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CONTROLLABILITY FOR THE WAVE EQUATION WITH

MOVING BOUNDARY

ISAÍAS P. DE JESUS, EUGENIO CABANILLAS LAPA, JUAN LIMACO

Abstract. In this article, we study the boundary controllability for a one-

dimensional string equation on a domain with time-dependent boundary. This
equation models small vibrations of a string with one of its endpoint fixed

and other moving with speed k(t). We use an inverse inequality to obtain a

controllability result. We consider a linear wave equation.

1. Introduction

1.1. Statement of the problem and main result. The controllability of linear
and non-linear PDEs has been the subject of much work in the last decades. Theo-
retical aspects and their connection to applications have been considered by many
authors and a lot of advances can be fortunately mentioned. Initially, the concept
of hierarchic control was introduced by J.-L. Lions (see [17, 18]), where some tech-
niques are presented. Also we mention the papers [15, 16, 28, 29, 9, 7, 8, 6] where
the authors combine the concepts of multi-criteria optimization and controllability.

As in [3], given T > 0, we consider the non-cylindrical domain defined by

Q̂ = {(x, t) ∈ R2; 0 < x < αk(t), t ∈ (0, T )},

where αk(t) = 1 + kt, 0 < k < 1. Its lateral boundary is defined by Σ̂ = Σ̂0 ∪ Σ̂∗0,
with

Σ̂0 = {(0, t); t ∈ (0, T )}, Σ̂∗0 = Σ̂\Σ̂0 = {(αk(t), t); t ∈ (0, T )}.
We also represent by Ωt and Ω0 the intervals (0, αk(t)) and (0, 1), respectively.

Motivated by the arguments contained in the work of J.-L. Lions [19], we consider

the following wave equation in the non-cylindrical domain Q̂:

u′′ − uxx = 0 in Q̂,

u(x, t) =

{
w̃(t) on Σ̂0,

0 on Σ̂∗0,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω0,

(1.1)

where u is the state variable, w̃ is the control variable and (u0(x), u1(x)) ∈ L2(0, 1)×
H−1(0, 1). By u′ = u′(x, t) we represent the derivative ∂u

∂t and by uxx = uxx(x, t)
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the second order partial derivative ∂2u
∂x2 . Equation (1.1) models the motion of a

string with a fixed endpoint and a moving one. The constant k is called the speed
of the moving endpoint.

The novelty of this paper is the consideration of a domain with moving boundary.
Indeed, instead of transforming the problem (1.1) from a non-cylindrical domain
into a cylindrical domain, we study the controllability problem directly in a non-
cylindrical domain, when the control is put on the fixed point. For this, we use an
inverse inequality.

Now, let α(t) = t+ αk(t), β(t) = t− αk(t) and γ = α ◦ β−1. We assume that

T > γ(0), (1.2)

0 < k < 1. (1.3)

The main result of this paper reads as follows.

Theorem 1.1. Assume that (1.2) and (1.3) hold. Let us consider w̃1 ∈ L2(Σ̂1)
and w̃2 a Nash equilibrium in the sense (1.10). Then the pair

(u(T ), u′(T )) = (u(., T, w̃1, w̃2), u′(., T, w̃1, w̃2)) ,

where u solves the system (2.8), generates a dense subset of L2(ΩT )×H−1(ΩT ).

As in [19], we divide Σ̂0 into two parts

Σ̂0 = Σ̂1 ∪ Σ̂2, (1.4)

and consider

w̃ = {w̃1, w̃2}, w̃i = control function in L2(Σ̂i), i = 1, 2. (1.5)

We can also write

w̃ = w̃1 + w̃2, with Σ̂0 = Σ̂1 = Σ̂2. (1.6)

Thus, we observe that system (1.1) can be rewritten as follows:

u′′ − uxx = 0 in Q̂,

u(x, t) =


w̃1(t) on Σ̂1,

w̃2(t) on Σ̂2,

0 on Σ̂\Σ̂0,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω0.

(1.7)

In decomposition (1.4), (1.5) we establish a hierarchy. We think of w̃1 as being
the “main” control, the leader, and we think of w̃2 as the follower, in Stackelberg
terminology.

