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EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR A
TWO-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES
SYSTEM WITH POROUS MEDIUM DIFFUSION AND
ROTATIONAL FLUX

LINGZHU WANG, LI XIE

ABSTRACT. This article concerns a two-dimensional Keller-Segel-Navier-Stokes
system with porous medium diffusion and rotational flux describing the coral
fertilization. Based on the Gagliardo-Nerenberg inequality and an energy-type
argument, we show that, in the context of the nonlinear diffusions of sperm
and eggs with index m > 1 and [ > 0, the corresponding initial-boundary value
problem possesses at least one global bounded weak solution.

1. INTRODUCTION

Broadcast spawning is a reproduction strategy observed in many benthic inver-
tebrates, for example corals, sea urchins and sea anemones. To spawn, adult males
and females synchronously release sperm and eggs into the surrounding flow. For
successful and efficient fertilization to take place, concentrated parcels of sperm
and egg must come into close proximity. Laboratory studies and numerical simu-
lations demonstrate that a variety of physical, biological and chemical factors such
as structured stirring by ambient flow, sperm motility and taxis, play an important
role in this process [4] [18].

For the coral broadcast spawning problem, field measurements of the fertiliza-
tion rates are often greater than 90% [I3, [22]. However, the details of the relevant
physical and biological aspects of the problem that result in high coral fertilization
rates have not been well understood. Mathematical study and models become nec-
essary to improve our understanding of the fertilization of sperm and egg gametes
of benthic invertebrates.

As sperm and eggs are initially separated by the surrounding sea water, egg
gametes release a chemical enzyme which attracts spermatozoids. The fertilization
process is affected by the structure string of flow field, sperm motility and taxis. To
better understand this phenomena, mathematical models describing this fertiliza-
tion process should merge reactions, chemotaxis, diffusion, and transport of fluid
velocities. To consider the effect of chemotaxis on the coral fertilization process,
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Kiselev-Ryzhik [I1] [12] introduced a two-component chemotaxis-fluid model,
ne+u-Vn=An—xV-(nVe) —ni,

0=Ac+n, (1.1)

where ¢ is the unknown concentration of the enzyme secreted by eggs, n is the
unknown density of both sperm and eggs, and u is a given smooth solenoidal fluid
vector field. The results in [I1] show that if ¢ > 2, the increasing of x (the chemo-
tactic sensitivity) can enhance the coral fertilization. We can find that only the cells
transport through the fluid is taken into consideration in the model 7 while the
chemicals is ignored. A more realistic chemotaxis-fluid model involving the advec-
tion motion of both cells and chemicals was considered in [I], i.e. the model with
the parabolic-equation ¢; +u-Ve = Ac—c+n instead of the second elliptic-equation
in . Moreover, a chemotaxis-fluid model with unknown (Navier-)Stokes fluid
velocity was studied in [5] and its generalization is given by

ne+u-Vn=An" -V - (nVe) + un(l —n),
¢t +u-Ve=Ac—c+n,
ut + k(u - V)u=Au— VP +nVe,
V.-u=0.

(1.2)

We highlight that such chemotaxis-fluid models possess some regularity properties
similar to the fluid-free counterparts, i.e. the well-known Keller-Segel type models,
which have been extensively studied in the past fifty years. For instance, when
m = 1, the associated initial-boundary value problem in bounded planar domains
admits global classical solutions for any p > 0 [25], global classical solutions with
appropriately small initial data for g = 0 [I7]; and the three-dimensional initial-
boundary problem possesses global classical solutions for p > 23 [24]. These restric-
tions on p can be relaxed when the linear diffusion of the cell density is replaced
by nonlinear porous medium diffusions [10} [16] 2T, 26| 29].

In the process of coral fertilization, the chemoattractant is an enzyme released
by eggs to attract sperm, and the densities of sperm and eggs are different. To
better reflect the biological reality, very recently, the following four-component
Keller-Segel-Navier-Stokes model was proposed by researchers,

ng+u-Vn=An—-V-(nS(z,n,c)Ve) —unp, ze€Q,t>0,
pt+u-Vp=Ap—punp, z€Q, t>0,
cc+u-Ve=Ac—c+p, €, t>0, (1.3)
ur + Kk(u-Viu=Au—-VP+ (n+p)Ve, 2€Q,t>0,
Veu=0, z€Q t>0.

This model is a further refinement of the model in that it distinguishes sperm
from eggs, and only sperm cells show chemotaxis to the enzyme released by eggs. It
was shown that the associated initial-boundary value problem with scalar chemo-
tactic sensitivity (i.e. S(z,n,c) = I), in the two-dimensional setting, possesses a
unique global classical solution which tends towards a spatially homogeneous equi-
librium in the large time limit [6]. Furthermore, the global bounded solutions to the
three-dimensional Keller-Segel-Stokes counterpart with tensor-valued chemotactic
sensitivity S(z,n, c) satisfying |S| < x(1+mn)~* were further established under the
condition that & > 1/3 in [14], and a > 0 in [I5].



EJDE-2020/94 TWO-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES SYSTEMS 3

In this article, we consider the following four-component Keller-Segel-Navier-
Stokes system with porous medium diffusion and tensor-valued chemotactic sensi-
tivity,

ng+u-Vn=Anm" -V - (nS(xz,n,c)Ve) — unp, x€Q, t >0,
pr4u-Vp=Ap —punp, z€Q, t>0,
c+u-Ve=Ac—c+p, x€Q, t>0,
ur+(u-Viu=Au—-VP+ (n+p)Vo, z€Q,t>0, (1.4)
Vu=0, z€Q t>0,

(Vn™ —nS(x,n,c)Ve) - v=Ve-v=Vp-rv=0, u=0, z€dQ, t>0,
n(xvo) :nO(:E)7 0(1'70) :CO($)7 p(.’E,O) =p0($), u(xvo) ZUQ(x), T e Qa
where Q C R? is a bounded domain with smooth boundary, n and p denote the
population densities of the unfertilized sperm and eggs, c is the concentration of
the chemical signal which is an enzyme released by eggs, u is the divergence free
sea fluid velocity, P and ¢ denote the associated pressure of the fluid and the
gravitational potential, S represents the tensor-valued chemotactic sensitivity, and

the parameters p > 0, m > 1, and [ > 0.

Our goal is to study the existence and boundedness of global solutions to problem
(1.4]). To formulate our main result, we assume that the tensor-valued chemotactic
sensitivity S(x,n, c) satisfies

S € C*((2 x [0,00)?); R?*?) (1.5)
and for some x > 0,
|S(x,n,c)| < x for (z,n,¢) € Qx [0,00)% (1.6)
Moreover, we assume that the gravitational potential ¢ satisfies
€ WH>(Q) (1.7)
and the initial data (ng, co, vo, ug) fulfills
ng € C°(Q)  with ng >0, ng Z 0 in Q,
co € W2(Q) with ¢g > 0in €,

_ (1.8)
po € Co(2) with pg > 0 in £,
ug € D(AP)  with some 8 € (1/2,1),
where A := —PA denotes the realization of the Stokes operator in L?(Q;R?),

defined on its domain D(A) := W22(Q; R?) N W, *(Q; R?) N L2(Q; R?) with
L2(Q;R?) = {p € L*(Q;R?)|V - p = 0}, and with P representing the Helmholtz
projection of L?(£;R?) onto L2 (;R?) (see [6]).

