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ENERGY DECAY FOR VARIABLE COEFFICIENT

VISCOELASTIC WAVE EQUATION WITH ACOUSTIC

BOUNDARY CONDITIONS IN DOMAINS WITH NONLOCALLY

REACTING BOUNDARY

JIANGHAO HAO, MENGXIAN LV

Abstract. In this article, we study a variable coefficients viscoelastic wave

equation with acoustic boundary conditions in domains with nonlocally re-
acting boundary. By constructing suitable Lyapunov functionals and using

the energy compensation method, we prove that under suitable conditions on

the initial data and the relaxation function, the energy of the system has an
explicit and general decay rate.

1. Introduction

Let Ω ⊂ Rn (n ≥ 2) be an open bounded domain with smooth boundary Γ =
Γ0 ∪ Γ1. Here, Γ0 and Γ1 are closed and disjoint with meas(Γ0) > 0. In this paper
we consider the viscoelastic wave equation of variable coefficients with the acoustic
boundary conditions

u′′ − Lu+

∫ t

0

g(t− τ)Lu(τ)dτ + ρ(u′) = 0 in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),

∂u

∂νL
−
∫ t

0

g(t− τ)
∂u

∂νL
(τ)dτ = z′ on Γ1 × (0,∞),

fz′′ − p2∆Γz + qz′ + hz = −u′ on Γ1 × (0,∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

z(x, 0) = z0(x), z′(x, 0) = z1(x) on Γ1,

(1.1)

where

Lu = div(A(x)∇u) =

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
,

∂u

∂νL
=

n∑
i,j=1

aij(x)
∂u

∂xj
νi.
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The symbol ′ denotes the derivative with respect to time t, νL = Aν, where ν =
(ν1, . . . , νn) represents the outward unit normal vector to Γ, and ∆Γ is the Laplace-
Beltrami operator. In addition, p is a positive constant, ρ : R → R, g : R+ → R+

and f , q, h : Γ1 → R are functions.
When g = 0 and p = 0, the boundary conditions (1.1)3 and (1.1)4 are the classical

acoustic boundary conditions introduced by Morse and Ingard [23] and developed
by Beale and Rosencrans [2, 3] via the assumption that each point on the boundary
reacts to the excess pressure of the acoustic wave like a resistive harmonic oscillator
or spring and each point of the boundary does not affect each other. The models
usually are related to the problems of noise control and suppression in practical
applications and have been studied by many authors, see [6, 7, 8] and the references
therein. Ĺımaco et al. [16] investigated a nonlinear wave equation of Carrier type
and established the existence of regular weak solution. Gao, Liang and Xiao [11]
obtained the uniform stability of a nonlinear acoustic wave system with an internal
localized damping term ω(x)ut. For the case f = 0, which means the material
of surface is much lighter than the fluid medium, Hao and He [14, 15] studied two
variable-coefficient wave equations with the acoustic boundary conditions, and they
obtained the exponential decay result and general decay result respectively.

On the other hand, when g = 0 and p > 0, the boundary conditions (1.1)3 and
(1.1)4 are called acoustic boundary conditions to non-locally reacting boundary
(see [9]), which models the surface Γ1 reacts to the excess pressure as an elastic
membrane. Later, Frota et al [10] studied the following semilinear wave equation

u′′ −∆u+ αu′ + ρ(u′) = F.

They proved the existence, uniqueness of solution by Galerkin’s method and ob-
tained an exponential decay result. Moreover they also improved their previous
results since estimates they made can be adapted to the problem treated in [9].
Frota and Vicente [26] took into account the dissipative term q(z′) in stead of
qz′ and put a nonlinear internal localized damping term in the wave equation to
achieve uniform stability successfully. Recently, Ha [13] considered the following
wave equation of variable coefficients

u′′ − Lu+ ρ(u′) = 0,

where

Lu = div(A(x)∇u) =

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
.