Associated with the solution u = u(x, t) of (1.7), we will consider the (secondary)
functional

J̃2(w̃1, w̃2) =
1

2

∫ ∫
Q̂

(u(w̃1, w̃2)− ũ2)
2
dx dt+

σ̃

2

∫
Σ̂2

w̃2
2 dΣ̂, (1.8)

and the (main) functional

J̃(w̃1) =
1

2

∫
Σ̂1

w̃2
1 dΣ̂, (1.9)

where σ̃ > 0 is a constant and ũ2 is a given function in L2(Q̂).
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Now, let us describe the Stackelberg-Nash strategy. Thus, for each choice of the

leader w̃1, we try to find a Nash equilibrium for the cost functional J̃2, that is, we
look for a control w̃2 = F(w̃1), depending on w̃1, satisfying

J̃2(w̃1, w̃2) = inf
ŵ2∈L2(Σ̂2)

J̃2(w̃1, ŵ2). (1.10)

After this, we consider the state u (w̃1,F(w̃1)) given by the solution of

u′′ − uxx = 0 in Q̂,

u(x, t) =


w̃1 on Σ̂1,

F(w̃1) on Σ̂2,

0 on Σ̂\Σ̂0,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω0.

(1.11)

We will look for any optimal control w̃1 such that

J̃(w̃1,F(w̃1)) = inf
w1∈L2(Σ̂1)

J̃(w1,F(w̃1)), (1.12)

subject to the following restriction of the approximate controllability type

(u(x, T ; w̃1,F(w̃1)), u′(x, T ; w̃1,F(w̃1)))

∈ BL2(ΩT )(u
0, ρ0)×BH−1(ΩT )(u

1, ρ1),
(1.13)

where BX(C, r) denotes the ball in X with center C and radius r.
The control problems to be studied in this paper are described as follows:

Problem 1 Fixed any leader control w̃1, find the follower control w̃2 = F(w̃1) (de-
pending on w̃1) and the associated state u, solution of (1.7) satisfying the condition

(1.10) (Nash equilibrium) related to J̃2, defined in (1.8).

Problem 2 Assuming that the existence and uniqueness of the Nash equilib-

rium w̃2 was proved, then when w̃1 varies in L2(Σ̂1), prove that the solutions
(u(x, t; w̃1, w̃2), u′(x, t; w̃1, w̃2)) of the state equation (1.7), evaluated at t = T , that
is, (u(x, T ; w̃1, w̃2), u′(x, T ; w̃1, w̃2)), generate a dense subset of L2(ΩT )×H−1(ΩT ).

Remark 1.2. By the linearity of system (1.11), without loss of generality we may
assume that u0 = 0 = u1.

1.2. Related problems. Controllability of system (1.1) has been extensively stud-
ied in the recent past years; most of the papers in this direction dealt with the case
of one moving endpoint with boundary conditions of the form

u(0, t) = 0, u(1 + kt, t) = w̃(t), k ∈ (0, 1), t ∈ (0,∞).

In [24], it has been shown that exact controllability holds at any time

T >
e

2k(1+k)
1−k − 1

2
.

The same authors came back in [25] and improved the latter result to

T >
e

2k(1+k)

(1−k)3 − 1

2
.

Later, in [11], the controllability time has been improved to be T > 2
1−k . In these

papers, only a sufficient condition is provided for the exact controllability.
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Concerning the two moving endpoints case, the boundary functions considered
in [1] are of the form

α(t) = −kt, β(t) = 1 + rt, t ∈ (0,∞), k, r ∈ [0, 1) with r + k > 0.

It has been shown that exact controllability holds if, and only if T ≥ 2
(1−k)(1−r) .

More general boundary functions are considered in [3] with boundary conditions

u(0, t) = 0, u(s(t), t) = w̃(t), t ∈ (0,∞),

where s : [0,∞) → (0,∞) is assumed to be C1 function with ‖s′‖L∞(0,∞) < 1.
Furthermore, it has been assumed that s must be in some admissible class of curves
(see [3] for more details). Under these assumptions, the authors proved that exact
controllability holds if, and only if T ≥ s+ ◦(s−)−1(0), where s±(t) = t±s(t). Also,
they provided a controllability result when the control is located on the non-moving
part of the boundary. By considering the boundary conditions

u(0, t) = w̃(t), u(s(t), t) = 0, t ∈ (0,∞),

they proved that exact controllability holds if, and only if T ≥ (s−)−1(1). In all
the cited works, the proofs rely on the multipliers technique or the non-harmonic
Fourier analysis.