Theorem 1.1. Let > 0, m > 1,1 > 0, Q C R? be a bounded domain with the
smooth boundary OS2, and the assumptions lb hold. Then for every initial
data (ng, co, po, o) satisfying , problem (1.4) possesses a global weak solution
(n,c,v,u, P) in the sense of Deﬁmtion which is uniformly bounded in the sense
that there ezists a positive constant C such that for t > 0,

(-, )|l oo ) + lleC, ) llwroe ) + o D) o) + lul, t)|lLe@) < C. (1.9)
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This article is organized as follows. In Section 2, we present some preliminary
results. In Section 3, we prove the global existence of classical solutions to the
regularized problem. In Section 4, we prove Theorem

2. PRELIMINARIES
We first consider a regularized version of problem ,
Net + Ue - Ve = A(ne + €)™ — V- (neSe(x,ne, ¢ )Vee) — pnepe, x €8, t >0,
pet + Ue - Vpe = Alpe + €)' — pnepe, x€Q, t>0,
Cet +Uue - Vee =Ace —ce +pe, x€Q,t>0,
Uet + Ue - Ve = Aue — VP + (ne + p)Vo, z€Q, t>0, (2.1)
V-ou=0, z€Q, t>0,
Vne - v=Ve.-v=Vp.-v=0, u.=0, x€dQ, t>0,
ne(z,0) =ng(z), c(z,0)=co(x), x€€Q,
pel,0) = pole),  ue(w,0) = up(x), =EQ,
for e € (0,1) and

Se(z,mn,c) = 0.(x)S(z,n,¢), € n>0 ¢c>0. (2.2)
Here, (0c)ec(o,1) € C5°(R2) is a family of standard cut-off functions satisfying
0c€(0,1) inQ, p 1 ase\,0. (2.3)
In view of , we then derive that
[Se(z,n,0)| <x, z€Qn>0,c>0. (2.4)

Next, we state the existence and extensibility criterion for local solutions to this
regularized problem. The proof can be obtained with minor modifications of the
proof of [28, Lemma 2.1], so we omit it here.

Lemma 2.1. Let m > 1,1 > 0, u > 0, Q C R? be a bounded domain with the
smooth boundary 052, and suppose the conditions - hold. Then, for any
€ € (0,1), there exist Tnax,e € (0,00] and a classical solution (ne, ce, pe, te, Pe) to
problem in Q X [0, Timax,e). Here, Timax,e denotes the mazimal existence time,
and

ne € CO(Q x [0, Tinax,e)) N C*H(Q % (0, Tmax,e)),
ce € C%(Q x [0, Tmax,e)) N C%HQ x (0, Tinax,e)) N Np=1L°([0, Tinax,e); W (2)),
pe € CO( X [0, Tmax,e)) N C%H(Q x (0, Tinax,e)),
te € CO(Q X [0, Trmax,e)) N C*H(Q % (0, Tinax,e)),
P € CH(Q x (0, Timaxe))
for any p > 2. Furthermore, n.,ce and p. are nonnegative in Q X (0, Tmax,e), and

if Thax,e < 00, then

timsup {n(,8)ll =) + lec, O lwroeqa) + el Ol
t/‘Tmax,s (25)
+ 4% (- Dl ae | = o0

for B € (1/2,1) given in (L.8).
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The well-known Gagliardo-Nirenberg interpolation inequality will be frequently
used throughout this paper. For readers’ convenience, we state its version in two-
dimensional case [7] [20].

Lemma 2.2. Let Q C R? be a bounded domain with smooth boundary, let j, k be
any integers satisfying 0 < j < k, and let 1 < q,r < oo, p € RT, a € [%,1] such
that 1 j 1k 1—a
j _
> 2 + (q 2)a + )
Then for any function u(x) € W*9(Q) N L"(Y), there exists two positive constants
c1, ¢y depending only on €2, 5, k,q,7,n such that

1D7ullze < exl D*ullZallull - + caflulz--
Lemma 2.3 ([23]). Let T > 0, 7 € (0,T), a > 0, b > 0. Assume that h(t) is a

nonnegative function belonging to L [0,T), and y : [0,T) — [0,00) is absolutely
continuous function satisfying

y'(t) +ay(t) < h(t) forae tel0,T),

t+7
/ h(s)ds <b forte[0,T —T).
¢

Then )
y(t) < max{y(0) + b, —+ 20} forte[0,7T).

3. EXISTENCE OF GLOBAL SOLUTION FOR THE REGULARIZED PROBLEM

In this section, we concentrate on proving the existence of classical global solu-
tions to the regularized problem (2.1). Let us first state some basic estimates on
Ne, Pe and c..

Lemma 3.1. The solution of problem (2.1) satisfies

/nE < / no  fort € (0, Timax.e)s (3.1)
0 0

[Pell ooy < llpollLee()  fort € (0, Tinax,e), (3:2)
moreover, we have

leell ey < max{collz= o loollz=y} fort € (0, Tmme)s  (3.3)
t+1

1
/ /Q Ved? < 5 (ool 3o 12+ mas{leol3a . l0le oy 21) (34)
t

fort € (0, Tiax,e — ), where 7 = min{1, %Tmax,e}.

Proof. Integrating the first equation in problem ([2.1)) over {2 and using integration
by parts and the divergence free of the fluid (V - u. = 0), we obtain

d

dt Jo
which implies (3.1). Multiplying the second equation in problem (2.1)) by p?~1
(p > 2) and integrating by parts then yields

1d _ _
ﬁ/p%xp—l)/(me)l 1 QIVpe|2=—u/nep€§0 (3.6)
p Q Q Q

Ne = fu/ Nepe <0 for t € (0, Tax.c), (3.5)
Q
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for t € (0, Tinax,e), which implies

1Pel oy < llPollLe()  for ¢ € (0, Timax,c)-

Letting p — oo, we have

||p5”L°°(Q) < ||p0||L°°(Q) fort € (OaTmax,e)y

i.e., (3.2) is valid. Similarly, we have

1d —1 1
i aso-n [arvers [a<t 2 [arl |
pdt Jq Q Q p Jo P Ja
p—1 1
s—/cwfnpeniw\m
p Q p

for t € (0, Tinax,e)- This, along with (3.2), yields

(3.7)

d
o | tp-1) / Vel + / & <|lpollo Q] for t € (0, Tnax,e). (3.8)
Q Q Q

Using the Gronwall inequality, we have
el < e lleollniey + ool 1211 — e=0) < ma{lcolZ s 0] ey 120}
for t € (0, Tinax,e), and then
leell oy < max{llcol| o) ool @y |27} for ¢ € (0, Tmax,c)- (3.9)
Letting p — oo, we obtain
l[celleo (@) < max{|lcoll L) lpollLe ()}  for t € (0, Tmaxe)s
thus, is valid. Letting p = 2 in and integrating over (¢,t + 7) with

7 =min{1, %Tmax,e}, we further derive that

t-‘rT 1
[ [ 196 < 50mlEe ol + Ol )

1
< 5(||Po||%oo(sz)|9\ +max{[|co[[Z2 (s [1poll7 = o) 12U})
for t € (0, Tinax,e — 7), where we used (3.9) and 7 < 1. Hence, (3.4) is valid. O

Based on the above elementary estimates, we can use the standard testing pro-
cedure to establish the following estimates on n., which shall be used in Lemma
to derive the uniform bound on [, |u|* and :+T Jo [Vuel?.

