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EXACT BOUNDARY CONTROLLABILITY FOR THE WAVE

EQUATION WITH MOVING BOUNDARY DOMAINS IN A

STAR-SHAPED HOLE

RUIKSON S. O. NUNES

Abstract. We consider an exact boundary control problem for the wave equa-

tion in a moving bounded domain which has a star-shaped hole. The boundary
domain is composed by two disjoint parts, one is the boundary of the hole,

which is fixed, and the other one is the external boundary which is moving.

The initial data has finite energy and the control obtained is square integrable
and is obtained by means of the conormal derivative. We use the method of

controllability presented by Russell in [20], and assume that the control acts

only in the moving part of the boundary.

1. Introduction

There is a large number of works available for the exact boundary controllabil-
ity problems of wave equations, because such problems have a great importance
both from a practical and theoretical point of view. Since the 1970s, many works
have appeared giving seminal contributions to the advancement of this branch of
mathematics, among them we have [3, 12, 18] which are canonical references for
the subject. Many works have appeared dealing with control problems for wave
equations on Euclidean domains with diverse types of geometry, for example, do-
mains with fixed and moving boundary and domains with perforated interior; see
[2, 4, 6, 7, 11, 13, 17].

In this work we study an exact boundary control problem for the standard wave
equation on a domain with moving boundary which has a single fixed hole. The
boundary of such domains is composed by two disjoint parts: one it is the boundary
on hole which is fixed, and the other one is the external boundary which is moving.
We shall consider the control acting only on the moving boundary part. In practical
situations, many processes involve domains with a geometry as described above.
For example, a flexible body that is crossed by a cylindrical pillar and is fixed to
it. Without any variation in the temperature of the environment the body has
no dilation and thus its external boundary remains static. However, if there is
a variation in the temperature, the body would have a dilation or a contraction,
causing the mobility of the its external boundary. In this work when we deal with
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a domain with a hole, and we refer by external boundary as being the part of the
boundary of the domain that does not coincide with that one of the hole.

To establish these concepts in more detail, we consider B ⊂ Rn, n ≥ 2, a
convex compact set with the origin in its interior with smooth boundary Γ0. We
set Ω∞ = Rn − B. Let Ξ ⊂ Rn be a simply connected bounded domain with
piecewise smooth boundary Γ1, with no cusps, such that B ⊂ Ξ. We assume that
dist(Γ0,Γ1) ≥ ε > 0 and set Ω = Ξ−B. Hence, the boundary of Ω is ∂Ω = Γ0∪Γ1.
Note that Ω is a holed domain whose hole has the shape of B.

We also consider the moving boundary domain Ξt ⊂ Rn where

Ξt = {x ∈ Rn : x = α(t)y, y ∈ Ξ}, t ∈ [0,+∞)

whose boundary is denoted by Γt and Ξ0 = Ξ. Here α : R+∪{0} → R is a piecewise
bounded smooth function, where

Ξt × R ⊂ ∪x∈Ξ{(x, t) ∈ RN × R : |x− x|2 ≤ t2}, (1.1)

with B ⊂ Ξt and dist(Γ0 ∩Γt) ≥ ε > 0, for all t > 0. The boundedness of α implies
in the existence of r > 0 such that Ξt ⊂ B(0, r) for all t ∈ [0,+∞). Defining

Ω̃ = B(0, r)−B and Ωt = Ξt −B we can see that Ωt ⊂ Ω̃ for all t ∈ [0,+∞). The
boundary of Ωt is ∂Ωt = Γ0∪Γt. Now, for T > 0, let us consider the non-cylindrical
domain of Rn+1,

QT = ∪0<t<TΩt × {t}
whose the lateral boundary is ΣT ∪ Σ0, where ΣT = ∪0<t<TΓt × {t} and Σ0 =
Γ0 × [0, T ].