Recently, in [2], a new Carleman estimate has been established for the wave
equation in time-dependent domain in a more general setting. The existence of
solutions of the initial boundary value problem for the nonlinear wave equation
in non-cylindrical domains has been studied in [5, 20]. The controllability prob-
lem for a multi-dimensional wave equation in a non-cylindrical domain has been
investigated in [4, 26, 27]. Also, about the one-dimension cases, there have been
extensive study of the controllability problem in a non-cylindrical domain. We re-
fer the reader to [12, 14, 21, 22, 23]. Finally, we can mention also the paper by
Yang and Feng [31], where the authors present the approximate controllability of
Euler-Bernoulli viscoelastic systems.

The content of this article is organized as follows. Section 2 is devoted to establish
the optimality system for the follower control. In Section 3, we investigate the
approximate controllability proving the density Theorem 1.1. Finally, we present
the optimality system for the leader control in Section 4.

2. Optimal system for the follower control

In this section, fixed any leader control w̃1 ∈ L2(Σ̂1) we determine the existence
and uniqueness of solutions to the problem

inf
w̃2∈L2(Σ̂2)

J̃2(w̃1, w̃2), (2.1)

and a characterization of this solution in terms of an adjoint system.

For this, we consider Uad = {(u, w̃2) ∈ L2(Q) × L2(Σ̂2);u solution of (1.7)},
and J̃2 : Uad → R defined by (1.8). Note that Uad is a nonempty closed convex

subset of L2(Q) × L2(Σ2), and J̃2 is weakly coercive, weakly sequentially lower
semicontinuous and strictly convex. Therefore, there exists a unique solution w̃2 of
(2.1), i.e.,

J̃2(w̃1, w̃2) = inf
ŵ2∈L2(Σ̂2)

J̃2(w̃1, ŵ2).



EJDE-2021/60 CONTROLLABILITY FOR THE WAVE EQUATION 5

The Euler-Lagrange equation for problem (2.1) is∫ T

0

∫
Ωt

(u− ũ2)û dx dt+ σ̃

∫
Σ̂2

w̃2ŵ2dΣ̂ = 0, ∀ŵ2 ∈ L2(Σ̂2), (2.2)

where û is solution of the system

û′′ − ûxx = 0 in Q̂,

û =


0 on Σ̂1,

ŵ2 on Σ̂2,

0 on Σ̂\(Σ̂1 ∪ Σ̂2),

û(x, 0) = 0, û′(x, 0) = 0, x in Ω0.

(2.3)

To express (2.2) in a convenient form, we introduce the adjoint state defined by

p′′ − pxx = u− ũ2 in Q̂,

p(T ) = p′(T ) = 0, x in ΩT ,

p = 0 on Σ̂.

(2.4)

Multiplying (2.4) by û and integrating by parts, we find that∫ T

0

∫
Ωt

(u− ũ2)û dx dt+

∫
Σ̂2

px ŵ2 dΣ̂ = 0, (2.5)

so that (2.2) becomes

px = σ̃ w̃2 on Σ̂2. (2.6)

We summarize these results in the following theorem.

Theorem 2.1. For each w̃1 ∈ L2(Σ1) there exists a unique Nash equilibrium w̃2

in the sense of (1.10). Moreover, the follower w̃2 is given by

w̃2 = F(w̃1) =
1

σ̃
px on Σ̂2, (2.7)

where {v, p} is the unique solution of (the optimality system)

u′′ − uxx = 0 in Q̂,

p′′ − pxx = u− ũ2 in Q̂,

u =


w̃1 on Σ̂1,
1
σ̃px on Σ̂2,

0 on Σ̂\Σ̂0,

p = 0 on Σ̂,

u(0) = u′(0) = 0, x in Ω0,

p(T ) = p′(T ) = 0, x in ΩT .