Lemma 3.2. Let m > 1. Then there exists a constant C' > 0 independent of € such
that the solution of problem ([2.1)) satisfies

/(nE +eoml<C forte (0, Tmax.e), (3.10)
Q

t+7
/ /(ne PV < C fort € (0, Tane —7) (3.11)
t Q

TUZth T = min{l, %Tmax,e}-
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Proof. Testing the first equation of (2.1)) by (n. + €)™~ 2, integrating by parts over
Q and using the fact that V - u. = 0, we have

Li m—1 _ 2m—4 2

——m /Q(ne+e) +m(m 2)/Q(ne+e) [Vn|

= — / (e + €)™ 72V - (neSe(x,ne, ce)Vee) — p/ (ne + €)™ *nepe (3.12)
Q Q

= (m—2) / (ne + 6)m73n5Vn€ < Se(z,ne,ce)Vee — ,u/ (ne + e)m*QnEpE
Q Q

for t € (0, Tinax,e)- We next divide the proof into three cases.

Case 1: m > 2. Using (2.4) and Young’s inequality, from (3.12)) we derive

1 d m—1 2m—4 2
- _92
m_ldt/g(ne-i-e) +m(m )/Q(n6+e) [Vn|

< x(m—2) / (ne + €)™ 2|Vn ||Ve| — u/(n6 + )" 2 nepe (3.13)
Q Q

_9 2(m —2
S m(m )/(n6 +6)2m—4‘vn6‘2 + X (m ) / |VCE|2
4 Q m Q

for ¢t € (0, Tinax,e), which entails

1 d 3m(m — 2
— / (ne + 6)'m—l + ( ) /(ne + 6)2m—4|vne|2
X*(m —2) 2 (314
< 7/ [Vee|* for t € (0, Thax,c)-
m 9}
By the Holder inequality and the Gagliardo-Nirenberg interpolation inequality, we
can find two positive constants ¢; and co independent of € such that

AW+WH

= [(ne + )" e

oIV (e 9™ ey +allne+ o)

1
< m—1|m— 1
= Cl||(n€+6) HL L = ()

= C1”"6 + €||L1(Q)||v(”e + e)m 1||L2(Q + ClHne + 6| Ll(Q

< e1(llnollzrey + 12DV (ne + )™

53(;2) + ce1(||nol e + Q)™
m—2

gwwmﬁnWWE3+@

m—2

where we use € € (0,1) and ( . Since m=f € (0,1), by Young’s inequality we
have

—2
/Q(n +6)™ 1 <y V(ne + €)™ 1||L2 Q)+CQ

m(m — 2)

m”v(ne + )™ ) + 3

-2
= % / (ne + €)™ D VUn|? +¢5 forte (0, Tiax,e)-
Q



8 L. WANG, L. XIE EJDE-2020/94

This and (3.14)) yield

d —1 -2

— (ne + E)m 1 4 m(m )(m ) / |V(n€ + 6)m71|2

dt 2 Q

+ (m — 1)/(7% +e)mt (3.15)

Q
2(m—1 -2

< X (m ng(m )/ |Vee|> + ¢4 forte (0, Trnax,e)s
where ¢4 = c3(m — 1) is independent of e. Let y(t) := [, (nc(-,t) + €)™ 1, h(t) :=
(m+ Jo IVee|? + ¢4, then we have

y'(t)+ (m —1)y(t) < h(t) fort € (0, Tmax.c)-

Note that

t+7 2
x“(m—1)(m—2
[ nopas < XD g oo
t m

+max{|col|F2(ay: [lpoll7 () I21}) + ca == b,
for t € (0, Tnax,e — 7) by (3.4). An application of Lemma gives
b
/(ne +eo)mt < max{/ (no+1)™ 1 4 b,
Q

T
Integrating (3.15)) over (¢, t + 7) yields

71 2
m(m (m — / / Ne + €) 2m 4|Vn |2

<b+ max{/ (ng +1)™ ! 40, b +2b} for t € (0, Tmax,e)s

(m— 1T
therefore, ) and (| - ) hold.

Case 2 : m = 2. We only need to show that there exists a positive constant C'
independent of € such that

t+7
/ / |Vn|> < C  for t € (0, Timax.c)-
t Q

To this end, we test the first equation in problem (2.1)) by In(n. + €) + 1 and use
(2.4) and that V - u. = 0 to obtain

4
dt

:/[ln(ne+e)+1]A(n€+e)2—/[ln(ne—i—e)+1]V-(nSS€VCE)
Q Q

+2b} for t € (0, Tmax,e)-

Q(n6 +¢e)In(ne +¢€)

(3.16)
— it [ nlin(nc+ )+ 1

< —2/ \Vne\Q—i-xf fle u/ne[ln(n€+e)+1]p€
Q QNet Q
for t € (0, Tyax,e)- Since n(lnn + 1) > —e~2 for any n > 0, using (3.2)), we have

—,u/ ne[ln(ne + €) + 1)pe < —u/ ne(Inne + 1)pe
Q Q




EJDE-2020/94 TWO-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES SYSTEMS 9

Ll

o2 Qpe

i
67||p0‘|L”(Q)‘Q| fort € (OaTmax,e>-

Moreover, applying Young’s inequality, we have

fon
X R

qugxl]wmwQ

2
g/ |vne|2+x—/ Ve for t € (0, Tmax.c)-
Q 4 Q

This and (3.16|) yield

d 2
dt/(ne—i—e)ln(ne—l—e /|Vn6\2 /Q|v06|2+e%”p0HL°°(Q)‘Q| (3.17)

for t € (0, Tmax,e)-
Noting that zlnz < 2 for > 0, using the Gagliardo-Nirenberg inequality,
(3.1), and € € (0,1), we have

[ e+ i+

s/m+&
Q
< esllne + ell oy Vel 2y + csline + el (3.18)

< es(InellLie) + QD VnellL2 ) + es(lInell i @) + €l9)?
< es(lnollzr ) + 1QDIVRellz2 (o) + eslInoll @) + 1Q)?
1
§||vn5||L2 Q) + cg for t € (0 TmaX 6)

where ¢5 and ¢ are positive constants independent of e. Combining (3.17) and

(3.18]), we have

-1 iy, L 2
Q[(ne—i—e)ln(ne—i—e)—i—e ]—i—/[(ne—l—e)ln(ne—&—e)—i—e ]+§/52|Vn6|

dt 0

2
< X*/ Vel + ¢ for t € (0, Tmax.c)s

(3.19)

where cr=ce “HOl+ 4 ||p0HLoo(Q \Q|+cﬁ Setting y(t) := [,,[(ne+e€) In(ne+e)+e 1],
h(t) = X- fQ |Vee|? + ez, then can be rewritten as

y'(t) +y(t) / [Vne|* < h(t) for t € (0, Tmax,e)- (3.20)

Since zlnz > —e~! for z > 0, we have y(t) > 0; moveover, in view of (3.4)), we
have

t+7 2
X
| hsds < ool oy 91+ ma{ ol - ol oy 120D + o7
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for t € (0, Timax,c —7)- Then, it follows from (3.20) and Lemma 2.3]that there exists
a constant cg > 0 such that

/(n€ +e)ln(ne+¢) <cg fort € (0, Thax,)-
Q

Integrating (3.20) over the time interval (¢,¢ 4 7), we further obtain ¢g > 0 such
that

t+71
/ / |Vn€|2 <c¢g forte (0,Tmaxe—T)
t Q

with 7 = min{1, 1 T},ax,c }. This proves the desired assertion.