Under suitable conditions on ρ, he improved his previous result [12] in which he
focused on the case A = I, and obtained the general decay result. Liu [18] studied a
variable coefficient wave equation with an acoustic undamped boundary condition
and deduced the polynomial energy decay estimates by the Riemannian geometry
method introduced by Yao [28].

In addition, the integral-differential term in (1.1) gives the memory effect to the
problem, due to the mechanical response influenced by the history of the materials
themselves. The study involving the wave equation with viscoelastic term and the
acoustic boundary conditions can be found in [5, 19, 20]. For instance, Park and
Park [25] studied the viscoelastic wave system

u′′ −∆u+

∫ t

0

g(t− τ)∆u(τ)dτ = 0 in Ω× (0,∞),
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u = 0 on Γ0 × (0,∞),

∂u

∂ν
−
∫ t

0

g(t− τ)
∂u

∂ν
(τ)dτ = z′ on Γ1 × (0,∞),

u′ + qz′ + hz = 0 on Γ1 × (0,∞),

and deduced the energy decay rates under the assumption
∫∞

0
g(s)ds < 1

2 . Later,
without this assumption condition on the relaxation function g, Liu [17] generalized
the work to an arbitrary decay rate which does not necessarily decay exponentially
or polynomially. In presence of variable-coefficient matrices A(x), which reflects
the inhomogeneous nature of the material in applications, Boukhatem and Benab-
derrahmane [4] considered the damped semilinear viscoelastic wave system

u′′ − Lu+

∫ t

0

g(t− τ)Lu(τ)dτ = |u|p−2u in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),

∂u

∂νL
−
∫ t

0

g(t− τ)
∂u

∂νL
(τ)dτ = h(x)z′ on Γ1 × (0,∞),

u′ + qz′ + hz = 0 on Γ1 × (0,∞).

Instead of using the Riemannian geometry method, they obtained the local exis-
tence of solution by combining the Faedo-Galerkin approximations and the con-
traction mapping theorem. Furthermore, they proved the solution exists globally
in time and established a uniform decay result. From the previous works with
memory effect and the acoustic boundary conditions, we can see that most authors
considered the porous case (f = 0).

Motivated by the previous works, our goal of this paper is to prove the general
decay estimates for problem (1.1). We consider the case f > 0, i.e., non-porous
case and Γ1 is non-locally reacting. To the best of our knowledge, it is hardly seen
in current literature on the study of variable-coefficient viscoelastic wave equation
with acoustic boundary conditions to nonlocally reacting boundary. Therefore, the
model is novel and the study on the asymptotic behavior of solutions for (1.1) is
interesting and significant. Also, problem (1.1) in this paper is a improvement of
[13], because we consider the viscoelastic damping effect and the assumptions on ρ
allows a wider class of functions. Different from the method in [13], our strategy
was to use the techniques of [21, 22, 27] with some necessary modifications due to
the nature of problem (1.1). The main idea is to construct appropriate Lyapunov
functionals and deduce the energy inequality which leads us to a general decay
result.

The paper is organized as follows. In Section 2, we present some assumptions
and materials needed in our work and give the main results of this paper. Then,
some estimates are given and the general decay of energy for (1.1) is derived in
Section 3.

2. Preliminaries

In this section, we present some assumptions and materials needed for our work.
Throughout the paper Ci (i = 1, 2, . . . ) denote various positive constants which
depend on the known constants. We consider the standard Sobolev spaces Lq(Ω)
and Lq(Γ1) endowed with the usual inner products and norms. For simplicity, we
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denote ‖ · ‖L2(Ω), ‖ · ‖Lq(Ω), ‖ · ‖L2(Γ1) and ‖ · ‖Lq(Γ1) by ‖ · ‖, ‖ · ‖q, ‖ · ‖Γ1
and

‖ · ‖q,Γ1
, respectively.