(2.8)

Of course, {u, p} depends on w̃1:

{u, p} = {u(w̃1), p(w̃1)}. (2.9)
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3. Proof of Theorem 1.1

Since we have proved the existence, uniqueness and characterization of the fol-
lower w̃2, the leader w̃1 now wants that solutions u and u′, evaluated at time t = T ,
to be as close as possible to (u0, u1). This will be possible if the system (2.8) is
approximately controllable. We are looking for

inf
1

2

∫
Σ̂1

w̃2
1 dΣ̂, (3.1)

where w̃1 is subject to

(u(T ; w̃1), u′(T ; w̃1)) ∈ BL2(ΩT )(u
0, ρ0)×BH−1(ΩT )(u

1, ρ1), (3.2)

assuming that w̃1 exists, ρ0 and ρ1 being positive numbers arbitrarily small and
{u0, u1} ∈ L2(ΩT )×H−1(ΩT ).

Lemma 3.1 (Inverse Inequality). If (g0, g1) ∈ H1
0 (Ω0)× L2(Ω0), then there exists

γ(0) > 0 such that for T > γ(0), the weak solution of problem

z′′ − zxx = 0 in Q̂,

z = 0 on Σ̂,

z(0) = g0, z′(0) = g1 in Ω0

(3.3)

satisfies ∫ γ(0)

0

|zx(0, t)|2 dt ≥ C(|g0|2 + |g1|2), (3.4)

where C is given in [3].

Proof. We construct a solution of the form

z(x, t) =
∑
n∈Z

An(e2ξinϕ(t+x) − e2ξinϕ(t−x)), (3.5)

where ϕ ∈ C2 is a solution to the functional equation

ϕ(t+ αk(t))− ϕ(t− αk(t)) = 1.

We let F (x) =
∫ x

0
g1(s)ds and

h(x) =

{
1
2

(
g0(x) + F (x)

)
for 0 ≤ x ≤ 1,

1
2

(
− g0(−x) + F (−x)

)
for − 1 ≤ x ≤ 0.

We note that

An =

∫ 1

−1

h(x)e2ξinϕ(x)ϕ′(x) dx.

Then z ∈ C2 and their derivatives can be calculated term by term. Let us define
some often appearing values:

m(t) = min{ϕ′(x) : x ∈ [t− αk(t), t+ αk(t)]},
M(t) = max{ϕ′(x) : x ∈ [t− αk(t), t+ αk(t)]}.

Now, we adapt the proof of [3, Theorem 2.1], with 0 < k < 1. Indeed, we consider
β(t) = t − αk(t). Then β′(t) = 1 − k > 0. Therefore, β(t) is strictly increasing
and since β(0) = −1 < 0, there exists a unique t0 such that β(t0) = 0. Let
τ0 = t0 + αk(t0) = γ(0).
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Differentiating z term by term in (3.5), and evaluating at x = 0, for all τ > 0 we
obtain

|zx(0, t)|2L2(0,τ0) ≥ m(t0)|zx(0, t)|2L2(0,τ0,
1

ϕ′(t) )

= m(t0)16ξ2
∑
n∈Z

n2|An|2

≥ C(|g0|2 + |g1|2),

(3.6)

where the last inequality in (3.6) is obtained from [3, Proposition 1.4]. �

Remark 3.2. The proof of Lemma 3.1 also holds for αk(t) = 1 + kT − kt.

Now as in the case (1.6), we conclude this section with the proof of Theorem 1.1.

Proof of Theorem 1.1. We decompose the solution (u, p) of (2.8) by setting

u = ϑ0 + g,

p = p0 + q,
(3.7)

where ϑ0, p0 is given by

ϑ′′0 − (ϑ0)xx = 0 in Q̂,

ϑ0 =


0 on Σ̂1,
1
σ̃ (p0)x on Σ̂2,

0 on Σ̂\Σ̂0,

ϑ0(0) = ϑ′0(0) = 0, x in Ω0,

(3.8)

and
p′′0 − (p0)xx = u0 − ũ2 in Q̂,

p0 = 0 on Σ̂,

p0(T ) = p′0(T ) = 0, x in ΩT ;

(3.9)

And {g, q} is given by

g′′ − gxx = 0 in Q̂,

g =


w̃1 on Σ̂1,
1
σ̃ qx on Σ̂2,

0 on Σ̂\Σ̂0,

g(0) = g′(0) = 0, x in Ω0,

(3.10)

and
q′′ − qxx = g in Q̂,

q = 0 on Σ̂,

q(T ) = q′(T ) = 0, x in ΩT .