Case 3: 1 < m < 2. Noting that m — 1 € (0,1) and € € (0,1), using the Holder
inequality and (3.1)), we have

/Q (ne+m ' < ( / (ne+0)" o < ( / (mo+1)" joP T (321)

for t € (0, Twax,e), which implies (3.10). Then, we only need to show (3.11). To

this end, we first multiply both sides of (3.12)) by (—1), and then apply the Holder
inequality and the Young inequality to deduce that

1 d
i e me—m) [ o va

=(2—m) / (ne + )M 3N Vne - Se(x,ne, ce)Vee + ,u/ (ne + e)m_Qnep6
Q Q

< x(2—m) / (ne + O™ 2|Vne||Veel + pllpell 1= /

(n€+€)m—1
Q

2 — 2(2 —

m( m) /(n6+6)2m—4|vn6|2+ X ( m) / |VC€|2

4 Q m 0

F ooy [ (et O™ for t € (0, Tnae)
Q

This, along with (3.21]) and (3.2]), lead to

1 d me1 . 3m(2—m) 2rred 9
1imdt/9(n€—|—e) T /Q(ne—&-e) V.|
2
- X

9_
< m) / |Vc€|2 +cio for ¢ € (0, Thax,c)s
m Q

where

m—1
clo = /~L||PO||L°°(Q)</Q(nO + 1)) Q™.

Integrating over the time interval (¢, ¢ + 7), then entails

3 2 o t+7
m( T m)/ /Q(’I’L€+E)2m74|vn€|2
t

2(2—m) [T 1

g 7X ( )/ /|VCE|2+0107—+7/(ne(t+7)+€)m_1
m t Q m—1 Jq

for t € (0, Tnax,e —

7). Following this, (3.21) and (3.4)), we obtain (3.11)). O
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Lemma 3.3. Let m > 1. Then there exists a constant C' > 0 independent of € such
that the solution of problem ([2.1)) satisfies

/ lucl> < fort € (0, Tmas.c), (3.22)
Q

t+7
/ / |Vul?> <C forte (0, Twax,e — 7), (3.23)
Q

where T = mln{l Tax,e}-

Proof. Note first that V - u. = 0 and ue|spq = 0, then

/(ue-V)uE-uezl/uE-V|uE|2:
Q 2 Ja

Testing the fourth equation in the problem (2.1) with u. shows that
/ |u5\2 / |Vue = / Nele - V¢+/ pete - Vo for t € (0, Tinax.c)- (3.24)
2dt 0 ’
Using the boundedness of ¢ assumed in (1.7 and the Holder inequality, we have
/Qneue Vo < |V L (0)lInellLa@ylluell Lo (o) (3.25)

with ¢ = q%l and ¢ > 1 to be determined later. Since the space dimension is

two, by means of the continuous embedding W,"*(2) < L9 (Q) and the Poincaré
inequality in WOLQ(Q), one can find C; > 0, Cy > 0 such that

[uell o () < Crlluellwrzq) < ColVuellL2@)- (3:26)
Thus, by Young’s inequality and (3.25), we have

1
/QneuE Vo < ZHVueH%Q(Q) + C3||n€H%q(Q) for t € (0, Timax,e) (3.27)
with C3 = C§\|V¢||%M(Q). Similarly, we have
1
/Qpeué V6 < {IVul By + Collod By fort € 0. Tuu).  (3:28)
Substituting (3.27)-(3.28]) into (3.24]) yields
d
%/Q\ue|2+/9|Vue|2 < 2C5|Inel|7a(0) +2C5]pcl Taiy  for t € (0, Timax,e)- (3:29)
Note that (3.26)) implies
1 2 S % 2 % 2
3 1V = Sl > 5 [ el
and therefore we have
d
%/ \u6|2 202 / |u ‘2 /leue|2 < 203””6”%11(9) +203||,05||%q(9) (3.30)

for t € (0, Tinax,e)- Setting

1
0= [ s b =20l + 2Csloluey 90 [ 1Vul,
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we have
2

C

y'(t) + Q—ng(t) +9(t) < h(t) fort € (0, Tnax,e)-
2
If there exists C' > 0 such that
t+1
/ h(s)ds < C fort € (0, Tmax,e — T)s (3.31)
t

then we can once more use Lemma to derive (3.22) and (3.23).

Now, we merely need to show that the assumption (3.31) is indeed valid. To this
end, we first apply the Gagiardo-Nirenberg inequality to find ¢; > 0 such that

m— 1Hm 1

2
||n6||L<1 @ = < l(ne +¢) L= (Q)

2(qg—1)

<01H(ne+€)m l||q(m i) HV(ne—l—e)m 1HZ(27ZQ)I)

+crfl(ne+ )™ ’”’i
LT (Q)

for ¢t € (0, Tinax,)- Note that

[(ne + €)™ 1||(m V= ne + )z < ol + 19|
L m— I(Q)
for t € (0, Tinax,e), then we can find ¢z > 0 such that

2(¢—1)

[nellZa@y < c2(IV(ne + €)™ [5iq) + 1) for t € (0, Tmax.e)-
When m > 2, for any g > 1, it is easily checked that the exponent
2(q —1 2
@-1) _

glm—1) m-—1 =2
Using Young’s inequality, we have
Inel|Za(a) < c2(IV(ne + €)™ Zaiq) +2)  for t € (0, Tinax.c)- (3.32)
When m € ( 2), let ¢ = , then ¢ > 1 and 2(q 1)) = 2, thus still holds.

Using ((3.32] , -, and , we obtain
t4r t4r
/t h(s)ds = 203/t (IneC )1 Zagey + 1oe(s )1 70y ds
t+r
< 203/ eIV (ne + ™1, 5) 2oy + 2)ds
t t+7 )
120y / (s )2 e 2 s

t+7
< 2C3¢9(m — 1)2/ / (ne + €)™ Vn,|* dx ds
¢ Q

+2C53]|po2 e () |21 < C4 - for t € (0, Tinax.e — 7)-
This proves (3.31]) and therefore completes the proof. [
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Corollary 3.4. Let m > 1. There exists a positive constant C independent of e,
such that

/ |Vc€|2 <C  fort e (0, Thax,)s (3.33)
Q

t+7
/ / |Ac > < C fort € (0, Tmax.e —T), (3.34)
t Q
where T = min{1, Tnax,c/2}.

