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ASYMPTOTICALLY LINEAR AND SUPERLINEAR ELLIPTIC

EQUATIONS WITH GRADIENT TERMS

YUANHONG WEI, JIAN TIAN

Abstract. In this article we establish the existence of solutions for elliptic
problem involving a gradient term. To handle the so-called non-variational

problem, we use a variational methods. We assume that the nonlinear term

satisfies an asymptotically linear growth condition or a superlinear growth
condition. We show the existence of at least one positive solution and one

negative solution.

1. Introduction

This article concerns the existence of solutions for nonlinear elliptic equations
with a gradient term,

−∆u = f(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ Rn, n ≥ 1, is bounded, smooth and open with the boundary ∂Ω,
f : Rn × R× Rn → R is continuous.

There is considerable attention on the existence of solution for nonlinear elliptic
problems without the gradient term by using various variational methods. If f de-
pends on the gradient of the solution, the problem is non-variational where the well
developed critical point theory does not work. There have been quite a few works
focusing on this kind of problems by using the topological degree theory; see for ex-
ample, Amann-Crandall [1], Brezis-Turner [4], Pohožaev [9], Xavier [14], Yan [15].
Some innovative ideas were proposed by De Figueiredo-Girardi-Matzeu [5], based
on the application of variational methods for the problem with the fixed gradient
term, as well as the iterative method. The existence of solution was established
while f satisfies the classical condition by Ambrosetti-Rabinowitz [2]:

(AR) there exist ν > 2 and t0 > 0 such that

0 < νF (x, s, ξ) ≤ sf(x, s, ξ), x ∈ Ω, t ≥ t0, ξ ∈ Rn,
where F (x, s, ξ) =

∫ s
0
f(x, t, ξ)dt.

The main purpose of this article is to establish the existence of solution for (1.1)
under the asymptotically linear growth condition or the superlinear growth con-
dition. To handle the so-called non-variational problem, we follow the framework
developed by De Figueiredo-Girardi-Matzeu [5].

2010 Mathematics Subject Classification. 35B09, 35J20, 35A01.
Key words and phrases. Positive solution; nonlinearity; gradient term; iterative method;

Mountain pass theorem.
c©2020 Texas State University.

Submitted March 9, 2020. Published September 23, 2020.
1



2 Y. WEI, J. TIAN EJDE-2020/99

It is well-known that the role of (AR) is to ensure the boundedness of the Palais-
Smale sequence of the Euler-Lagrange functional. However, the asymptotically
linear growth condition eliminates (AR) condition, thereby bringing some new ob-
stacles to the argument. Besides, the nonlinearity of asymptotically linear type
will compete with the spectra of the linear operator, which requests us to develop
a new and different argument from the one for the superlinear case. There are
some works related to asymptotically linear problems, such as Jeanjean-Tanaka [8],
Stuart-Zhou [10] for second order elliptic equation, Wei-Su [13] for non-local elliptic
equation, and Wei [12] for fourth-order elliptic equation etc. For more applications
of this problem, we refer to Girardi-Matzeu [7] for periodic solutions of Hamiltonian
system and Dong-Wei [6] for radial solutions of elliptic equation etc.

For the asymptotically linear case, we assume that the nonlinearity f satisfies
the following assumptions.

(H1) f(x, 0, ξ) = 0 for all x ∈ Ω, ξ ∈ Rn.
(H2) The following holds uniformly for x ∈ Ω, ξ ∈ Rn:

0 ≤ lim inf
s→0

f(x, s, ξ)

s
≤ lim sup

s→0

f(x, s, ξ)

s
< λ1

< lim inf
|s|→+∞

f(x, s, ξ)

s
≤ lim sup
|s|→+∞

f(x, s, ξ)

s
< +∞,

where λ1 is the first eigenvalue of −∆ with the Dirichlet boundary condi-
tion.

(H3) There exists M > 0 such that for any x ∈ Ω, s ∈ R, ξ ∈ Rn, it holds∣∣f(x, s, ξ)

s

∣∣ ≤M.

(H4) f satisfies the local Lipschitz conditions: there exist constants L and K
such that

|f(x, s1, ξ)− f(x, s2, ξ)| ≤ L|s1 − s2|
for any x ∈ Ω, |s1| ≤ ρ1, |s2| ≤ ρ1, |ξ| ≤ ρ2, and

|f(x, s, ξ1)− f(x, s, ξ2)| ≤ K|ξ1 − ξ2|

for any x ∈ Ω, |s| ≤ ρ1, |ξ1| ≤ ρ2 and |ξ2| ≤ ρ2, where ρ1, ρ2 are positive
constants to be determined. Moreover, the Lipschitz constants L and K
satisfy

L+
√
λ1K < λ1.