We denote by (νx, νt) the outward unit normal vector defined almost all on
ΣT ∪Σ0. Note that QT is a holed non-cylindrical domain in Rn+1 whose the lateral
boundary is composed by two disjoint parts ΣT and Σ0. Here, we requires that B be
star-shaped with respect the origin, that is, {νx ·x} ≤ 0 for x ∈ B. The assumption
(1.1) assures that the surface ΣT is time-like. This is known to be sufficient to
guarantee the well-posedness of the initial and boundary value problem studied
here.

Being O ⊂ RN an arbitrary domain, we denote by Sobolev spaces L2(O) and
H1(O) the Lebesgue and Sobolev spaces, provided with theirs usual norms which
will be denoted by ‖ · ‖L2(O) and ‖ · ‖H1(O) respectively (see [1]). Particularly, for

O = Ω, we denote H1(Ω) = {u(x) ∈ H1(Ω) : u(x) = 0 if x ∈ Γ0}. The topology of
H1(Ω) is that one induced from H1(Ω). Here, the space H1

0 (O) is the closure C∞0
in H1(O) provided with the norm of H1(O). The purpose of this article is to study
the exact boundary controllability problem

Theorem 1.1. Let Ω be as defined above. Given (f, g) ∈ H1(Ω) × L2(Ω), there
exist T > 0 sufficiently large and a control function h(·, t) ∈ L2(ΣT ) such that the
solution u ∈ H1(QT ) of the problem

utt −∆u = 0 in QT

u(·, 0) = f, ut(·, 0) = g, in Ω

u(·, t) = 0, on Γ0 × [0, T ]

νtut −∇u · νx = h(·, t), on ΣT .

(1.2)

satisfy the final condition

u(·, T ) = 0 = ut(·, T ) in ΩT . (1.3)
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In the literature some papers deal with exact boundary controllability problems
for wave equation on domains with holes. However, as far as we know, there are no
papers dealing with such problems in holed moving domains, as it is proposed in the
present paper. In this paper [12] the author seeking to show the wide applicability
of the HUM method, considers control problems on domains with different types
of geometry. In particular, he has shown how the HUM can be applied to solve
some exact boundary control problems on a fixed domain which has a hole. In [6]
also using the HUM method the authors have considered exact boundary control
problems for wave equation in domains which have one or a family of small holes.

In the literature there are also many works dealing with exact boundary control
problems on domains that has a mobile boundary but with no hole; see [2, 4, 13]
and citing references. At this point we highlight the contribution of the present
paper by making available in the literature a work that deals with exact control
problems on non-cylindrical holed domains.

Russell [20] developed a technique, based in [19], for studding an exact boundary
control problem for wave equation with control acting only on a part of boundary
of the domain. Here we shall utilize such technique to obtain the desirable exact
boundary control problem proposed in Theorem 1.1.

The applicability of Russell’s method requires some properties of the system to
be considered, the principals are: linearity, time reversibility, local energy decay
in a exterior domain (obtained via [10, 14]) and suitable traces theorems that are
obtained in [21]. As seen above the Russell’s method requires many properties of
the system to be controlled but it has the advantage of requiring very little on the
geometry of the domain. From this fact we can consider the limiting function α,
defined above, to be only piecewise smooth.

Here, it is proposed that the boundary of the domain be comprise two disjoint
parts: the internal part (the boundary of the hole) fixed, and the other part which
is moving. An interesting point is to consider an exact boundary control problem
for wave equation on a holed domain where both external and internal boundary
moving. In the literature there are papers [8, 9] that obtain local energy decay
estimates for the wave equation in the exterior of a domain with moving boundary.
Another interesting point it is to study on exact boundary control problems, in
holed domains, for systems of coupled waves equations as proposed in [5, 16]. We
intend to return on this questions in posterior works.

The rest of this article is organized as follows. In Section 2 we presents a brief
summary with respect to trace and extension properties. In Section 3 we obtain
local energy decay estimates for the wave equation in exterior domain. In Section
4 we explore exact boundary controllability results in a holed domain with fixed
boundary. In Section 5 we prove Theorem 1.1.