Proof. We first claim that there exists C7 > 0 independent of € such that

d
%/ \VCE\%/ \ACE\2+2/ |Vc€|2§C’1{/ [Vu?+1} 1€ (0, Tonae,). (335)
Q Q Q Q

The proof is similar to [6, Lemma 3.2], we omit the details here. Setting h(t) :=

C{[q, |Vue* + 1}, (3:23) implies that there exists Co > 0 independent of € such
that

t+7
/ h(s)ds < Cy for all t € (0, Timax,c — 7).
t
Thus, we can, once more, utilize Lemma to achieve (3.33)) and (3.34). O
Lemma 3.5. Let m > 1. Then the solution of (2.1) satisfies

/ (ne+e™<C fort € (0, Tmaxe), (3.36)
Q

t+7
/ /(n6 +e)?m < C fort € (0, Tmaxec —T) (3.37)
¢ Q
where 7 = min{1, 1 Tpax c }-

Proof. Testing (2.1); against (n +¢)™~!, and using V- u. = 0, (2.4), and Young’s
inequality, we have

1d .
1d / (e + ™ + m(m — 1) / (ne + 23| Vn|? + / (ne + ™ nepe

=(m—1) / (ne + e)m72n655(93,ng, ce)Vn, - Ve
Q

<x(m-1) / (ne + €)™ HVn || Ve
Q

- 2 2m
for t € (0, Tinax,e)- Applying Young’s inequality to the right most term gives

1d m m(m B 1) 2m—3 2
mdt/ﬂ(nﬁ—i—e) + 5 /Q(ne—i—e) [V

x*(m —1)
2m

< / (e + 2™ + Ci(n) / Ve 725 for ¢ € (0, Thas.c)
Q Q

with 7 > 0 to be determined later, and

Ci(n)

. 2 -
M/(ne+e)2m73|vns|2+M/(ne+e)lvcel2
Q @

<

/ (ne + ¢)|Vee|? (3.38)
Q

_ 2m — 1 [Xz(m — 1)] T (an)*ﬁ.

2m 2m
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By using Young’s inequality with the above 1 we have
1
/(ne bom< n/(ne P 1 10) for t € (0, Thnaxe): (3.30)
Q Q 4n

By the Gagliardo-Nirenberg inequality and [[ne + €| z1(q) < [|nollz1 (o) + [ which
is implied by (3.1]), and € € (0, 1), we can find ¢; > 0 independent of € such that

/Q I

L2m~T (Q)
< 2m2—1 Wil v 27n2—1 2
<alne+ ™I IVt 9" e
m1, Am_ 3.40
+erll(ne+ €27 (3.40)
LZm—1(Q)

2m—1

= c1|[ne +ellLr@)IV(ne +¢€) 2

%Z(Q) JFCl||”eJF€H%Tln(Q)

2m—1

< ca(llnollnr) + 12DV (ne +¢€) 2

72y + er(llnoll i) + 192D 7T q)
=y / (ne + e)2m_3|Vn€|2 +ec3 for t € (0, Tmax,e)s
Q
—1)2 o .
where cp = %Cl(”noHLI(Q)+|Q|) and ¢z = Cl(||n0||Ll(Q)+|Q|)%qL(Q) are positive
constants independent of e. Adding the term [, (ne + €)™ on both sides of (3.38),
and then using (3.39)) and (3.40)), yields

1 -1
—i/(n5+e)m+/(n€+e)m+m/(ne+e)2m*3|VnE|2
mdt Jo o 2 Q

m 1
SQ??/(ne+e)2m+Cl(n)/ \Vce\zﬁzi—l+f|g|
& Q 4n

- m 1
< 2ncs / (ne + e)2m*3\vne\2 + 2ncs + 01(77)/ |Vce|ﬁ + =19
Q 9 4n

m—1)

for t € (0, Tinax,e)- Letting n = m(Scz , we have

1d -1

- / (ne + e)m + / (ne 4 6)m + M / (ne + 6)2m—3|vn€|2

csm(m — 1) am 2¢s '

< S Vee 75 4 — =20 for t € (0, Tax.c).

< o +C4/Q|c| + o0 for £ € (0. Toue)
where

2m —1 x2(m —1), 2m_ m?(m—1) _ .
= C = 2m—1 2m—1
e = Caln) = T2 P st (=)
We claim that if there exists Cy > 0 independent of € such that
t+71
/ [Vee| TnT dx ds < Cy for t € (0, Timax,e), (3.42)
t Q

then we can apply Lemma to infer that there exists C's > 0 independent of €
such that

/ (ne+ €)™ < C5 for t € (0, Topax.c)-
Q
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This proves (3.36]), and then by integrating of (3.41)) over (¢, t+7) and using (3.42))

and ([3.40)) once again, we get (3.37).
Now, we turn to show that (3.42)) is valid. Indeed, we first note that for any

lo € (=2=,-2™) by using the boundedness of c. given in (3.3) and the Holder

m—17 m—1
inequality, one can easily get

1 L
llee(s Do) < llee(s )l @ |7 < max{]|col| zoe, [|poll Lo} =: Ky (3.43)

for t € (0, Tmax,e)-
Then, by using the Gagliardo-Nirenberg inequality we have

/ |VC |2m 1 = HVC5| 2’”4—,31 (Q)
< A 2m-19 %(1_ ) 2m—1 (344)
C5|| cﬁHL2(Q) Hc€||Llo(Q) +05||CGHLZO(Q)

< CGHACEH[Z:;(QI +c7 for t € (O,Tmaxﬁ)

with
1,1 _ 2m—1
= + = — 1 4m 1— _4m
a= 2 io 14m c (771>7 06:C5K2m Tt ( a), C7ZCSK2NL T
3t 2
0
Since lp > = 1, simple computation shows that
4m dm 3t~ M Am pm-1- 2
a = = 2.
2m — 1 2m — 1 %—1—% 2m — 1 14+m-1
Hence, by using Young’s inequality we have
|Vee|zn-T < CG||ACE||L2(Q) + c7
Q
< CG(HACEH%2(Q) +1)+cr (3.45)

= 06/ |Ac€|2dx +cg+cr fort e (0, Tax,)-
Q

The above together with (3.34)) give (3.42)). O

Thanks the assumption m > 1, the following estimate is a direct consequence of
(3-37) and Young’s inequality.
Corollary 3.6. Let m > 1. Then the solution of (2.1) satisfies

t+T1
/ / nz <C fOT’ te (Ovaax,e - 7—) (346)
t Q
where 7 = min{1, Tax,e/2}.

With this spatio-temporal L? estimate in mind, following the same procedure as
the proof of [6l Lemma 3.6] we can achieve the following estimate on ..