The following theorem concerns the asymptotically linear case.

Theorem 1.1. Under hypotheses (H1)–(H4), equation (1.1) possesses at least one
positive solution and one negative solution.

Remark 1.2. Consider

f(x, s, ξ) = h(s)(1 + τg(ξ)),

where τ is a constant satisfying |τ | < 1/2, g ∈ C1(Rn), |g(ξ)| < 1, and

h(s) =


λ1(2s+ 3

2Λ), s < −Λ;
λ1

2 s, |s| ≤ Λ;

λ1(2s− 3
2Λ), s > Λ.
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It is apparent that h is continuous. Then (H1)–(H4) are satisfied for τ small enough
and Λ large enough.

In addition, we study the superlinear problem under the following hypotheses
which are weaker than (AR).

(H5) lims→0 f(x, s, ξ)/s = 0 uniformly for x ∈ Ω, ξ ∈ Rn.
(H6) For every l > 0 there exists C1 > 0 such that

F (x, s, ξ) ≥ ls2 − C1, x ∈ Ω, s ∈ R, ξ ∈ Rn,

where F (x, s, ξ) =
∫ s

0
f(x, t, ξ)dt.

(H7) There exist constants c0 > 0 and q ∈ (1, 2∗ − 1) such that for any x ∈ Ω,
s ∈ R, ξ ∈ Rn, it holds

|f(x, s, ξ)| ≤ c0(1 + |s|q),

where

2∗ =

{
2n
n−2 , n > 2;

+∞, n ≤ 2.

(H8) f(x,s,ξ)
|s| is increasing with respect to s in (−∞, 0) and (0,+∞).

Theorem 1.3. Under hypotheses (H4)–(H8), equation (1.1) possesses at least one
positive solution and one negative solution.

Remark 1.4. Consider the superlinear case

f(x, s, ξ) = εh(x)|s|αsg(ξ),

where ε > 0, α ∈ (0, 2∗ − 2), h ∈ C(Ω), and g ∈ C1(Rn) ∩ L∞(Rn). Suppose that
there exists a constant b such that 0 < b ≤ h(x) and 0 < b ≤ g(ξ). Then, for ε
small enough, all assumptions of Theorem 1.3 are satisfied. There exists ε0 > 0,
such that for all 0 < ε < ε0, problem (1.1) has at least one positive solution and
one negative solution.

This article is mainly motivated by De Figueiredo-Girardi-Matzeu [5], while both
main results and approaches are different from the existing ones. On the one
hand, unlike the assumptions in the above reference, the condition (AR) is not
imposed. This means even in the superlinear case, the assumptions of this paper
are slightly weaker. The asymptotically linear problem is also studied, which can
be seen as an asymptotically linear version of [5]. On the other hand, we try to
consider the superlinear problem in a different variational framework, including
the Nehari manifold technique. Our arguments are based on some methods of
nonlinear analysis. Mountain pass theorem, iterative technique and contraction
mapping theorem are essential to the proofs of main results.

This article is organized as follows. In Section 2, we introduce some preliminaries
and an auxiliary problem. The existence of solution for the auxiliary problem of
the asymptotically linear case is established in Section 3 by means of Mountain
pass theorem. Some uniform estimates are obtained to describe the property of
the solution. In Section 4, we study the superlinear auxiliary problem. The Nehari
manifold is defined, which transfers the nontrivial solution to the extreme point of
Euler-Lagrange functional on the constraint manifold. The proofs of main results
are given in Section 5, by the fixed point theorem and the iterative method.
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2. Preliminaries and auxiliary problem

For any v ∈ C1
0 (Ω), consider the auxiliary problem

−∆u = f(x, u,∇v) in Ω,

u = 0 on ∂Ω.
(2.1)

The Euler-Lagrange functional of (2.1) is

Jv(u) =
1

2

∫
Ω

|∇u|2dx−
∫

Ω

F (x, u,∇v)dx, u ∈ H1
0 (Ω).

It is well known that the norm

‖u‖ =
(∫

Ω

|∇u|2dx
)1/2

is an equivalent norm in H1
0 (Ω). Denote

Φv(u) =

∫
Ω

F (x, u,∇v)dx,

then

Jv(u) =
1

2
‖u‖2 − Φv(u).