(3.11)

We next set A : L2(Σ̂1)→ H−1(ΩT )× L2(ΩT ) as

Aw̃1 =
{
g′(T ; w̃1), −g(T ; w̃1)

}
, (3.12)

which defines
A ∈ L

(
L2(Σ̂1); H−1(ΩT )× L2(ΩT )

)
.

Using (3.7) and (3.12), we can rewrite (3.2) as

Aw̃1 ∈ {−ϑ′0(T ) +BH−1(ΩT )(u
1, ρ1), −ϑ0(T ) +BL2(ΩT )(u

0, ρ0)}. (3.13)
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We will show that Aw̃1 generates a dense subspace of H−1(ΩT ) × L2(ΩT ). For
this, let {f0, f1} ∈ H1

0 (ΩT )×L2(ΩT ) and consider the following systems (“adjoint
states”):

ϕ′′ − ϕxx = ψ in Q̂,

ϕ = 0 on Σ̂,

ϕ(T ) = f0, ϕ′(T ) = f1, x in ΩT ,

(3.14)

and

ψ′′ − ψxx = 0 in Q̂,

ψ =


0 on Σ̂1,
1
σ̃ϕx on Σ̂2,

0 on Σ̂\Σ̂0,

ψ(0) = ψ′(0) = 0, x in Ω0.

(3.15)

Multiplying (3.15)1 by q, (3.14)1 by g, where q, g solve (3.11) and (3.10), respec-

tively, and integrating in Q̂ we obtain∫ T

0

∫
Ωt

g ψ dx dt = − 1

σ̃

∫
Σ̂2

qxϕxdΣ̂, (3.16)

〈g′(T ), f0〉H−1(ΩT )×H1
0 (ΩT ) −

(
g(T ), f1

)
= −

∫
Σ̂1

ϕx w̃1 dΣ̂. (3.17)

Considering the left-hand side of this equation as the inner product of {g′(T ),−g(T )}
and {f0, f1} in H−1(ΩT )× L2(ΩT ) and H1

0 (ΩT )× L2(ΩT ), we obtain

〈〈Aw̃1, f〉〉 = −
∫

Σ̂1

ϕx w̃1 dΣ̂,

where 〈〈·, ·〉〉 represent the duality pairing betweenH−1(ΩT )×L2(ΩT ) andH1
0 (ΩT )×

L2(ΩT ). Therefore, if

〈〈A w̃1, f〉〉 = 0,

for all w̃1 ∈ L2(Σ̂1), then

ϕx = 0 on Σ̂1. (3.18)

Hence, in case (1.6),

ψ = 0 on Σ̂, so that ψ ≡ 0. (3.19)

Therefore,

ϕ′′ − ϕxx = 0, ϕ = 0 on Σ̂, (3.20)

and satisfies (3.18). Therefore, by Lemma 3.1 and by Remark 3.2, with z(x, t) =
ϕ(x, T − t), g0 = f0, and g1 = f1 we have that f0 = 0, f1 = 0. This completes the
proof. �

4. Optimal system for the leader control

In the previous sections, we have seen that no matter what strategy, the leader
assumes that the follower make their choice w̃2 satisfying the Nash equilibrium.
The goal of this section is to obtain a optimal system for the leader control. More
precisely, we obtain the following result.
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Theorem 4.1. Assume that the hypotheses (1.2), (1.3) and (1.6) are satisfied.
Then for {f0, f1} in H1

0 (ΩT )× L2(ΩT ) we uniquely define {ϕ,ψ, u, p} by

ϕ′′ − ϕxx = ψ in Q̂,

ψ′′ − ψxx = 0 in Q̂,

u′′ − uxx = 0 in Q̂,

p′′ − pxx = u− ũ2 in Q̂,

ϕ = 0 on Σ̂,

ψ =


0 on Σ̂1,
1
σ̃ ϕx on Σ̂2,

0 on Σ̂\Σ̂0,

u =


−ϕx on Σ̂1,
1
σ̃px on Σ̂2,

0 on Σ̂\Σ̂0,

p = 0 on Σ̂,

ϕ(·, T ) = f0, ϕ′(·, T ) = f1 in ΩT ,

u(0) = u′(0) = 0 in Ω0,

p(T ) = p′(T ) = 0 in ΩT .

