Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 89, pp. 1-9. Title: Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces Authors: Nguyen Anh Dao (Univ. of Economics Ho Chi Minh City, Viet Nam) Jesus Ildefonso Diaz (Univ. Complutense de Madrid, Spain) Abstract: We investigate a logarithmically improved regularity criteria in terms of the velocity, or the vorticity, for the Navier-Stokes equations in homogeneous Besov spaces. More precisely, we prove that if the weak solution u satisfies either $$\displaylines{ \int^T_0 \frac{\|u(t)\|^{\frac{2}{1-\alpha}}_{{\rm \dot{B}^{-\alpha}_{\infty, \infty}}}} {1+\log^+\|u(t)\|_{\dot{H}^{s_0}}} \, dt <\infty, \quad \text{or}\quad \int^T_0 \frac{\|w(t)\|_{\dot{B}^{-\alpha}_{\infty, \infty}}^\frac{2}{2-\alpha} } {1 + \log^ + \|w(t)\|_{\dot{H}^{s_0}}}\,dt<\infty\,, }$$ where w =rot u, then u is regular on (0,T]. Our conclusions improve some results by Fan et al. [5]. Submitted August 03, 2021. Published November 03, 2021. Math Subject Classifications: 35Q35, 35B65, 76D05. Key Words: Besov space; Navier-Stokes equations; regularity criteria.