Since (H3) of Theorem 1.1 or (H7) of Theorem 1.3 holds, we know that Jv is C1,
and Φ′v is completely continuous. The weak solution of (2.1) is equivalent to the
critical point of Jv.

Let λ1 be the first eigenvalue of −∆ with the Dirichlet boundary condition and
the corresponding eigenfunctions of λ1 is denoted by ϕ1. It is well known that
λ1 > 0 is simple and ϕ1 is positive.

Set u+ = max{u, 0}, u− = min{u, 0}. For any v ∈ C1
0 (Ω), consider the problem

−∆u = f±(x, u,∇v) in Ω,

u = 0 on ∂Ω,
(2.2)

where

f+(x, s, ξ) =

{
f(x, s, ξ), s ≥ 0,

0, s < 0,

f−(x, s, ξ) =

{
0, s > 0,

f(x, s, ξ), s ≤ 0.

We define the corresponding functional J±v : H1
0 (Ω)→ R, by

J±v (u) =
1

2
‖u‖2 −

∫
Ω

F±(x, u,∇v)dx,

where

F±(x, u, v) =

∫ u

0

f±(x, s, v)ds.

Denote

Φ±v (u) =

∫
Ω

F±(x, u,∇v)dx

and thus

J±v (u) =
1

2
‖u‖2 − Φ±v (u).
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Obviously, J±v ∈ C1(H1
0 (Ω),R). If u is a critical point of J+

v (J−v ), then u is a weak
solution of (2.2). By the weak maximum principle it follows that u ≥ 0 (≤ 0) a.e.
in Ω. Thus u is also a solution of problem (2.1). Hence, the nontrivial critical point
of J+

v (J−v ) is actually a positive (negative) solution of (2.1).
Throughout this paper, denote by ‖ · ‖p the Lp norm in Ω.

3. Asymptotically linear case

In this section, we study (2.1) under asymptotically linear conditions. We first
show that the functional J±v has the mountain pass geometry.

Lemma 3.1. Under the assumptions (H1)–(H3), J±v is unbounded from below.

Proof. Since (H1) holds, from (H3) it is apparent that∣∣F (x, s, ξ)

s2

∣∣ ≤ M

2

for x ∈ Ω, s ∈ R, ξ ∈ Rn. Then (H2) implies that there exist ε > 0 and Cε > 0
such that

F±(x, s, ξ) ≥ 1

2
(λ1 + ε)|s±|2 − Cε, x ∈ Ω, s ∈ R, ξ ∈ Rn. (3.1)

From (3.1) it follows that

J±v (±tϕ1) ≤ 1

2
‖tϕ1‖2 −

1

2
(λ1 + ε)

∫
Ω

t2ϕ2
1dx+

∫
Ω

Cεdx

≤ t2

2
‖ϕ1‖2 −

t2

2
(λ1 + ε)‖ϕ1‖22 + Cε|Ω|

≤ 1

2
(1− λ1 + ε

λ1
)t2‖ϕ1‖2 + Cε|Ω|,

(3.2)

where |Ω| denotes the Lebesgue measure of Ω. Then

lim
t→+∞

J±v (±tϕ1) = −∞,

which completes the proof. �

Remark 3.2. Obviously, there exists γ > 0, independent of v, such that

J±v (±sϕ1) ≤ 0, for all s ≥ γ.

Lemma 3.3. Assume that (H1)–(H3) hold. Then there exist r,R > 0 such that

J±v (u) ≥ R, if ‖u‖ = r.

Proof. From (H1)-(H3), we can find ε0 > 0 and C0 > 0, such that

F±(x, s, ξ) ≤ 1

2
(λ1 − ε0)|s|2 + C0|s|2

∗
. (3.3)

Combining (3.3) with Poincaré inequality as well as Sobolev embedding, we have

J±v (u) ≥ 1

2
‖u‖2 − λ1 − ε0

2

∫
Ω

|u|2dx− C0

∫
Ω

|u|2
∗
dx

≥ (
1

2
− λ1 − ε0

2λ1
)‖u‖2 − CsC0‖u‖2

∗
,

(3.4)

where Cs is the Sobolev constant. Choosing ‖u‖ = r > 0 small enough, it follows
that J±v (u) ≥ R > 0. �
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Lemma 3.4. Suppose that (H2) and (H3) hold. Then every Palais-Smale sequence
of J±v has a convergent subsequence in H1

0 (Ω).