Set H(L,Ω) = {u ∈ H1(Ω);Lu ∈ L2(Ω)} equipped with the norm

‖u‖H(L,Ω) =
(
‖u‖2H1(Ω) + ‖Lu‖2

)1/2
.

Denoting γ0 : H1(Ω) → H1/2(Γ) and γ1 : H(L,Ω) → H−1/2(Γ) the trace map of
order 0 and the Neumann trace map on H(L,Ω), respectively, we have

γ0(u) = u|Γ and γ1(u) =
( ∂u
∂νL

)
Γ
.

DefineW = {u ∈ V ∩H3(Ω); (γ1(u))|Γ1 ∈ H1
0 (Γ1)}, where V = {u ∈ H1(Ω); γ0(u) =

0 on Γ0} endowed with the norm

‖u‖V =
( N∑
i=1

∫
Ω

| ∂u
∂xi
|2dx

)1/2

.

By Poincaré’s inequality and the continuity of the trace map, there exist positive
constants k0 and k1 such that

‖u‖ ≤ k0‖∇u‖ and ‖γ0(u)‖Γ1
≤ k1‖∇u‖, u ∈ V. (2.1)

We consider the Sobolev space Hm(Γ1), m = 1, 2 with respect to the norm

‖z‖Hm(Γ1) =
( m∑
i=0

‖∇iz‖2Γ1

)1/2

, m = 1, 2,

where ∇i is the covariant derivative operator of order i. Let H1
0 (Γ1) be the closure

of C∞0 (Γ1) in H1(Γ1). The Poincaré’s inequality holds in H1
0 (Γ1), thus there exists

a constant k2 such that

‖z‖Γ1
≤ k2‖∇τz‖Γ1

, z ∈ H1
0 (Γ1), (2.2)

where ∇τ is the tangential gradient on Γ1. Therefore on H1
0 (Γ1) we have the inner

product and norm

(z, v)Γ1
=

∫
Γ1

〈∇τz(x),∇τv(x)〉dΓ1, ‖z‖Γ1
= ‖∇τz‖Γ1

,

which is equivalent to the usual norm endowed by H1(Γ1). Next, we consider
H1

0 (Γ1) ∩H2(Γ1) endowed with the norm

‖z‖H1
0 (Γ1)∩H2(Γ1) = ‖∆Γz‖Γ1

,

here ∆Γz = div∇τz, which is equivalent to the usual norm endowed by H2(Γ1).
We will use the following assumptions:

(A1) The matrix A(x) = (aij(x)), with entires aij(x) ∈ C1(Ω̄), is symmetric
and there exists a positive constant a0 such that for all x ∈ Ω̄ and ζ =
(ζ1, ζ2, . . . , ζn) ∈ Rn, we have

n∑
i,j=1

aij(x)ζjζi ≥ a0|ζ|2.
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(A2) The relaxation function g : R+ → R+ is a bounded C1 function satisfying

g(0) > 0, 1−
∫ ∞

0

g(s)ds = l > 0,

g′(t) ≤ −ξ(t)g(t), t ≥ 0,

in which ξ : [0,∞) → [0,∞) is a positive nonincreasing C1 function satis-
fying ∫ ∞

0

ξ(s)ds =∞.

(A3) ρ : R→ R is a nondecreasing C1 function and there exist positive constants
ε, c1, c2 > 0 and an increasing function H1 : R+ → R+ of class C1(R+) ∩
C2(R+) satisfying H1(0) = 0, and H1 is linear or H ′1(0) = 0 and H ′′1 (t) > 0
on (0, ε] such that

c1|s| ≤ |ρ(s)| ≤ c2|s| if |s| ≥ ε,
s2 + ρ2(s) ≤ H−1

1 (sρ(s)) if |s| ≤ ε.

(A4) The positive functions f , q, h are essentially bounded and there exist pos-
itive constants fi, qi, hi (i = 0, 1) such that

f0 ≤ f ≤ f1, q0 ≤ q ≤ q1, h0 ≤ h ≤ h1, x ∈ Γ1.

