Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 75, pp. 1-26. Title: Nonexistence results for hyperbolic type inequalities involving the Grushin operator in exterior domains Authors: Mohamed Jleli (King Saud Univ., Riyadh, Saudi Arabia) Bessem Samet (King Saud Univ., Riyadh, Saudi Arabia) Abstract: We study the hyperbolic type differential inequality $$ u_{tt}(t,x,y)-\mathcal{L}_\ell u(t,x,y)\geq |u(t,x,y)|^p,\quad (t,x,y)\in (0,\infty)\times D_1\times D_2 $$ under the boundary conditions $$\displaylines{ u(t,x,y) \geq f(x),\quad (t,x,y)\in (0,\infty)\times \partial D_1\times D_2,\cr u(t,x,y) \geq g(y),\quad (t,x,y)\in (0,\infty)\times D_1\times \partial D_2, }$ where $p>1$, $D_k=\{z\in \mathbb{R}^{N_k}: |z|\geq 1\}$, $k=1,2$, $N_k\geq 2$, $f\in L^1(\partial D_1)$, $g\in L^1(\partial D_2)$, and $\mathcal{L}_\ell$, $\ell\in \mathbb{R}$, is the Grushin operator $$ \mathcal{L}_\ell u=\Delta_x u+ |x|^{2\ell} \Delta_y u. $$ We obtain sufficient conditions depending on $p$, $\ell$, $N_1$, $N_2$, $f$, and $g$, for which the considered problem admits no global weak solution. We discuss separately the four cases: $N_1=N_2=2$; $N_1=2$, $N_2\geq 3$; $N_1\geq 3$, $N_2=2$; $N_1,N_2\geq 3$. Submitted June 25, 2021. Published September 14, 2021. Math Subject Classifications: 35B44, 35B33, 35L10. Key Words: Global weak solutions; hyperbolic type inequalities; exterior domain; Grushin operator.