Proof. Since Ω is bounded and (H2) and (H3) hold, it suffices to show that every
(PS) sequence {un} is bounded in H1

0 (Ω). We only need to prove the case of J+
v ,

because the case of J−v is similar. Assume that {un} ⊂ H1
0 (Ω) is a (PS) sequence

of J+
v , i.e.,

J+
v (un)→ c, (J+

v )′(un)→ 0 as n→ +∞. (3.5)

From (H2) and (H3) we know that

|f+(x, s, ξ)s| ≤ C(1 + |s|2).

Then (3.5) implies that for all ϕ ∈ H1
0 (Ω),∫

Ω

(
∇un · ∇ϕ− f+(x, un,∇v)ϕ

)
dx→ 0. (3.6)

Setting ϕ = un and using Hölder inequality we have

‖un‖2 =

∫
Ω

f+(x, un,∇v)undx+ 〈(J+
v )′(un), un〉

≤
∫

Ω

f+(x, un,∇v)undx+ o(1)‖un‖

≤ C|Ω|+ C‖un‖22 + o(1)‖un‖.

(3.7)

We claim that ‖un‖2 is bounded. Assume, by contradiction, that passing to a
subsequence, it holds

‖un‖22 → +∞, as n→ +∞.
Set ωn = un

‖un‖2 and thus ‖ωn‖2 = 1. From (3.7) we know that

‖ωn‖2 ≤ o(1) + C +
o(1)

‖un‖2
· ‖un‖
‖un‖2

≤ o(1) + C + o(1)‖ωn‖,

which implies that ‖ωn‖ is bounded. Hence, there exists ω ∈ H1
0 (Ω), ‖ω‖2 = 1,

such that

ωn ⇀ ω in H1
0 (Ω),

ωn → ω in L2(Ω),

ωn(x)→ ω(x) a.e. in Ω.

From (3.6) it follows that∫
Ω

∇ωn · ∇ϕ−
∫

Ω

f+(x, un,∇v)

‖un‖2
ϕdx = o(1), ϕ ∈ H1

0 (Ω). (3.8)

Taking ϕ = ω−n , we have ‖ω−n ‖ = o(1), which implies ω−(x) = 0 a.e. in Ω and thus
ω(x) ≥ 0.

If ω(x) = 0, from (H3) it follows that

|f+(x, un,∇v)|
‖un‖2

= |f
+(x, un,∇v)

un
|ωn ≤Mωn → 0.

Then we have

lim
n→+∞

f+(x, un,∇v)

‖un‖2
= 0.
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If ω(x) > 0, it follows un = ωn‖un‖2 → +∞. Then (H2) implies that there exists
δ > 0, such that

lim inf
n→+∞

f+(x, un,∇v)

‖un‖2
= lim inf

n→+∞

f+(x, un,∇v)

un
ωn ≥ (λ1 + δ)ω.

Hence, from the above two cases we derive that

lim inf
n→+∞

f+(x, un,∇v)

‖un‖2
≥ (λ1 + δ)ω (3.9)

for all x ∈ Ω. Taking ϕ = ϕ1 in (3.8), we obtain that

λ1

∫
Ω

ωϕ1dx =

∫
Ω

∇ω · ∇ϕ1dx

= lim
n→+∞

∫
Ω

∇ωn · ∇ϕ1dx

= lim
n→+∞

∫
Ω

f+(x, un,∇v)

‖un‖2
ϕ1dx.

(3.10)

Since ϕ1 > 0, it is known from Fatou’s Lemma that∫
Ω

lim inf
n→+∞

f+(x, un,∇v)

‖un‖2
ϕ1dx ≤ lim

n→+∞

∫
Ω

f+(x, un,∇v)

‖un‖2
ϕ1dx. (3.11)

Then, from (3.9), (3.10) and (3.11) we obtain

λ1

∫
Ω

ωϕ1dx = lim
n→+∞

∫
Ω

f+(x, un,∇v)

‖un‖2
ϕ1dx

≥
∫

Ω

lim inf
n→+∞

f+(x, un,∇v)

‖un‖2
ϕ1dx

≥ (λ1 + δ)

∫
Ω

ωϕ1dx,

which implies that ω ≡ 0. However, this fact contradicts with ‖ωn‖ = 1 and
hence ‖un‖2 is bounded. Therefore, from (3.7) we know that {un} is bounded in
H1

0 (Ω). �

Lemma 3.5. Let (H1)–(H3) hold. Then, for any v ∈ C1
0 (Ω), problem (2.1) has

at least one positive weak solution u+
v ∈ H1

0 (Ω) and one negative weak solution
u−v ∈ H1

0 (Ω).