2. Extension and traces

In this section, we make a brief presentation about the trace and extension
theorems, such properties are essential in the proof of Theorem 1.1. Remembering
that we are considering Ω as a holed domain whose its boundary is performed by
two disjoint parts which is denoted by Γ0 and Γ1 respectively, with dist(Γ0,Γ1) > 0
and that Γ0 is smooth surface and Γ1 a surface smooth by parts with no cusps. In
this work we shall use the following extension lemma.
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Lemma 2.1. Let Ω ⊂ Ω∞ as defined above and V ⊂ Ω∞ an open set such that
Ω ⊂ V . So, there exist a bounded linear operator E : H1(Ω)×L2(Ω)→ H1(Ω∞)×
L2(Ω∞) such that for u ∈ H1(Ω)× L2(Ω):Please define A b B

(1) Eu = u in Ω;
(2) suppEu b V ;
(3) ‖Eu‖H1(Ω∞)×L2(Ω∞) ≤ C‖u‖H1(Ω)×L2(Ω), where C is a positive real con-

stant independent on u.

Proof. To sketch the proof let us firstly to define the projection operators

Pi−1 : H1(Ω)× L2(Ω)→ Hi−1(Ω∞), i = 1, 2.

As we are considering dist(Γ0,Γ1) > 0 and Γ1 is a piecewise smooth surface,
we obtain a finite cover (Ui)

k
i=1 of Γ1 where Ui ⊂ Ω∞, i = 1, · · · , k. So, we can

adapt the proof of the [15, Theorems 3.9 and 3.10] to obtain the extension operators
E1 : H1(Ω)→ H1(Ω∞), where E1u = u in Ω with ‖E1u‖H1(Ω∞) ≤ C‖u‖H1(Ω). On
the other hand, using the classical extension by zero out Ω, we obtain the extension
operator E0 : L2(Ω) → L2(Ω∞) where ‖E0u‖L2(Ω∞) ≤ ‖u‖L2(Ω). Thus, we obtain
the desirable extension operator by defines E = (E1P1, E0P0). �

Next we mention a result on the regularity of the traces of the solution of the wave
equation which it is essential in the proof of Theorem 1.1. Let us begin with some
notation and definitions. Let P (ξ,D) be a linear second order hyperbolic partial
differential equation with C∞ coefficients depending on ξ in some open bounded
domain Ξ ⊂ RN . Being Σ ⊂ Ξ an oriented smooth hypersurface which is time-like
and non-characteristic with respect to P (ξ,D). Let η = (η1, · · · , ηN ) be a unit

normal to Σ. If
∑
aij ∂2

∂ξi∂ξj
is the principal part of P (ξ,D), then the expression

∂u
∂η =

∑
aij ∂u∂ξi ηj defines the conormal derivative of u relative to the P (ξ,D) along

Σ. An important fact it is to know what the regularity of the traces of the conormal
derivative on surfaces, for this purpose we turn to [21]. Considering Ξ ⊂ RN , with
N ≥ 2, [21, Theorem 2] proves that if u ∈ H1

loc(Ξ) is such that P (ξ,D)u ∈ L2
loc(Ξ)

then ∂u
∂η ∈ L

2
loc(Σ).

Particularly, if we consider P (ξ,D) as being the standard wave operator, its

principal part will be ∂2

∂t2 −
∑N
i=1

∂2

∂x2
i
. Now, if γ is a smooth hypersurface in RN

we consider the surface γ × R whose unit normal vector is ν = (νx, νt), where
νx = (ν1, · · · , νN ). In this case the conormal derivative of u along γ × R is ∂u

∂ν =
νtut −∇u · νx. Particularly, if we apply the trace result mentioned in the previous
paragraph for the wave operator we obtain the following result.