To simplify calculation in our analysis, we introduce the following notation

(g � u)(t) =

∫ t

0

g(t− τ)a(u(t)− u(τ), u(t)− u(τ))dτ,

where

a(u(t), v(t)) =

n∑
i,j=1

∫
Ω

aij(x)
∂u(t)

∂xj

∂v(t)

∂xi
dx =

∫
Ω

A∇u(t)∇v(t)dx.

Lemma 2.1. For g ∈ C1(0, T ) and u ∈ C1(0, T ;V ), we have∫ t

0

g(t− τ)a(u(τ), u′(t))dτ

=
1

2
(g′ � u)(t)− 1

2
g(t)a(u(t), u(t))

− 1

2

d

dt

(
(g � u)(t)−

∫ t

0

g(τ)dτa(u(t), u(t))
)
.

(2.3)

Similar to [10], a well posedness theorem can be derived by using Faedo-Galerkin
method and we omit the proof.

Theorem 2.2. Suppose that assumptions (A1)–(A4) hold and the initial data sat-
isfies

(u0, u1, z0) ∈W × V × (H1
0 (Γ1) ∩H2(Γ1)) (2.4)

and the compatibility condition

∂u0

∂ν
= z1 in L2(Γ1). (2.5)

Then, there exists a unique solution (u, z) to (1.1) satisfying

u ∈ L∞loc(0,∞;V ), u′ ∈ L∞loc(0,∞;V ), u′′ ∈ L∞loc(0,∞;L2(Ω)),
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z ∈ L∞loc(0,∞;H1
0 (Γ1) ∩H2(Γ1)), z′ ∈ L∞loc(0,∞;H1

0 (Γ1)),

z′′ ∈ L∞loc(0,∞;L2(Γ1)).

We denote the modified energy functional E(t) associated with problem (1.1) by

E(t) =
1

2
‖u′‖2 +

1

2

(
1−

∫ t

0

g(τ)dτ
)
a(u(t), u(t)) +

1

2
(g � u)(t)

+
1

2
‖f1/2z′‖2Γ1

+
p2

2
‖∇τz‖2Γ1

+
1

2
‖h1/2z‖2Γ1

.

(2.6)

Multiplying the first equation in (1.1) by ut and the fourth equation by zt,
integrating over Ω and Γ1 respectively, using integration by parts and (2.3), we
obtain the following lemma.

Lemma 2.3. Suppose that assumptions (A1)–(A4), (2.4) and (2.5) hold. Then
E(t) is nonincreasing and satisfies

E′(t) = −‖q1/2z′‖2Γ1
− 1

2
g(t)a(u(t), u(t)) +

1

2
(g′ � u)(t)−

∫
Ω

u′ρ(u′)dx. (2.7)

Now we can state the main result of this paper.

Theorem 2.4. Suppose that assumptions (A1)–(A4), (2.4) and (2.5) hold. Then
there exist positive constants ε0, t0, µ1, µ2 and nonnegative constant µ3 such that
the solution of system (1.1) satisfies

E(t) ≤ µ1H
−1
(
µ2

∫ t

0

ξ(s)ds+ µ3

)
, t ≥ t0, (2.8)

where

H(r) =

∫ 1

r

1

H0(s)
ds and H0(r) = rH ′1(ε0r).

Here, H is strictly decreasing and convex on (0, 1], with limr→0H(r) = +∞.

3. Decay estimate

In this section we give the proof of our main result. To do this, we define the
functional

L(t) := E(t) + εψ(t) + ηφ(t), (3.1)

where ε and η are positive constants to be chosen later and

ψ(t) :=

∫
Ω

uu′dx+

∫
Γ1

fzz′dΓ +

∫
Γ1

uz dΓ, (3.2)

φ(t) := −
∫

Ω

u′
∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx. (3.3)

It is easy to obtain the following result, i.e. the functional L is equivalent to the
energy functional E.