Proof. We define

Ψ± = {ψ ∈ C([0, 1], H1
0 (Ω)) : ψ(0) = 0, ψ(1) = ±γϕ1},

where γ is given by Remark 3.2. Let

c±v = inf
ψ∈Ψ±

max
s∈[0,1]

J±v (ψ(s)). (3.12)

Since Lemma 3.1, Lemma 3.3 and Lemma 3.4 hold, Mountain pass theorem implies
that c+v (c−v ) is a critical value of J+

v (J−v ). Namely,

(J±v )′(u±v ) = 0, J±v (u±v ) = inf
ψ∈Ψ±

max
s∈[0,1]

J±v (ψ(s)),

which completes the proof. �

Now, we establish some uniform estimates for solutions u±v of (2.1) obtained by
Lemma 3.5.
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Lemma 3.6. Let v ∈ C1
0 (Ω), and (H2) and (H3) hold. Then there exists a positive

constant c0, independent of v, such that

‖u±v ‖ ≥ c0
for all solutions u±v of (2.1) obtained by Lemma 3.5.

Proof. Since u±v is a solution of (2.1), we know∫
Ω

|∇u±v |2dx =

∫
Ω

f±(x, u±v ,∇v)u±v dx.

From (H2) and (H3), we know there exist positive constants ε and cε such that

|f±(x, s±, ξ)| ≤ (λ1 − ε)|s±|+ cε|s±|2
∗−1, for any x ∈ Ω, s ∈ R, ξ ∈ Rn.

Hence, ∫
Ω

|∇u±v |2dx ≤ (λ1 − ε)
∫

Ω

|u±v |2dx+ cε

∫
Ω

|u±v |2
∗
dx.

By Poincaré inequality and Sobolev inequality, we obtain

(1− λ1 − ε
λ1

)‖u±v ‖2 ≤ cε‖u±v ‖2
∗

2∗ ≤ cεc2
∗

0 ‖u±v ‖2
∗
,

which implies the conclusion. �

Lemma 3.7. Let (H1)–(H3) hold. Then there exists a positive constant ρ, inde-
pendent of v, such that

‖u±v ‖ ≤ ρ
for all solutions u±v obtained by Lemma 3.5.

Proof. We only give the proof for the case of J+
v , the case of J−v is similar. We

suppose, by contradiction, there exist subsequences {vj} and {uvj}, such that

{vj} ⊂ C1
0 (Ω), {uvj} ⊂ H1

0 (Ω) and

(J+
vj )′(uvj ) = 0, ‖uvj‖ → +∞ as j → +∞.

Then for all ϕ ∈ H1
0 (Ω), it holds∫

Ω

(
∇uvj · ∇ϕ− f+(x, uvj ,∇vj)ϕ

)
dx = 0. (3.13)

We set ωj =
uvj

‖uvj
‖ and thus ‖ωj‖ = 1. Hence, there exists ω ∈ H1

0 (Ω), ‖ω‖ = 1

such that

ωj ⇀ ω in H1
0 (Ω),

ωj → ω in L2(Ω),

ωj(x)→ ω(x) a.e. in Ω.

From (3.13) it follows∫
Ω

(
∇ωj · ∇ϕ−

f+(x, uvj ,∇vj)
‖uvj‖

ϕ
)

dx = 0. (3.14)

Taking ϕ = ω−j we know ‖ω−j ‖ = 0, which implies ω(x) ≥ 0.

If ω(x) = 0, from (H3) it follows that

|f+(x, uvj ,∇vj)|
‖uvj‖

=
∣∣f+(x, uvj ,∇vj)

uvj

∣∣ωj ≤Mωj → 0.
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Then we have

lim
j→+∞

f+(x, uvj ,∇vj)
‖uvj‖

= 0.

If ω(x) > 0, it follows that uvj = ωj‖uvj‖ → +∞. Then (H2) implies that there
exists δ > 0, such that

lim inf
j→+∞

f+(x, uvj ,∇vj)
‖uvj‖

= lim inf
j→+∞

f+(x, uvj ,∇vj)
uvj

ωj ≥ (λ1 + δ)ω.

Hence, from the above two cases,

lim inf
j→+∞

f+(x, uvj ,∇vj)
‖uvj‖

≥ (λ1 + δ)ω (3.15)

for all x ∈ Ω. Taking ϕ = ϕ1 in (3.14), since ϕ1 > 0, ω ≥ 0, from (3.15) and Fatou’s
Lemma we derive

λ1

∫
Ω

ωϕ1dx =

∫
Ω

∇ω · ∇ϕ1dx

= lim
j→+∞

∫
Ω

∇ωj · ∇ϕ1dx

= lim
j→+∞

∫
Ω

f+(x, uvj ,∇vj)
‖uvj‖

ϕ1dx

≥
∫

Ω

lim inf
j→+∞

f+(x, uvj ,∇vj)
‖uvj‖

ϕ1dx

≥ (λ1 + δ)

∫
Ω

ωϕ1dx.