Lemma 2.2. Let u be the solution of the initial-boundary value problem

utt −∆u = 0 in Ω∞ × R
u(·, 0) = u0, ut(·, 0) = u1, in Ω∞

u(·, t) = 0, on Γ0 × R
(2.1)

with initial data (u0, u1) ∈ H1(Ω∞) × L2(Ω∞), where supp(u0), supp(u1) b Ω∞.
Let γ be a smooth hypersurface in Ω∞, with no self intersection and considers the
surface γ × R which the unit normal vector is ν = (νx, νt). Then the conormal
derivative of u along γ × R has trace νtut −∇u · νx ∈ L2

loc(γ × R).
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3. Local energy decay

There are many publications dedicated to obtain local energy decay estimates
for hyperbolic equations in exterior domains; see [10, 14, 22] and references there
in. In this paper such estimates play a fundamental role in the proof of Theorem
1.1. So, we dedicate this section to such subject.

Let us consider the initial initial-boundary value problem

utt −∆u = 0 in Ω∞ × (0,+∞)

u(·, 0) = f, ut(·, 0) = g, in Ω∞

u(·, t) = 0, in Γ0 × (0,+∞).

(3.1)

Let O ⊂ Ω∞ a bounded domain, the energy of the solution u of the (3.1) confined
in O is defined by

E(t,O, u) =
1

2

∫
O

[|∇u|2 + u2
t ](x, t)dx. (3.2)

If there exist a positive constant C and a function p(t) such that

E(t,O, u) ≤ Cp(t)E(0,O, u), (3.3)

with p(t) → 0, as t → +∞, we say the energy of (3.1) decays locally. Adapting
process in [14, 10] we show the validity of the following local energy decay estimate.

Lemma 3.1. Let (f, g) ∈ H1(Ω∞) × L2(Ω∞) with supp(f), supp(g) ⊂ O ⊂ Ω∞,
then there exist a positive real constant K, independent of f and g, such that the
solution u of (3.1) satisfies

‖u(·, t)‖2H1(O) + ‖ut(·, t)‖2L2(O) ≤
K

t−R
{
‖u(·, 0)‖2H1(O) + ‖ut(·, 0)‖2L2(O)

}
, (3.4)

for t > R sufficiently large, where R is such that O ⊂ ΩR being B(0, R) the ball of
center 0 and radius R and ΩR = B(0, R) ∩ Ω∞.

The proof of Lemma 3.1 follows the ideas presented by Morawetz [14], so it is
essential to prove some preliminaries results. The compactness of the initial data
f and g implies finite propagation speed property for solution of the system (3.1),
that is the solution u of (3.1), in the instant t, has support contained in some
bounded region of the space Ω∞. So if we take R > 0 and the ball B(0, R) of center
0 and radius R, such that supp(f)∪supp(g) ⊂ ΩR = B(0, R)∩Ω∞, then from some
t > R the function u(x, t) as well as its derivatives are null for x ∈ Ω∞ with |x| ≥ t.

Other important and classical property of the solution u of the system (3.1) is
that his total energy

E(t,Ω∞, u) =
1

2

∫
Ω∞

[|∇u|2 + u2
t ](x, t)dx, (3.5)

is conserved with respect to t, that is,

E(t,Ω∞, u) = E(0,Ω∞, u), for all t > 0. (3.6)

In the proof of estimate (3.4) we will used the following result.
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Lemma 3.2. Let u be the solution of the boundary-value problem (3.1), if w is the
solution of the problem

wtt −∆w = 0 in Ω∞ × (0,+∞)

w(·, 0) = h, wt(·, 0) = f, in Ω∞

w(·, t) = 0, in Γ0 × (0,+∞)

(3.7)

with ∆h = g and h = 0 in B. Then wt = u.

Proof. Note that v = wt satisfies

vtt −∆v = 0 in Ω∞ × (0,+∞)

v(·, 0) = f, vt(·, 0) = ∆h, in Ω∞

v(·, t) = 0, in Γ0 × (0,+∞)

(3.8)

with ∆h = g and h = 0 on B. Then v = wt satisfies (3.1) and by the uniqueness of
solution we conclude that v = wt = u �

From Lemma 3.2 we obtain the estimate∫
Ω∞

|u(x, t)|2dx =

∫
Ω∞

|wt(x, t)|2dx

≤ E(t,Ω∞, wt) = E(0,Ω∞, wt)

≤ CE(0,Ω∞, u).