Lemma 3.1. Suppose that assumptions (A1)–(A4), (2.4) and (2.5) hold. Then for
ε, η > 0 small enough, there exist two positive constants λ1 and λ2 such that

λ1E(t) ≤ L(t) ≤ λ2E(t).
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Lemma 3.2. Let assumptions (A1)–(A4), (2.4) and (2.5) hold. Then there exists
some constant C1 such that the functional ψ(t) satisfies

ψ′(t) ≤ ‖u′‖2 + C1‖z′‖2Γ1
− ‖h1/2z‖2Γ1

− l

4
a(u(t), u(t))

−p
2

2
‖∇τz‖2Γ1

+
1− l

2l
(g � u)(t) +

1

4α1

∫
Ω

ρ2(u′)dx.

(3.4)

Proof. By differentiating ψ and using (1.1), we obtain

ψ′(t) = ‖u′‖2 + ‖f1/2z′‖2Γ1
− p2‖∇τz‖2Γ1

− ‖h1/2z‖2Γ1
− a(u(t), u(t))

+

∫
Γ1

uz′dΓ−
∫

Ω

uρ(u′)dx−
∫

Γ1

zu′dΓ−
∫

Γ1

qzz′dΓ

+
d

dt

∫
Γ1

uzdΓ +

∫ t

0

g(t− τ)

∫
Ω

A∇u(t)∇u(τ) dx dτ.

(3.5)

Now we estimate the last term on the right-hand side of (3.5). By (A2), Young’s
inequality and Hölder’s inequality, we obtain∫ t

0

g(t− τ)

∫
Ω

A∇u(t)∇u(τ) dx dτ

≤ 1

2
a(u(t), u(t)) +

1

2

∫
Ω

A
(∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)|+∇u(t))dτ
)2

dx

≤ 1

2

(
1 + (1 + λ)(1− l)2

)
a(u(t), u(t)) +

1

2

(
1 +

1

λ

)
(1− l)(g � u)(t).

(3.6)

Using (2.1), (2.2), (2.3), (A1), (A4) and Cauchy’s inequality, we arrive at∣∣ ∫
Γ1

uz′dΓ
∣∣ ≤ α1k

2
1

a0
a(u(t), u(t)) +

1

4α1
‖z′‖2Γ1

, (3.7)∫
Ω

uρ(u′)dx ≤ α1k
2
0

a0
a(u(t), u(t)) +

1

4α1

∫
Ω

ρ2(u′)dx, (3.8)

−
∫

Γ1

zu′dΓ ≤ − d

dt

∫
Γ1

uzdΓ +
α1k

2
1

a0
a(u(t), u(t)) +

1

4α1
‖z′‖2Γ1

, (3.9)∫
Γ1

qzz′dΓ ≤ α2k
2
2q

2
1‖∇τz‖2Γ1

+
1

4α2
‖z′‖2Γ1

. (3.10)

Substituting (3.6)–(3.10) into (3.5) and taking

λ =
l

1− l
, α1 =

a0l

4(2k2
1 + k2

0)
, α2 =

p2

2k2
2q

2
1

,

we obtain (3.4) with C1 = f1 + 1
2α1

+ 1
4α2

. This completes the proof. �

Lemma 3.3. Suppose that assumptions (A1)–(A4), (2.4) and (2.5) hold, then there
exist two positive constants C2, C3 such that the functional φ(t) satisfies

φ′(t) ≤
(
µ−

∫ t

0

g(τ)dτ
)
‖u′‖2 + µ(1 + 2(1− l)2)a(u(t), u(t)) + ‖z′‖2Γ1

+C2(1− l)(g � u)(t) + µ

∫
Ω

ρ2(u′)dx− C3(g′ � u)(t).

