Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 35, pp. 1-38. Title: Phase portraits of a family of Kolmogorov systems depending on six parameters Authors: Erika Diz-Pita (Univ. de Santiago de Compostela, Spain) Jaume Llibre (Univ. Autonoma de Barcelona, Spain) M. Victoria Otero-Espinar (Univ. de Santiago de Compostela, Spain) Abstract: We consider a general 3-dimensional Lotka-Volterra system with a rational first integral of degree two of the form H=xI yjk. The restriction of this Lotka-Volterra system to each surface H(x,y,z)=h varying h in R provide Kolmogorov systems. With the additional assumption that they have a Darboux invariant of the form xlm est they reduce to the Kolmogorov systems $$\displaylines{ \dot{x}=x\big(a_0- \mu (c_1 x + c_2 z^2 + c_3 z)\big),\cr \dot{z}=z\big(c_0+ c_1 x + c_2 z^2 + c_3 z\big). }$$ We classify the phase portraits in the Poincare disc of all these Kolmogorov systems which depend on six parameters. Submitted June 1, 2020. Published May 03, 2021. Math Subject Classifications: 34C05. Key Words: Kolmogorov system; Lotka-Volterra system; phase portrait; Poincare disc