(3.9)

Now, for T > 0, let D = Ω∞ × [0, T ] be an exterior region which boundary is
∂D = ∂D1 ∪ ∂D2 ∪ ∂D3, where

∂D1 = Ω∞ × {0}, ∂D2 = Ω∞ × {T}, ∂D3 = Γ0 × [0, T ].

Multiplying the equality utt −∆u = 0 by (x · ∇u) + tut + N−1
2 u and integrating it

on D, from the Gauss’ divergence formula, as in [10], we obtain

tE(t,Ω∞, u) =

∫
ΩR

(x · ∇u(·, 0))ut(·, 0)dx+
(N − 1)

2

∫
ΩR

u(·, 0)ut(·, 0)dx

−
∫

Ω∞

(x · ∇u(·, t))ut(·, t)dx−
(N − 1)

2

∫
Ω∞

u(·, t)ut(·, t)dx

+
1

2

∫
D3

{x · ν(·)}
∣∣∂u
∂ν

(., s)
∣∣2 dx ds.

(3.10)

Since B = Ωc∞ is star-shaped with respect to origin, that is {x · ν(·)} ≤ 0, it follow
that

1

2

∫
D3

{x · ν(·)}
∣∣∂u
∂ν

(., s)
∣∣2 dx ds ≤ 0.

So, from (3.10) we obtain the estimate

tE(t,Ω∞, u)

≤
∫

ΩR

(x · ∇u(·, 0))ut(·, 0)dx+
(N − 1)

2

∫
B(0,R)

u(·, 0)ut(·, 0)dx

−
∫

Ω∞

(x · ∇u(·, t))ut(·, t)dx−
(N − 1)

2

∫
Ω∞

u(·, t)ut(·, t)dx.

(3.11)
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Now observe that∣∣ ∫
Ω∞

(x · ∇u(·, t))ut(·, t)dx
∣∣

≤ R
∫

ΩR

|∇u(·, t)| |ut(·, t)|dx+

∫
|x|≥R

|x||∇u(·, t)||ut(·, t)|dx.

Because of the finite propagation speed property, we can take t > R such that
u(x, t) and its derivatives are null, so∫

|x|≥R
|x||∇u(·, t)||ut(·, t)|dx =

∫
t≥|x|≥R

|x||∇u(·, t)||ut(·, t)|dx

≤ t

2

∫
|x|≥R

{|∇u(·, t)|2 + |ut(·, t)|2}dx.

Therefore,∣∣ ∫
Ω∞

(x · ∇u(·, t))ut(·, t)dx
∣∣

≤ R

2

∫
ΩR

{|∇u(·, t)|2 + |ut(·, t)|2}dx+
t

2

∫
|x|≥R

{|∇u(·, t)|2 + |ut(·, t)|2}dx.
(3.12)

On the other hand,∣∣ ∫
Ω∞

u(·, t)ut(·, t)dx
∣∣ ≤ 1

2

∫
Ω∞

[
|u(·, t)|2 + |ut(·, t)|2

]
dx. (3.13)

Joining (3.9) and (3.13) we obtain∣∣ ∫
Ω∞

u(·, t)ut(·, t)dx
∣∣ ≤ CE(0,Ω∞, u), (3.14)

where C is a positive constant independent of the initial data f and g.
The following inequalities are also valid∣∣ ∫

ΩR

(x · ∇u(·, 0))ut(·, 0)dx
∣∣ ≤ C(R)E(0,ΩR, u), (3.15)

∣∣ ∫
ΩR

u(·, 0)ut(·, 0)dx
∣∣ ≤ C(R)E(0,ΩR, u), (3.16)

where C(R) is a positive constant which vary from line to line and depend on R
but not on of the initial data f and g.