(3.11)
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Proof. Differentiating φ and using (1.1), we obtain

φ′(t) =

∫
Ω

A∇u
∫ t

0

g(t− τ)(∇u(t)−∇u(τ)) dτ dx

−
∫

Ω

(∫ t

0

g(t− τ)A∇u(τ)dτ
)(∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτ
)
dx

−
∫

Γ1

z′
∫ t

0

g(t− τ)(u(t)− u(τ))dτdΓ

+

∫
Ω

ρ(u′)

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

−
∫

Ω

u′
∫ t

0

g′(t− τ)(u(t)− u(τ)) dτ dx−
∫ t

0

g(τ)dτ‖u′‖2

:= I1 + I2 + I3 + I4 + I5 −
∫ t

0

g(τ)dτ‖u′‖2.

(3.12)

Now, we estimate the terms on the right-hand side of (3.12). By (2.1), (2.2), (A2)
and Cauchy’s inequality, we obtain for any µ > 0

|I1| ≤ µa(u(t), u(t)) +
1

4µ
(1− l)(g � u)(t),

|I2| ≤ 2µ(1− l)2a(u(t), u(t)) +
(

2µ+
1

4µ

)
(1− l)(g � u)(t),

|I3| ≤ ‖z′‖2Γ1
+

k2
1

4a0
(1− l)(g � u)(t),

|I4| ≤ µ
∫

Ω

ρ2(u′)dx+
k2

0

4µa0
(1− l)(g � u)(t),

|I5| ≤ µ‖u′‖2 −
k2

0g(0)

4µa0
(g′ � u)(t).

Taking into account these estimates, (3.12) yields (3.11) with

C2 = 2µ+
1

2µ
+

k2
0

4µa0
+

k2
1

4a0
, C3 =

k2
0g(0)

4µa0
.

This completes the proof. �

Next we prove our main result.

Proof of Theorem 2.4. For a fixed positive number t0, we define g0 :=
∫ t0

0
g(τ)dτ .

Since g is nonincreasing and g(0) > 0, we have
∫ t

0
g(τ)dτ ≥ g0, t ≥ t0. Then

combining (A4), (2.7), (3.1), (3.4) and (3.11), we deduce that

L′(t) ≤ −
(
η(g0 − µ)− ε

)
‖u′‖2 −

( lε
4
− ηµ(1 + 2(1− l)2)

)
a(u(t), u(t))

−(q0 − C1ε− η)‖z′‖2Γ1
− p2ε

2
‖∇τz‖2Γ1

+
(1

2
− C3η

)
(g′ � u)(t)

+
( ε

2l
+ C2η

)
(1− l)(g � u)(t)− ε‖h1/2z‖2Γ1

− 1

2
g(t)a(u(t), u(t))

−
∫

Ω

u′ρ(u′)dx+
( ε

4α1
+ ηµ

)∫
Ω

(
u′2 + ρ2(u′)

)
dx.

(3.13)
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At this point, we choose µ > 0 such that

g0 − µ >
g0

2
,

4µ

l

(
1 + 2(1− l)2) <

g0

4
.

Then, (3.13) yields

L′(t) ≤ −
(g0η

2
− ε
)
‖u′‖2 − l

4

(
ε− g0η

4

)
a(u(t), u(t))− p2ε

2
‖∇τz‖2Γ1

−(q0 − C1ε− η)‖z′‖2Γ1
+
( ε

2l
+ C2η

)
(1− l)(g � u)(t)

+
(1

2
− C3η

)
(g′ � u)(t)− ε‖h1/2z‖2Γ1

− 1

2
g(t)a(u(t), u(t))

−
∫

Ω

u′ρ(u′)dx+
( ε

4α1
+ ηµ

)∫
Ω

(
u′2 + ρ2(u′)

)
dx.

(3.14)

Taking ε and η small enough such that Lemma 3.1 remains valid, we pick

g0η

4
< ε <

g0η

2
, q0 − C1ε− η > 0,

1

2
− C3η > 0.