Hence, ω ≡ 0, which contradicts with ‖ω‖ = 1. The proof is complete. �

Lemma 3.8. Assume that (H1)–(H3) hold. Then there exist positive constants ρ1

and ρ2, independent of v, such that

max
x∈Ω
|u±v (x)| ≤ ρ1, max

x∈Ω
|∇u±v (x)| ≤ ρ2.

Proof. Since f is continuous in all variables and v ∈ C1
0 (Ω), using the regularity

theory we know that u±v is C2, see Brezis [3]. Hence, Sobolev embedding theorem
and Lemma 3.7 imply the conclusion. �

4. Nehari manifold for superlinear case

This section is devoted to the existence of critical point of Jv for superlinear
case. The critical points will be obtained by means of constrained minimization.
For fixed v ∈ C1

0 (Ω), define Nehari manifold

Nv := {u ∈ H1
0 (Ω) \ {0} : J ′v(u)u = 0}.

Lemma 4.1. Under assumptions (H5), (H7), (H8), there exists a positive constant
c0, independent of v, such that ‖u‖ ≥ c0 for all solutions u ∈ Nv.

Proof. Since u ∈ Nv, we know∫
Ω

|∇u|2dx =

∫
Ω

f(x, u,∇v)udx.
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From (H5) and (H7), for any ε > 0, there exists cε > 0 such that

|f(x, s, ξ)| ≤ ε|s|+ cε|s|q, x ∈ Ω, s ∈ R, ξ ∈ Rn.
Then ∫

Ω

|∇u|2dx ≤ ε
∫

Ω

|u|2dx+ cε

∫
Ω

|u|q+1dx.

Hence, by Poincaré inequality and Sobolev inequality we obtain

(1− ε

λ1
)‖u‖2 ≤ cε‖u‖q+1

q+1 ≤ cεc
q+1
0 ‖u‖q+1,

which implies the conclusion. �

Lemma 4.2. Assume that (H5) and (H7) hold. Then

Φ′v(u) = o(‖u‖), Φv(u) = o(‖u‖2)

as u→ 0 in H1
0 (Ω).

Proof. (H5) and (H7) imply that for any given ε > 0, there exists a positive cε such
that

F (x, s, ξ) ≤ ε|s|2 + cε|s|q+1, x ∈ Ω, s ∈ R, ξ ∈ Rn. (4.1)

Then, by Hölder inequality and Sobolev inequality, it is standard to prove the
lemma. �

To prove the main result, we will apply the following lemma, which can be found
in Szulkin and Weth [11, Theorem 12].

Lemma 4.3. Let E be a Hilbert space and J(u) = 1
2‖u‖ − Φ(u), where

(i) Φ′(u) = o(‖u‖) as u→ 0;
(ii) s 7→ Φ′(su)u/s is strictly increasing for all u 6= 0 and s > 0;

(iii) Φ(su)/s2 → +∞ uniformly for u on weakly compact subset of E \ {0} as
s→ +∞;

(iv) Φ′ is completely continuous.

Then equation J ′(u) = 0 has a ground state solution.

Lemma 4.4. Let (H5)–(H8) hold. Then, for any v ∈ C1
0 (Ω), problem (2.1) has a

ground state solution uv ∈ H1
0 (Ω).

Proof. It suffices to check (i)–(iv) of Lemma 4.3. Actually, Lemma 4.2 and (H8)
imply (i) and (ii), respectively. For (iii), let W be a weakly compact subset of
H1

0 (Ω) \ {0} and {un} ⊂W . Passing to a subsequence, it holds

un ⇀ u ∈ H1
0 (Ω) \ {0}.

Then
un(x)→ u(x) a.e. in Ω.

Hence, the set Ω∗ := {x ∈ Ω : u(x) 6= 0} is a subset of Ω with positive measure.
Taking sn → +∞, we know that for x ∈ Ω∗,

|snun(x)| → +∞, as n→ +∞.
Then Fatou’s Lemma yields

Φv(snun)

s2
n

=

∫
Ω

F
(
x, snun(x),∇v(x)

)
(snun)2

u2
ndx→ +∞.