Now, joining and manipulating the the inequalities (3.11)-(3.16) we obtain

tE(t,ΩR, u) + tE(t, |x| ≥ R, u)

≤ CE(0,ΩR, u) +RE(t,ΩR, u) +tE(t, |x| ≥ R, u),

which implies

E(t,ΩR, u) ≤ K

t−R
E(0,ΩR, u), (3.17)

where K is a positive constant independent of the initial data.
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Applying (3.17) to the solution w of (3.7), and by Lemma 3.2 we obtain∫
ΩR

|u|2dx =

∫
B(0,R)

|wt|2dx

≤ E(t,ΩR, wt) ≤ E(t,ΩR, u)

≤ K

t−R
E(0,ΩR, u).

(3.18)

Joining (3.17) and (3.18) and considering O ⊂ ΩR, we obtain (3.4), completes the
proof. Lemma 3.1.

4. Control in a holed domain with fixed boundary

In this section we prove an exact boundary control problem for the wave equation
on a holed domain with fixed boundary. This section plays a important rule in the
proof Theorem 1.1. Let Ω be as define in the first section and T > 0. The boundary
of Ω is ∂Ω = Γ0 ∪ Γ1.

Lemma 4.1. Given (v0, v1) ∈ H1(Ω) × L2(Ω) and T > 0, there exists a control
function h(·, t) ∈ L2(Γ1 × [0, T ]) such that the solution v ∈ H1(Ω × [0, T ]) of the
problem

vtt −∆v = 0 in Ω× [0, T ]

v(·, T ) = v0, vt(·, T ) = v1, in Ω

v(·, t) = 0, on Γ0 × [0, T ]

νtvt −∇v · νx = h(·, t), on Γ1 × [0, T ].

(4.1)

satisfies the condition

v(·, 0) = 0 = vt(·, 0) in Ω. (4.2)

Proof. Let δ be a positive number, and Ωδ = {y ∈ Ω∞ : ∃x ∈ Ω; |x− y| < δ} be an
open neighborhood of Ω. Given an arbitrary (w0, w1) ∈ H1(Ω)× L2(Ω), according
Lemma 2.1 we can extend (w0, w1), for all Ω∞. Let (w̃0, w̃1) be the extension of
(w0, w1), that is, (w̃0, w̃1) = E(w0, w1). Let w the solution of the backward initial
boundary value problem

wtt −∆w = 0 in Ω∞ × (0,+∞)

w(·, T ) = w̃0, wt(·, T ) = w̃1, in Ω∞

w(·, t) = 0, in Γ0 × (0,+∞).

(4.3)

Now, for T > 0 we define the bounded linear operator

ST : H1
0(Ωδ)× L2(Ωδ)→ H1(Ω∞)× L2(Ω∞)

such that ST (w(·, T ), wt(·, T )) = (w(·, 0), wt(·, 0)), where w is the solution of (4.3).
From the decay estimate (3.4), with O = Ωδ, applied to w we obtain the estimate

‖(w(·, 0), wt(·, 0))‖2H1(Ωδ)×L2(Ωδ)
≤ K

T −R
‖(w̃0, w̃1)‖2H1(Ω∞)×L2(Ω∞) , (4.4)

for T > R sufficiently large and K is a constant independent on data (w̃0, w̃1).
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Now we consider the cut off function φ ∈ C∞0 (Ω∞) such that φ ≡ 1 in Ωδ/2, and
φ ≡ 0 out side of Ωδ. Then we solve the forward initial boundary value problem

ztt −∆z = 0 in Ω∞ × (0,+∞)

z(·, 0) = φw(·, 0), zt(·, 0) = φwt(·, 0), in Ω∞

z(·, t) = 0, in Γ0 × (0,+∞).