Lemma 3.7. Let m > 1. There exists a positive constant C' independent of € such
that

/ |Vu|> < C  fort € (0, Tmax.c)- (3.47)
Q

By means of the continuous embedding that W,*(Q) < LP(2) for any p > 1,
(3.47) further implies the uniform boundedness of ||ucl|zr(q)-
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Corollary 3.8. Let p > 1. Then there exists a positive constant C(p) such that
lue(-,t)|lLr ) < C(p) fort € (0, Tmax,e)- (3.48)

We next use (3.48) to enhance the regularity of c. obtained in Corollary to
the space W12 (Q).

Lemma 3.9. Let m > 1. There exists a positive constant C independent of €, such

that the solution of (2.1)) satisfies
||V05||L2m(§z) <C forte (0, Tmax,e)- (349)

Proof. By the fact that V.- VAce = $A|Ve|? —|D?c|?, direct computations show
that
1 d
2 i)

= / |V¢:E|2’”*2Vc€ - V(Ace — ¢ + pe — ue - Ve)
Q

1
:7/ |VC€|2m72A|VCE|2—/ |VCE|2m72|D206|2—/ ‘VCE‘2m
2 Ja Q Q

VCEHZLTznm(Q)

. / peV - (|Vee*™2Ve,) + / (e - Ve )V - (Ve ™2V e,) (3.50)
Q Q
2(m—1 1 |2
— _ (m )/ \V|V06|m|2 4 7/ ‘VCE‘2m72a|vc | _/ ‘VCE‘2m72|D266|2
m2 Q 2 a0 v Q

— / p6|VCE|2m72AC€ — / pVee - V|Vc€|2m*2 Jr/(uE . Vc€)|Vc€|2m*2AcE
Q Q Q

+ / (ue - Vee)Vee - V|Vc€|2"“2 7/ |Vce|2m for t € (0, Tax,e)-
Q Q

Here, in view of |Ac| < v/2|D?c.| and Young’s inequality, we have

_/ pel Ve P2 Ace < \/5/ pe| Ve | D]
Q Q

1 L 9

< 7/ ‘VCE‘QV”—Q‘D206|2+2/ pg‘vce‘Qm—Q (351)
4 Jo 0

for t € (0, Tmax,e),

— / pVee - V|Ve 22
Q

:-(m—1)/p€|vc€|2<m*2>vcE-V|vcE|2

_— @ (3.52)

< /|vc€|2m*4|vwc5\2\2+2(m—1)/p§|vc€|2m*2
8 Ja Q

< m—1

- 2m?

/ IV|Vee|™? + 2(m — 1)/ P2 Ve P72 for t € (0, Tmax.c),
Q Q
/(uE Ve | Ve 2 Ac, < \/5/ [uc||Vee > D%

Q Q

1
§ 7/ ‘VCE‘2m72|D2C€|2+2/ ‘UE|2|VC€|2m (353)
4 Q Q

fort € (O, Tmax,ﬁ)?
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2m—2
/(u6 -Vee)Vee - V|Ve
Q

=(m—-1) / (e - Veo)| Ve 2™=2 Ve, - V|Ve|?
@ (3.54)

IN

—1
mT/ |Vc£|2m74|V|Vc€|2|2+2(m—1)/ [ue - Vee|?| Ve |22
Q Q
m—1
~ 2m?

Following the same procedure in [9] the boundary integral in (3.50) can be con-
trolled. In fact, in view of [19, Lemma 4.2] we have

m— GVCEQ m m
[ ovepm= Bl < oo [ gepr = CollVel pm,  (359)
o0 v o0

/ IV|Vee ™) 4 2(m — 1)/ luc|*| Ve ™ for t € (0, Tmax,e)-
Q Q

where Cgq is a positive upper bound for the curvatures of 9. Taking r € (0,1/2),
the compact embedding W 2:2(Q)(— Wn2(9Q)) < L*(99) (see [8, Proposition
4.22]) implies that there exists a positive constant Cy such that

Ve ™ 1Zz2c00) < CrlllVed ™17, (3.56)

Tt32()

By the fractional Gagliardo-Nirenberg inequality and ||Vec| (o) begin bounded
(stated in ([3.33))), we can find positive constants ¢; and Cs such that

[IVee™ %, < a1|[VIVee™ g2 o)l Vee ™I

gy S +erllved™l, o,

()
m(l—a

= c1|VIVee ™15 @ I Veel 750y + el Vel [ 720

< Ol VIVee ™%, ) + Co

(3.57)

with @ = 224827=1 ¢ (r+ 7, 1). Combing (3.55)-(3.57) and once again using Young’s
inequality gives

O|Vee|?
/ |vc€|2m*2% < CoC1Ca||VIVee|™ (|9 () + CaCiCa
o0 (3.58)

m
<

This and (3.50)-(3.54]) show that

1 d m—1 1
Vel B+ Gzt [ 919"+ 5 [ (Ve ipef + [ Vel

—1
= [ Ve e
Q

m

omdi|
< 2m/ P2 Ve > 2 + 2m/ [ue|?|Vee*™ + Cs  for t € (0, Tmax.c)
Q Q
(3.59)

with C5 = % Another two applications of Young’s inequality then yield
1
2m/ P2V > 2 < 7/ |vc€|2m+06/ P2 for t € (0, Tmaxc),  (3.60)
Q 2 Ja Q

2m/ [uc)?| Ve ™ S/ \VCE\2m+1+C7/ ™2 for t € (0, Tmax.e);, (3.61)
Q Q Q
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with Cg = —2—(1m) = 1(2m)™ and C; = (2m)?™*+!. For the integral on the

m—1\2
right-hand side of (3.61), by means of the Gagliardo-Nirenberg inequality, (3.33]),
as well as Young’s inequality, we have

/ |VC€|2m+1
Q

= Ve ™ Fomnn
L m (Q)
2m—1 2m41

2m—1 2
< CalIVIVedl™ | 5 Ve ™I T3, + I9ed™ ), 4 ) *F (3:62)

2m—1

2m
< Co([VIVee| ™| 5oy I Veelll F3 ) + IV eel1755))

m—1
< ™% + Cho.
S5 /Q|V|Vc| | + C1o

Inserting (3.62)) into (3.61]), we obtain that

-1
2m/ Juel?| Ve < T /|V|Vce|m|2+c7/“3m+2+010 (3.63)
Q Q Q

for ¢t € (0, Tinax,e). Substituting (3.60) and (3.63) into (3.59)), dropping the nonneg-
ative term 1 [, [Vee|*™2|D%c|?, and using the uniform boundedness of p((3.2))
as well as the time-independent LP estimate of u. for any p > 1 stated in (3.48]),
yields

1 d 2m 1 2m
%anvce”pm(g) + 5/9 Ve

< Cg/ pEm 07/ u™ 2 + C5 + Cho
Q Q

< CGllpeH%oo(Q)m'Ql + C7||ue| iTanz(Q) +Cs+Cio<C1y forte (07Tmax7e)a
which implies (3.49)). |

Lemma 3.10. Let m > 1. Then for any p > 1, there exists a positive constant C
independent of €, such that

Ine(, )l r) £ C fort € (0, Trax,c)- (3.64)

Proof. Without loss of generality, let p > m. Testing the first equation in (2.1)
against (n. +¢)P~! and using (2.4)), Young’s inequality and that V -u. = 0, we have

1d
pdt Jo

=(p-1) /Q(ne + )P 2nVne - (Se(x,ne, ce)Vee)

(et +mlp-1) [

(ne + 6)erpig|vné|2 + ,u/ (ne + 6)p71nepe
Q Q

<x(p-1) /Q (ne + )|V Ve|

-1 2(p—1
< m(p )/(n6+€)m+p73|vn€|2 + X (p )/(n6+€)p+lfm|vce|2
2 Q 2m Q
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for t € (0, Tinax,e). This, along with the nonnegativity of n. and pe, yields

1d m(p—1) / _
py m+p—3 2
s [ meror+ I [ s ot

X*(p—1)
2m

We need to estimate the last term in (3.65). By Holder’s inequality and (3.49)),
there exists Cy > 0 such that

2p—-1
O [ v oromiwe?