Hence, we have
g0η

2
− ε > 0 and

l

4

(
ε− g0η

4

)
> 0.

Whence, it follows from (A2), (2.6), (2.7) that

L′(t) ≤ −C4E(t) + C5(g � u)(t) + C6

∫
Ω

(
u′2 + ρ2(u′)

)
dx (3.15)

where C4 is a positive constant and

C5 :=
( ε

2l
+ C2η

)
(1− l), C6 :=

ε

4α1
+ ηµ.

Multiplying (3.15) by ξ(t) and applying (A2), (2.7), we have

ξ(t)L′(t) ≤ −C4ξ(t)E(t) + C5ξ(t)(g � u)(t) + C6ξ(t)

∫
Ω

(
u′2 + ρ2(u′)

)
dx

≤ −C4ξ(t)E(t)− C5(g′ � u)(t) + C6ξ(t)

∫
Ω

(
u′2 + ρ2(u′)

)
dx

≤ −C4ξ(t)E(t)− 2C5E
′(t) + C6ξ(t)

∫
Ω

(
u′2 + ρ2(u′)

)
dx.

(3.16)

Exploiting the fact that ξ is a nonincreasing continuous function and defining

F (t) := ξ(t)L(t) + 2C5E(t),

we see from Lemma 3.1 and (3.16) that F (t) ∼ E(t), and

F ′(t) ≤ −C4ξ(t)E(t) + C6ξ(t)

∫
Ω

(
u′2 + ρ2(u′)

)
dx. (3.17)

To obtain our desired result, we shall estimate the last term on the right-hand side
of (3.17). For this purpose, we adapt the arguments in [24].

Case 1. H1 is linear on [0, ε]. Then, by (A2), (A3) and (2.7), we deduce that there
exists some positive constant C7 such that

F ′(t) ≤ −C4ξ(t)E(t) + C7

∫
Ω

u′ρ(u′)dx ≤ −C4ξ(t)E(t)− C7E
′(t),
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which together with (3.17) give, as J(t) := F (t) + C7E(t) and

J ′(t) ≤ −C4ξ(t)E(t).

Hence, using that J(t) ∼ E(t), we easily obtain for t ≥ t0,

E(t) ≤ C8e
−C4

∫ t
0
ξ(s)ds := C8H

−1
(
C4

∫ t

0

ξ(s)ds
)
. (3.18)

Case 2. H ′1(0) = 0 and H ′′1 > 0 on (0, ε]. In this case, we choose 0 < ε1 < ε such
that

sρ(s) ≤ min{ε,H1(s)}, s ≤ ε1,
Then, it is easy to show that

c1|s| ≤ |ρ(s) ≤ c2|s| if |s| ≥ ε1,
s2 + ρ2(s) ≤ H−1

1 (sρ(s)) if |s| ≤ ε1.
Next we consider a partition of Ω,

Ω1 = {x ∈ Ω : |u′| ≤ ε1} and Ω2 = {x ∈ Ω : |u′| > ε1}.
To estimate the last term on the right side of (3.17), we set

S(t) :=
1

|Ω1|

∫
Ω1

u′ρ(u′)dx.

By Jensen’s inequality, we obtain

H−1
1 (S(t)) ≥ C9

∫
Ω1

H−1
1 (u′ρ(u′))dx.

From this and (2.7), we have

ξ(t)

∫
Ω

(u′2 + ρ2(u′))dx = ξ(t)

∫
Ω1

(u′2 + ρ2(u′))dx+ ξ(t)

∫
Ω2

(u′2 + ρ2(u′))dx

≤ ξ(t)
∫

Ω1

H−1
1

(
u′ρ(u′))dx− C10E

′(t)

≤ 1

C9
ξ(t)H−1

1 (S(t))− C10E
′(t).