(4.5)

We define the linear operator ST : H1
0(Ωδ) × L2(Ωδ) → H1(Ω∞) × L2(Ω∞) by

ST (z(·, 0), zt(·, 0)) = (z(·, T ), zt(·, T )). Applying again the decay estimate (3.4),
with O = Ωδ, for function z, we obtain

‖(z(·, T ), zt(·, T ))‖2H1(Ωδ)×L2(Ωδ)
≤ K

T −R
‖(z(·, 0), zt(·, 0)))‖2H1(Ωδ)×L2(Ωδ)

, (4.6)

for T > R sufficiently large and K is a constant independent on data (z0, z1).
We define ṽ(·, t) = w(·, t)− z(·, t) and see that ṽ satisfies

ṽtt −∆ṽ = 0 in Ω∞ × (0,+∞)

ṽ(·, T ) = w(·, T )− z(·, T ), ṽt(·, T ) = wt(·, T )− zt(·, T ) in Ω∞

ṽ(·, t) = 0, in Γ0 × (0,+∞)

(4.7)

and

ṽ(·, 0) = w(·, 0)− φw(·, 0) = 0 in Ω,

ṽt(·, 0) = wt(·, 0)− φwt(·, 0) = 0 in Ω,

since φ = 1 in Ω.
Note that the function ṽ solves the homogeneous wave equation and has the

desirable final state (ṽ(·, 0), ṽt(·, 0)) = (0, 0) in Ω. Now an important step it is to
know if we may obtain T > 0 such that (ṽ(·, T ), ṽt(·, T )) extend the initial data
(v0, v1). That is, we wish establish solution for the equations

w(·, T )− z(·, T ) = v0, wt(·, T )− zt(·, T ) = v1 in Ω.

The last equations can be rewriting as

E(w0, w1)− (z(·, T ), zt(·, T )) = (v0, v1) in Ω. (4.8)

We want to solve (4.8) for unknown (w0, w1) ∈ H1(Ω) × L2(Ω). For this purpose
we rewrite equation (4.8) in terms of the operators ST and ST . Note that

(z(·, T ), zt(·, T )) = ST (φw(·, 0), φwt(·, 0))

= STMφ(w(·, 0), wt(·, 0))

= STMφST (w(·, T ), wt(·, T ))

= [STMφSTE](w0, w1),

where Mφ is the operator multiplication by φ. Thus, (4.8) becomes

(w0, w1)−RSTMφSTE(w0, w1) = (v0, v1) in Ω, (4.9)

where R denotes the restriction to Ω. Denoting RSTMφSTE by KT , equation (4.9)
can be rewritten as

(I −KT ) (w0, w1) = (v0, v1) in Ω, (4.10)

where I is the identity operator in H1(Ω)× L2(Ω).
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Now, for solving equation (4.9) it is sufficient to show that KT is a contraction in
H1(Ω)×L2(Ω). It is in this point where the energy decay takes place, by considering
inequalities (4.4) and (4.6) note that

‖KT (w0, w1)‖H1(Ω)×L2(Ω) = ‖(z(·, T ), zt(·, T ))‖H1(Ω)×L2(Ω)

≤ ‖(z(·, T ), zt(·, T ))‖2H1(Ωδ)×L2(Ωδ)

≤ K

T −R
‖(z(·, 0), zt(·, 0))‖2H1(Ωδ)×L2(Ωδ)

=
K

T −R
‖(φw(·, 0), φwt(·, 0))‖2H1(Ωδ)×L2(Ωδ)

≤ K̃

T −R
‖(w(·, 0), wt(·, 0))‖2H1(Ωδ)×L2(Ωδ)

≤ KK̃

(T −R)2
‖E(w0, w1)‖2H1(Ω)×L2(Ω)

≤ KK̃

(T −R)2
‖(w0, w1)‖2H1(Ω)×L2(Ω).