<O v ™) T [wer} ™ (son

m—1

< C’l{ / (ne +€) mptlom) } ™ forte (0, Tinax,e)-
Q

By using the Gagliardo-Nirenberg inequality and (3.1)) we can find some positive
constants ¢; and co such that

(3.65)
<

/ (ne + E)p+1im|vc€|2 fOI' te (O’ Tmax,e)'
Q

m—1

{/(ne—ke)%} "
Q

mip—1 2(;’1*117”)
= ”(né +€) ) )H ;i(plﬂ—m)
LT-DmTp-1 (Q)

+ 2(mp—m241) + 2(m—1)
<alVine +e) \hTﬁml)HWe+@ = |
Lm¥p=1(Q)
mipo1  2pElom)
2
+afl(ne+e) |tmwlau (3.67)

2(mp—m241)

m+cl||ne+€“p+l m

m—1
= cillne + ell Ty IV (e + )™ s

2(mp—m +1)
m(p+1—m)

m+p 1
I120)

m—1
< alllnollzr @) +1920) ™ [IV(ne +¢)
4*61(HnoHL1an‘+ISN)p+1’"’

2(mp—m241)

< c||V(ne + e)n m“’;’l ™ty fort € (0, Tax.c)-

Since m > 1 and p > m, it is simple to check that
mp —m? 41
m(p+1—m)

Hence, it follows from — and Young’s inequality that

2(p—1
X (p )/(ne—l—é)pﬂ_m\Vce\z
Q

€ (0,1).

2m
2(mp— ;n +1)
< el Ve + o™t mg;;; Vo)
mp— 1) (3.68)
< Tnrp 1V O My + O
_mpp—1)

/ (ne +€)" P73 Vne|* + Cs
4 Q
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for t € (0, Tinax,e)- Inserting (3.68) into (3.65)), we derive that
1 d -1
AR % /Q (ne + €)™ P3|V, [ < Oy (3.69)

for t € (O,Tmax7€). Again, using the Galiardo-Nirenberg inequality, (3.1), and
Young’s inequality, we have

/Q (ne +€)?

m p

= (e + o) 2T
L7Fr=T ()
< allV(ne + "2 5 T (n + )= F 7T
=~ €1 € L2(Q2) € LT ()
T erll(ne + o)™ T
LT (@) (3.70)
m+p—1 %

= c1|ne + €llLr @) [IV(ne + ¢€)

Loy T eiline +elfig

m+p i ;1
< cr(lnollLre) + 1QDIV(ne + €) ||Lz+(g "+ a(lnollLie) + Q)7
m(p—1)
< m”v(neJre) y +Cs
_ (p - 1) m+p—3 2
=—q (ne + ¢€) [Vne|*+Cs for ¢ € (0, Timax,c)-
Q
(3-69)-(3.70)) yields
1d
- — (ne+e)p+/(n€+e)p <Co+C3 forte (0, Thmaxe),
pdt Jo Q ’
and hence, the Gronwall inequality implies (3.64)). |

With the boundedness of ||¢||Le(q), [|pcll= (), [[Vuc|lL2(0), and [[ne]lLr(q), we
can further achieve the following boundedness results.

Lemma 3.11. Letm > 1 and 8 € (%, 1). Then we can find some positive constant
C independent of €, such that

[APuc (-, t)|| L2y < C for t € (0, Toax,e), (3.71)
lue(-,t)|[ Lo () < C fort € (0, Tiax,e)s (3.72)
”Ce('at)Hle“’(Q) <C  fort € (0, Tiax.e), (3.73)
[e(, O)llLe ) <O fort € (0, Tiax,e)- (3.74)

Proof. Following the same arguments as in [25] Lemma 3.11], see also [6l Lemma
3.10], we can obtain . This, in conjunction with the continuous embedding
D(AP) < L>(Q) (implied by 8 > ), then entails (3.72). Furthermore, we can
follow the proof of |25, Lemma 3.12] to obtain , and by means of a Moser-type
iteration applied to the first equation in , we can achieve ((3.74)). (]

By means of all above regularity properties of n., ¢, p. and u. and the extensibil-
ity criterion in Lemma we can show that actually Tinax,. = 00 in Lemma
and then the classical solution (ne, pe, ce, ue, Pe) of the regularized problem
(2.1) exists globally.
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4. PROOF OF THEOREM [I.1]

In this section, we study the global weak solution to the problem (1.4]). Here,
the definition of weak solution to the problem (1.4} is in the following sense.

Definition 4.1. Let m > 1,1 > 0, g > 0, and suppose that (ng, co, po,ug) fulfills
(1.8). Then a quadruple of functions (n,c, p,u) is called a global weak solution of
the initial-boundary value problem (1.4) in €2 x (0, c0), if

n € L¥([0,00); L%(Q)),  Vn™ € Li((0,00); L*(92)),
¢ € L=((0,00); WH(Q)),  p € L¥((0,00); L7(92)),
Vo' € Lige((0,00); L*()),  u € L=((0,00); WHH(Q2))

such that V -« = 0 in the distributional sense in Q x (0, c0),

(4.1)

and for any ¢ € C§°(2 x [0, 0)), the following hold:

/Ooo/gncpt—k/gnogo(- //Vn -V — // S(xz,n,c)Ve) -V
—/0 /Qnu-VsoJru/o /an%

and
/ /psthr/pow(-,O):/ Vpl-Vw—/ /pU~V<p+u/ /npgp,
0 Q Q 0 Q 0 Q 0 Q

as well as

[ oot [actor= [ [evor [7 [eom [T [ oo [7 [ cwve.

For any ¢ € C§°(Q x [0,00); R?) fulfilling V - ¢ = 0, it holds

/ /u(ﬂr/uog / /u®uVC / /VUVC/ /n+pV¢C

We shall invoke the global classical solutions to the regularized problem (2.1)) to
approximate the weak solution to the problem (1.4)). To this end, we need some
further regularity properties for the global classical solutions to the problem ([2.1)).

