Electronic Journal of Differential Equations,
Vol. 2021 (2021), No. 35, pp. 1-38.
Title: Phase portraits of a family of Kolmogorov systems depending on six parameters
Authors: Erika Diz-Pita (Univ. de Santiago de Compostela, Spain)
Jaume Llibre (Univ. Autonoma de Barcelona, Spain)
M. Victoria Otero-Espinar (Univ. de Santiago de Compostela, Spain)
Abstract:
We consider a general 3-dimensional Lotka-Volterra system with a rational first
integral of degree two of the form H=xI yjk.
The restriction of this Lotka-Volterra system to each surface H(x,y,z)=h varying
h in R provide Kolmogorov systems. With the additional assumption that
they have a Darboux invariant of the form xlm est
they reduce to the
Kolmogorov systems
$$\displaylines{
\dot{x}=x\big(a_0- \mu (c_1 x + c_2 z^2 + c_3 z)\big),\cr
\dot{z}=z\big(c_0+ c_1 x + c_2 z^2 + c_3 z\big).
}$$
We classify the phase portraits in the Poincare disc of all these Kolmogorov systems
which depend on six parameters.
Submitted June 1, 2020. Published May 03, 2021.
Math Subject Classifications: 34C05.
Key Words: Kolmogorov system; Lotka-Volterra system; phase portrait; Poincare disc