From the inequalities above we obtain

‖KT (w0, w1)‖H1(Ω)×L2(Ω) ≤

√
KK̃

T −R
‖(w0, w1)‖H1(Ω)×L2(Ω), (4.11)

for T > R sufficiently large, where K̃ is a positive constant depending only K and

Ω. So, we choose a T > R such that

√
KK̃

T−R ≤ c < 1 and for such T , KT is a

contraction. Thus, we take the solution (w0, w1) for (4.10) and take it to the begin
of the proof in order to obtain w, z and ṽ = w− z, where ṽ solves (4.7) and has the
desirable final condition (ṽ(·, 0), ṽ(·, 0)) = (0, 0). To complete the proof we define
v = ṽ|Ω and apply Lemma 2.2 from the previous section to read off the trace of

νtut −∇u · νx as a function of ∈ L2(Γ1 × [0, T ]) completing the proof. �

5. Proof of Theorem 1.1

Let Ω, Ω∞ and Ω̃ as defined in the initial section. See that the Ω̃ is a holed

domain with fixed boundary ∂Ω̃ = Γ̃ ∪ Γ0, where Γ0 is the boundary of the hole

and Γ̃ is the external boundary. Let (f̃ , g̃) ∈ H1(Ω∞) × L2(Ω∞) such that f̃

and g̃ are extensions of f and g respectively, with supp(f̃) ⊂ B(0, r) ∩ Ω∞ and
supp(g̃) ⊂ B(0, r) ∩ Ω∞. Here the number r is that one defined in the Section 1.
Let ũ be the solution of the initial-boundary value problem

ũtt −∆ũ = 0 in Ω∞ × (0,+∞)

ũ(·, 0) = f̃ , ũt(·, 0) = g̃, in Ω∞

ũ(·, t) = 0, in Γ0 × (0,+∞).

(5.1)

Now, for a T > r, we take the state (ũ(·, T ), ũt(·, T )) ∈ H1(Ω̃) × L2(Ω̃) and

according to Lemma 4.1, changing Ω by Ω̃, we solve the exact boundary control
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problem

vtt −∆v = 0 in Ω̃× [0, T ]

v(·, T ) = ũ(·, T ), vt(·, T ) = ũt(·, T ), in Ω̃

v(·, t) = 0, on Γ0 × [0, T ]

νtvt −∇v · νx = h(·, t), on Γ̃× [0, T ],

(5.2)

which satisfies, at the instant t = 0, the condition

v(·, 0) = 0 = vt(·, 0) in Ω̃. (5.3)

Considering Ωt as defined in the Section 1, note that Ωt ⊂ Ω̃ for all t > 0, so

follows that for each T > 0 we have QT = ∪0<t<TΩt × {t} ⊂ Ω̃ × [0, T ]. Defining
u = ũ− v we can see that the restriction of u to QT satisfies

utt −∆u = 0 in QT

u(·, 0) = f, ut(·, 0) = g, in Ω

u(·, t) = 0, on Γ0 × [0, T ]

(5.4)

and the condition
u(·, T ) = 0 = ut(·, T ) in ΩT . (5.5)

Now, to conclude the proof, we read the trace of the conormal derivative of u on
the surface ΣT . Note that the components ũ and v of u are under the conditions for
applying Lemma 2.2. So, we read the trace of the conormal derivative of ũ and v on
surface ΣT obtaining a L2 function. So, the desirable control function is obtained
taking νtut −∇u · νx = h(·, t) on ΣT . This completes the proof.

Remark 5.1. Note that Theorem 1.1 establishes only the existence of the control
time T . It does not provide a lower bound from which the control time can be
taken. On the other hand, using the HUM method, the authors in [6] showed
the existence of a T0 from which the system is controllable. A way for we obtain
lower estimates for the control time, using the Russell’s controllability method, is
to follow the ideas of analytic extension given by Lagnese [11]. But here we have a
difficulty applying it because we do not have the explicit formulas for the solution
to the initial-boundary value problem for the wave equation in a exterior domain.
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900, Cuiabá, MT, Brazil

Email address: ruiksonsillas@hotmail.com


	1. Introduction
	2. Extension and traces
	3. Local energy decay
	4. Control in a holed domain with fixed boundary
	5. Proof of Theorem ??
	References