Lemma 4.2. Let m > 1,1 >0, u > 0, 8 € (1/2,1), and (Ne, Ce, Pe, Ue, De) be
the global classical solution to problem (2.1) established in Lemma . Then there
exists some positive constant C independent of € such that

[mell Lo (@ (0,00)) < Cs (4.2)
[l Pell Lo (2 (0,00)) < C, (4.3)
llcellzos (0,00:w 1. (2)) < C, (4.4)
ltell oo (0,00:25 (2)) < Cs (4.5)
||Aﬁu6||L°°(O,oo;L2(Q)) <cC. (4.6)

Moreover, for any T >0, k > m — 1, and ¢ > max{0, I — 1}, we have
/T/ IV (ne +€)*|? < C(m, k,T), (4.7)

0o Jo

/Oo/ IV(pe +€)1> < C(l,q,po, Q). (4.8)
0 Q
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Proof. In the previous section, we have already proved that Tiyax, = co. Hence,

the uniform estimates (4.2))-(4.6) follow directly from Lemma and (3.2). To
3-69

prove (4.7)), we integrate (3.69)) over (0,7") to obtain

_ T
1/(n6+6)P(.’T)+M‘/ /(n€+€)m+p—3|vn6|2 < CQT‘F}/(TLOJ'_l)p
P Ja 4 0 JO P Ja

for any p > m—1, where we use € € (0,1). By denoting k := %’H, then k > m—1,
we have

_1 p
e A e A
2k
mn / /\Vne—ke
0

<C’2T+7/(n 4 1)2kF1mm
Q

2k+1—m

thus, we have (4.7)) as desired.
To prove ([4.8)), multiplying the second equation in (2.1)) by (pe + €)P~! for any
p > max{1,l — 1} yields

1d Ilp—1) Ltp=1 o 1
N € p ) v € = - € p EESO
pdt/(p Tt _12/| (pete) = |P= M/Q(n +6)P nep

for t > 0. Integratlng over (0,T) gives

l+p1
prl //vae+e <= /(P0+1)

and letting ¢ = erqu shows that (| E ) holds. ([

On the basis of Lemma we can deduce some regularity properties of time
derivatives of certain powers of n. and p., which shall be used to pass to the limit
in the first two equations of problem (2.1)).

Lemma 4.3. Letm > 1,1> 0, v > max{l,m — 1}, and A > max{1,l — 1}. Then
for T > 0 there exists positive constant C(T) such that

T
/O 104 (e + )| w22 -t < C(T)  for e € (0,1), (4.9)

T
/0 101 (pc + Pl ya(yyedt < CT)  for e € (0,1). (4.10)

Proof. The process is similar to the proof of [27, Lemma 3.22], see also [16, Lemma
3.3]. For any ¢ € WO2 2(Q), by a standard testing procedure we have

/8 n€+e

=—my(y—1) / (ne + )™ 73| Vne |2 — mry / (ne + €)™ 72Vn, - Vo
Q Q

+y(y—1) /Q ne(ne +€)772Vn, - (SVee ) + ’y/ﬂne(n6 +€)77Y(S.Veo) - Vo

+ /Q(n€ +€)Tue - Vi — py /Q(n6 + G)W_Inepew (4.11)
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=J1+ o+ J3+Js+ J5 + Js.

To estimate Jy, ..., Jg term by term, we first invoke Lemma[£.2] to fix some positive
constants C, Cy, C5 and Cy independent of e such that
ne < Cp, |V <Ca uel <Cs, |pe|l <Cy in Q% (0,00). (4.12)

Then we have (actually, the terms Jy, Jo, J3, Jy, J5 are the same as that in [16]
Lemma 3.3])

dmy(y —1)

+7n 1,2
|J1] < mWHLM Q)/ [V(ne +¢) ) %, (4.13)
m
| J2| < ﬁ\lw\\mm /|Vn +¢e)rtm= 1| +1) (4.14)
1l < (0 = DI Vel e[l oy [ 1SV e+ )]
@ (4.15)

< (7 — D)xCallll L=y /Q IV (ne + )],
il < /Q (ne + V1Ll Vel [V] < Ax(Cr+ 1 ol IV 2@y, (4.16)
A / (e + | [VE] < (Cr + 1) CsIF [Vl oy, (417)

Q

| Js| < m/ﬂ(ne + ) nepl[U] < py(Cr+ 1) Callfl] L= ()| Q- (4.18)

From W.?(Q) < L>(Q), combining ([&.11)) with ( (#13)-([@.18) we infer that there
exists C5 > 0 independent of € such that

’/ g(ne—Fe)'w)‘ §C5</ ‘V(n6+€)w+?71’2+/ ’V(ne—&—e)'y"'m_l}z
o Ot o o

+ [ 190+ + 1) [l

y+m—1

(4.19)

Since v > m — 1 which implies >m—1land y+m—1>m— 1, for any
T >0, by ([4.7), we can find Cg(T) > 0 such that

//|Vne+e //}Vn+67+m1|+//|VnE+e | < Co(T

Hence, (4.19)) implies
T o
| 1550+ -t < Cs(Co + )

This proves (4.9). By similar procedure, (4.10) can be achieved. O

Similar to [16, Lemma 3.2] and [27, Lemmas 3.18 and 3.19], by using the standard
parabolic regularity theory, we can further establish some uniform Holder regularity
properties of ¢, Vce and wu..

Lemma 4.4. Let m > 1,1 > 0, u > 0. Then there exists o € (0,1) and some
positive constant C' independent of € such that

<C fort>0, (4.20)
<C fort>0. (4.21)

HCEHCW%(QX[t,t-&-l])

||u6||cf”%(fl><[t,t+1])
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Moreover, for each to > 0, we can find C(tg)) > 0 such that

||Vce||cﬂ,%(ﬁx[t,t+1]) < C(tg) fort>to. (4.22)

With the help of these a priori estimates, we can extract suitable subsequences
of global classical solutions of in a standard manner to approximate the global
weak solution of . The proof is similar to [16, Lemma 3.4], [3, Lemma 5.4], we
omit the details here.

Lemma 4.5. Let m > 1,1 >0, u > 0. Then there exist a quadruple of functions
(n,c, p,u) satisfying
n € L2((0,00); L¥()),  Vn™ € Li,((0,00); L*(2)),
p € L2((0,00); L=(Q)),  Vp' € L*((0,00); L*(2)),
¢ € L®((0,00); WH™(Q)),  u € L™((0,00); Wy 7 (92)),
V -u =0 in the distributional sense in Q x (0, 00),

oo

and a subsequence {¢; converging to zero as j — oo such that

=1
Ne; Ajn, pe; — p  weakly * in L>(Q x (0,00)), (4.23)
Vnl = Vn'™, in Li,((0,00); L*(Q)), (4.24)
Vplej —~ Vol in L*((0,00); L*(Q)), (4.25)
c; = ¢, Vee, = Ve weakly *in L*((0,00); L™(Q)), (4.26)
ne,Se, (,ne,,¢c;) = nS(z,n,c)  strongly in L ([0, 00); L*()), (4.27)
ue; —u  weakly * in L>((0,00); D(APY)), (4.28)
ce; > ¢, Ve, = Ve, ug, —u in Cp(Q x [0,00)), (4.29)

as j — oo.

For the prove Theorem the existence of a global weak solutions to problem

(1.4) is a consequence of Lemmas [4.5] and
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