Finally, since Ω is bounded and (H7) holds, from the compact embedding we know
(iv) holds. �
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Remark 4.5. In the above lemma, a ground state solution is found, which is a
critical point of functional Jv. From the proof of the above lemma, it can be seen
that if Jv is replaced by J±v , then a ground state solution u±v can also be obtained.

Remark 4.6. It is easy to check the following minimax characterization (see
Szulkin and Weth [11]):

cv := inf
u∈Nv

Jv(u) = inf
u∈H1

0 (Ω)\{0}
max
s>0

Jv(su) = inf
u∈H1

0 (Ω),‖u‖=1
max
s>0

Jv(su).

Lemma 4.7. Assume that (H5)–(H8) hold. Then, there exists a positive constant
d, such that cv ≤ d uniformly for v ∈ C1

0 (Ω).

Proof. Because of the minimax characterization in Remark 4.6, it suffices to show
that there exists φ ∈ H1

0 (Ω) \ {0}, such that

max
s>0

Jv(sφ) ≤ d, uniformly for v ∈ C1
0 (Ω).

From (H6), for every l > 0 there exists C1 > 0 such that

F (x, s, ξ) ≥ ls2 − C1, x ∈ Ω, s ∈ R, ξ ∈ Rn.
Fix φ ∈ H1

0 (Ω) with ‖φ‖ = 1. From the above we obtain

Jv(sφ) = s2

2

∫
Ω
|∇φ|2dx−

∫
Ω
F (t, sφ,∇v)dx (4.2)

≤ s2

2 ‖φ‖
2 −

∫
Ω
ls2φ2dx+

∫
Ω
C1dx (4.3)

≤ s2
(

1
2 − l

∫
Ω
φ2dx

)
+ C1|Ω|. (4.4)

Setting l = 1∫
Ω
φ2dx

, it follows that

Jv(sφ) ≤ −1

2
s2 + C1|Ω| ≤ C1|Ω|

uniformly for v ∈ C1
0 (Ω). �

Lemma 4.8. There exists a positive constant ρ, independent of v, such that for
every ground state solution uv given in Lemma 4.4,

‖uv‖ ≤ ρ.

Proof. By contradiction, suppose that there exist subsequences {vj} ⊂ C1
0 (Ω) and

{uvj} ⊂ H1
0 (Ω), such that uvj ∈ Nvj ,

J(uvj ) = inf
u∈Nvj

J(u),

‖uvj‖ → +∞ as j → +∞.

Set ωj = uvj/‖uvj‖ and thus ‖ωj‖ = 1. Then, there exists ω ∈ H1
0 (Ω) such that

ωj ⇀ ω in H1
0 (Ω),

ωj → ω in L2(Ω),

ωj(x)→ ω(x) a.e. in Ω.

We claim that ω(x) ≡ 0 a.e. in Ω. Denote Ω∗ = {x ∈ Ω, ω(x) 6= 0}. If Ω∗ 6= ∅, then
for x ∈ Ω∗, |uvj (x)| → +∞ as j → +∞. By (H6) we have

lim
j→+∞

F
(
x, uvj (x),∇vj(x)

)(
uvj (x)

)2 (
ωj(x)

)2
= +∞. (4.5)
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Then Fatou’s Lemma implies∫
Ω

lim
j→+∞

F
(
x, uvj (x),∇vj(x)

)(
uvj (x)

)2 (
ωj(x)

)2
dx

≤ lim inf
j→+∞

1

‖uvj‖2

∫
Ω

F
(
x, uvj (x),∇vj(x)

)
dx

= lim
j→+∞

1

‖uvj‖2
(1

2
‖uvj‖2 − Jvj (uvj )

)
.

(4.6)

From the property of Nehari manifold we know that

Jvj (uvj ) = max
s>0

Jvj (suvj ).

Then Lemma 4.2 implies Jvj (uvj ) ≥ 0. Hence, from (4.6) we obtain∫
Ω

lim
j→+∞

F
(
x, uvj (x),∇vj(x)

)(
uvj (x)

)2 (
ωj(x)

)2
dx ≤ 1

2
,

which contradicts with (4.5). Therefore, Ω∗ has zero measure and ω(t) ≡ 0 a.e. in
Ω.

Since Φvj is weakly continuous, from Lemma 4.7 we obtain

d ≥ Jvj (uvj ) ≥ Jvj (sωj) ≥
1

2
s2 − Φvj (sωj)→

1

2
s2,

which is a contradiction, for s large enough. �

Lemma 4.9. Assume that (H5)–(H8) hold. Then there exist positive constants ρ1

and ρ2, independent of v, such that

max
x∈Ω
|uv(x)| ≤ ρ1, max

x∈Ω
|∇uv(x)| ≤ ρ2

for all solutions uv obtained in Lemma 4.4.

