the unit ball and an ellipse. These two problems are different, because:

- (1) if we use a linear transformation, $(y_1, y_2) = (x_1/a, x_2/b)$, the Laplcian is not invariant under this map.
- (2) If we use a conformal transformation, by a Riemann theorem, the quantity $x \cdot \nabla u$ is not invariant under this map.

We can not use, after using those transformations, the Pohozaev identity.

3. A COUNTEREXAMPLE

We start with the notation of the counterexample of Brezis and Merle. The domain Ω is the unit ball centered in $x_0 = (1,0)$. Consider z_i (obtained by the variational method), such that

$$-\Delta z_i - \epsilon_i(x - x_0) \cdot \nabla z_i = -\tilde{L}_{\epsilon_i}(z_i) = f_{\epsilon_i},$$

with Dirichlet condition. By the regularity theorem, $z_i \in C^1(\bar{\Omega})$. Then we have

$$||f_{\epsilon_i}||_1 = 4\pi A.$$

Thus by the duality theorem of Stampacchia or Brezis-Strauss, we have

$$\|\nabla z_i\|_q \le C_q, \ 1 \le q < 2.$$

We solve

$$-\Delta w_i = \epsilon_i(x - x_0) \cdot \nabla z_i,$$

with Dirichlet boundary condition.

By elliptic estimates, $w_i \in C^1(\bar{\Omega})$ and $w_i \in C^0(\bar{\Omega})$ uniformly. By the maximum principle we have

$$z_i - w_i \equiv u_i$$
.

Where u_i is the function of the counterexemple of Brezis Merle. Then we write

$$-\Delta z_i - \epsilon_i(x - x_0) \cdot \nabla z_i = f_{\epsilon_i} = V_i e^{z_i}.$$

Thus, we have

$$\int_{\Omega} e^{z_i} \le C_1, \quad 0 \le V_i \le C_2,$$

$$z_i(a_i) \ge u_i(a_i) - C_3 \to +\infty, \quad a_i \to O.$$

To have a counterexample on the unit disk, we do a translation $x \to x - x_0$ in the previous counterexample.

Acknowledgments. The author would like to tank the anonymous reviewers.

References

- [1] T. Aubin; Some Nonlinear Problems in Riemannian Geometry. Springer-Verlag 1998.
- [2] C. Bandle; Isoperimetric Inequalities and Applications. Pitman, 1980.
- [3] L. Boccardo, T. Gallouet; Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 no. 1, (1989), 149–169.
- [4] H. Brezis, Y.Y. Li, I. Shafrir; A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities. J. Funct. Anal. 115 (1993), 344–358.
- [5] H. Brezis, M. Marcus, A. C. Ponce; Nonlinear elliptic equations with measures revisited. Mathematical aspects of nonlinear dispersive equations, 55–109, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.
- [6] H. Brezis, F. Merle; Uniform estimates and Blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimension. Comm. Part. Diff. Equations, 16 (8 and 9) (1991), 1223–1253.
- [7] H. Brezis, W. A. Strauss; Semi-linear second-order elliptic equations in L1. J. Math. Soc. Japan 25 (1973), 565-590.
- [8] A. Sun-Yung Chang, Matthew J. Gursky, Paul C. Yang; Scalar curvature equation on 2- and 3-spheres. Calc. Var. Partial Differential Equations 1 (1993), no. 2, 205–229.
- [9] W. Chen, C. Li; A priori estimates for solutions to nonlinear elliptic equations. Arch. Rational. Mech. Anal., 122 (1993) 145–157.
- [10] C.-C. Chen, C-S. Lin; A sharp sup+inf inequality for a nonlinear elliptic equation in ℝ². Comm. Anal. Geom. 6, no.1 (1998), 1–19.
- [11] C.-C.Chen, C-S. Lin; Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Comm. Pure Appl. Math. 55 (2002), no. 6, 728–771.

- [12] D. G. De Figueiredo, P. L. Lions, R. D. Nussbaum; A priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations, J. Math. Pures et Appl., vol 61, 1982, pp.41–63.
- [13] W. Ding, J. Jost, J. Li, G. Wang; The differential equation $\Delta u = 8\pi 8\pi h e^u$ on a compact Riemann surface. Asian J. Math. 1 (1997), no. 2, 230–248.
- [14] D. Gilbarg, N. S, Trudinger; *Elliptic Partial Differential Equations of Second order*, Berlin Springer-Verlag.
- [15] Y. Y. Li; Harnack Type Inequality: the method of moving planes. Commun. Math. Phys. 200 (1999), 421–444.
- [16] Y. Y. Li, I. Shafrir; Blow-up analysis for solutions of $-\Delta u = Ve^u$ in dimension two. Indiana. Math. J. Vol 3, no. 4 (1994). 1255–1270.
- [17] L. Ma, J.-C. Wei; Convergence for a Liouville equation. Comment. Math. Helv. 76 (2001), 506–514.
- [18] K. Nagasaki, T. Suzuki; Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities. Asymptotic Anal. 3 (1990), no. 2, 173–188.
- [19] I. Shafrir; A sup+inf inequality for the equation $-\Delta u = Ve^u$. C. R. Acad.Sci. Paris Sér. I Math. 315 (1992), no. 2, 159–164.
- [20] G. Tarantello; Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys. 37 (1996), no. 8, 3769–3796.

SAMY SKANDER BAHOURA

Department of Mathematics, Pierre et Marie Curie University, 4 Place Jussieu, 75005, Paris, France

Email address: samybahoura@gmail.com