Therefore, (3.17) yields

F ′(t) ≤ −C4ξ(t)E(t) + C11ξ(t)H
−1
1 (S(t))− C6C10E

′(t), (3.19)

which gives
R′0(t) ≤ −C4ξ(t)E(t) + C11ξ(t)H

−1
1 (S(t)), (3.20)

where R0(t) := F (t) + C6C10E(t), and R0(t) ∼ E(t) because of Lemma 3.1.
Now, for ε0 < ε and c0 > 0, we define

R1(t) := H ′1

(
ε0
E(t)

E(0)

)
R0(t) + c0E(t).

Then, it is easy to show that for a1, a2 > 0,

a1R1(t) ≤ E(t) ≤ a2R1(t).

Recalling that E′(t) ≤ 0, H ′1(r) > 0, H ′′1 (r) > 0 on (0, ε], and using (3.20), we
obtain

R′1(t) = ε0
E′(t)

E(0)
H ′′1

(
ε0
E(t)

E(0)

)
R0(t) +H ′1

(
ε0
E(t)

E(0)

)
R′0(t) + c0E

′(t)
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≤ −C4ξ(t)E(t)H ′1

(
ε0
E(t)

E(0)

)
+ C11ξ(t)H

′
1

(
ε0
E(t)

E(0)

)
H−1

1 (S(t)) + c0E
′(t).

On the other hand, thanks to the argument given in [1], we have

H∗1 (s) = s(H ′1)−1(s)−H1((H ′1)−1(s)), if s ∈ (0, H ′1(ε)],

where H∗1 is the Legendre transform of the convex function H1 defined by

H∗1 (s) := sup
t∈R+

(st−H1(t)).

Then, the fact that H ′1(0) = 0 and H, (H ′1)−1 are increasing functions yields

H∗1 (s) ≤ s(H ′1)−1(s), if s ∈ (0, H ′1(ε)]. (3.21)

Using Young’s inequality, we obtain

AB ≤ H∗1 (A) +H1(B) if A ∈ (0, H ′1(ε)], B ∈ (0, ε]. (3.22)

Taking A = H ′1(ε0
E(t)
E(0) ) and B = H−1

1 (S(t)), from (2.7), (3.20), (3.21) and (3.22)

it follows that

R′1(t) ≤ −C4ξ(t)E(t)H ′1

(
ε0
E(t)

E(0)

)
+ C11ξ(t)H

∗
1

(
H ′1
(
ε0
E(t)

E(0)

))
+ C11ξ(t)S(t) + c0E

′(t)

≤ −C4ξ(t)E(t)H ′1

(
ε0
E(t)

E(0)

)
+ C11ε0ξ(t)

E(t)

E(0)
H ′1

(
ε0
E(t)

E(0)

)
− C12E

′(t) + c0E
′(t),

where C12 := C11ξ(0)
|Ω1| . Choosing ε0 small enough such that

C13 := C4E(0)− C11ε0 > 0

and taking c0 > C12, we arrive at

R′1(t) ≤ −C13ξ(t)
E(t)

E(0)
H ′1

(
ε0
E(t)

E(0)

)
= −C13ξ(t)H0

(E(t)

E(0)

)
, (3.23)

where H0(r) = rH ′1(ε0r). By the strict convexity of H1 on (0, ε], we can see that
H ′0(t) and H0(t) > 0 on (0, 1]. Thus, setting

R(t) :=
a1R1(t)

E(0)
,

which satisfies R(t) ∼ E(t), and using (3.23), we have

R′(t) ≤ −a1C13

E(0)
ξ(t)H0

(E(t)

E(0)

)
= −µ2ξ(t)H0(R(t)).

A simple integration over (t0, t) yields

R(t) ≤ H−1(µ2

∫ t

t0

ξ(s)ds+ µ3), t ≥ t0. (3.24)

Combining (3.18) and (3.24), we obtain the desired result. The proof is complet. �
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