The proof of the above lemma is as same as the proof of Lemma 3.8.

Remark 4.10. Actually, a similar result can also be established for problem (2.2).
We can find a critical point u±v for functional J±v and positive constants ρ1 and ρ2,
independent of v, such that

max
x∈Ω
|u±v (x)| ≤ ρ1, max

x∈Ω
|∇u±v (x)| ≤ ρ2.

5. Proofs of main results

In this section, we prove our main results by the iterative argument, which was
established by De Figueiredo, Girardi and Matzeu [5]. Define the map

T± : H1
0 (Ω)→ H1

0 (Ω), T±v 7→ u±v ,

with domain D(T±) = C1
0 (Ω) ⊂ H1

0 (Ω). Here u±v is the solution of (2.1) given
by Lemma 3.5 for the asymptotically linear case and Remark 4.5 for the superlin-
ear case, respectively. For any v ∈ C1

0 (Ω), the map is well-defined, and actually,
T±(C1

0 (Ω)) ⊂ C1
0 (Ω) because of the regularity theory. Moreover, denote

Bρ := {u ∈ H1
0 (Ω), ‖u‖ ≤ ρ},

where ρ > 0 is the uniform bound in Lemma 3.7 for the asymptotically linear case
and Lemma 4.8 for the superlinear case, respectively. Then, T±(C1

0 (Ω)) ⊂ Bρ.
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Hence, T±(C1
0 (Ω)) ⊂ Bρ ∩ C1

0 (Ω). Recall that a point x is a fixed point of map T ,
if and only if

x ∈ T (x).

Choosing u±0 ∈ Bρ∩C1
0 (Ω), we construct a sequence {u±n } ⊂ Bρ∩C1

0 (Ω) as solutions
of

−∆u±n = f±(x, u±n ,∇u±n−1) in Ω,

u±n = 0 on ∂Ω,
(5.1)

obtained in Lemma 3.5 for asymptotically linear case and in Lemma 4.4 for super-
linear case, respectively.

Proof of Theorems 1.1 and 1.3. By (5.1) for n and for n+ 1, we have∫
Ω

∇u±n · (∇u±n+1 −∇u±n )dx =

∫
Ω

f±(x, u±n ,∇u±n−1)(u±n+1 − u±n )dx,∫
Ω

∇u±n+1 · (∇u
±
n+1 −∇u±n )dx =

∫
Ω

f±(x, u±n+1,∇u±n )(u±n+1 − u±n )dx.

According to Lemma 3.8 for the asymptotically linear case and Remark 4.10 for
the superlinear case, we know that

max
x∈Ω
|u±v (x)| ≤ ρ1, max

x∈Ω
|∇u±v (x)| ≤ ρ2.

Combining (H4) with Poincaré inequality as well as Cauchy-Schwarz inequality, it
follows that

‖u±n+1 − u±n ‖2 =

∫
Ω

(
f±(x, u±n+1,∇u±n )− f±(x, u±n ,∇u±n−1)

)
(u±n+1 − u±n )dx

=

∫
Ω

(
f±(x, u±n+1,∇u±n )− f±(x, u±n ,∇u±n )

)
(u±n+1 − u±n )dx

+

∫
Ω

(
f±(x, u±n ,∇u±n )− f±(x, u±n ,∇u±n−1)

)
(u±n+1 − u±n )dx

≤ L
∫

Ω

|u±n+1 − u±n |2dx+K

∫
Ω

|∇u±n −∇u±n−1‖u
±
n+1 − u±n |dx

≤ L

λ1
‖u±n+1 − u±n ‖2 +

K√
λ1

‖u±n − u±n−1‖ · ‖u
±
n+1 − u±n ‖.

Hence,

‖u±n+1 − u±n ‖ ≤
K
√
λ1

λ1 − L
‖u±n − u±n−1‖.

From L +
√
λ1K < λ1 we know {u±n } ⊂ H1

0 (Ω) is a Cauchy sequence, and thus
there exists u±∗ ∈ H1

0 (Ω) such that u±∗ ∈ T±(u±∗ ). Finally, from Lemma 3.6 for the
asymptotically linear case and Lemma 4.1 for the superlinear case we know that
‖u±∗ ‖ ≥ c0, which means that u±∗ is a nontrivial solution. �
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