(4.1)

We uniquely define {f0, f1} as the solution of the variational inequality〈
u′(T, f)− u1, f̂0 − f0

〉
H−1(ΩT )×H1

0 (ΩT )
−
(
u(T, f)− u0, f̂1 − f1

)
+ ρ1

(
‖f̂0‖ − ‖f0‖

)
+ ρ0

(
|f̂1| − |f1|

)
≥ 0, ∀f̂ ∈ H1

0 (ΩT )× L2(ΩT ).
(4.2)

Then the optimal leader is

w̃1 = −ϕx on Σ̂1,

where ϕ corresponds to the solution of (4.1).

Proof. Let A be the continuous linear operator defined by (3.12) and we introduce

the following two convex proper functions: F1 : L2(Σ̂1)→ R ∪ {∞} by

F1(w̃1) =
1

2

∫
Σ̂1

w̃2
1 dΣ̂ (4.3)

and F2 : H−1(ΩT )× L2(ΩT )→ R ∪ {∞} by

F2(ξ, µ) =


0, if (ξ, µ) ∈ u1 − ϑ′0(T ) + ρ1BH−1(ΩT )

−u0 + ϑ0(T )− ρ0BL2(ΩT ),

+∞, otherwise.

(4.4)

With these notation, problems (3.1)–(3.2) become equivalent to

inf
w̃1∈L2(Σ̂1)

[
F1(w̃1) + F2(Aw̃1)

]
(4.5)

provided that we prove that the range of A is dense in H−1(ΩT )× L2(ΩT ), under
conditions (1.2) and (1.3).
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By the Duality Theorem of Fenchel and Rockafellar [30] (see also [10, 13]), we
have

inf
w̃1∈L2(Σ̂1)

[F1(w̃1) + F2(Aw̃1)]

= − inf
(f̂0,f̂1)∈H1

0 (ΩT )×L2(ΩT )
[F ∗1
(
A∗{f̂0, f̂1}

)
+ F ∗2 {−f̂0,−f̂1}],

(4.6)

where F ∗i is the conjugate function of Fi (i = 1, 2) and A∗ the adjoint of A.

We have A∗ : H1
0 (ΩT )× L2(ΩT )→ L2(Σ̂1) as

(f0, f1) 7→ A∗f = −ϕx, (4.7)

where ϕ is given in (3.14).
We see easily that

F ∗1 (w̃1) = F1(w̃1) (4.8)

and
F ∗2 ({f̂0, f̂1}) = 〈u1 − ϑ′0(T ), f̂0〉H−1(ΩT )×H1

0 (ΩT )

+
(
ϑ0(T )− u0, f̂1

)
+ ρ1‖f̂0‖+ ρ0|f̂1|.

(4.9)

Therefore the (opposite of) right-hand side of (4.6) is given by

− inf
f̂∈H1

0 (ΩT )×L2(ΩT )

{1

2

∫
Σ̂1

ϕ2
xdΣ̂ +

(
u0 − ϑ0(T ), f̂1

)
− 〈u1 − ϑ′0(T ), f̂0〉H−1(ΩT )×H1

0 (ΩT ) + ρ1‖f̂0‖+ ρ0|f̂1|
}
.

This is the dual problem of (3.1) and (3.2). Hence, we can use the primal or the
dual problem to derive the optimality system for the leader control. �
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In response to a reader’s comments, the first author wants to indicate that the
statements from page 3 line 25 to page 4 line 18 are quoted from the article

Mokhtari Yacine; Boundary controllability and boundary time-varying
feedback stabilization of the 1D wave equation in non-cylindrical do-
mains, Evolution Equations & Control Theory, doi: 10.3934/eect.2021004.
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