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ASYMPTOTIC BEHAVIOR FOR A NON-AUTONOMOUS MODEL

OF NEURAL FIELDS WITH VARIABLE EXTERNAL STIMULI

SEVERINO HORÁCIO DA SILVA

Abstract. In this work we consider the class of nonlocal non-autonomous

evolution problems in a bounded smooth domain Ω in RN

∂tu(t, x) = −a(t)u(t, x) + b(t)

∫
RN

J(x, y)f(t, u(t, y)) dy − h+ S(t, x), t ≥ τ

u(τ, x) = uτ (x),

with u(t, x) = 0 for t ≥ τ and x ∈ RN\Ω. Under appropriate assumptions

we study the asymptotic behavior of the evolution process, generated by this

problem in a suitable Banach space. We prove results on existence, uniqueness
and smoothness of the solutions and on the existence of pullback attractor for

the evolution process. We also prove a continuous dependence of the evolution

process with respect to the external stimuli function present in the model.
Furthermore, using the continuous dependence of the evolution process, we

prove the upper semicontinuity of pullback attractors with respect to the ex-

ternal stimuli function. We finish this article with a small discussion about
the model and about a biological interpretation of the result on the continuous

dependence of neuronal activity with respect to the external stimuli function.

1. Introduction

Neural field equations describe the spatio-temporal evolution of variables such
as synaptic or firing rate activity in populations of neurons. The neural field model
has already been well analyzed in the literature (see [1, 4, 5, 7, 11, 13, 14, 15, 16,
21, 25, 26, 28, 33, 32]). Although this model has been used to working memory
model, it arises also in cognitive development of infants, (see [29, 31]), and in timing
sensory integration for robot simulation of autistic behavior (see [3]).

As in [1], we will denote by u(t, x) the membrane potential of a neuron located
at position x, and time t, which we are assuming as a differentiable function of t,
and J(x, y) will denote the average intensity of connections from neurons located
at place y to those at place x.

We also assume that the pulse emission rate of neurons at position x, and
time t, depends on t and u(x, t), that is, it is given by f(t, u(t, x)). The activ-
ity f(t, u(t, y)) of neurons at y causes an increase in the potential u(t, x) at x,
through the connections J(x, y), such that the rate of emission of pulses is propor-
tional to J(x, y)f(t, u(t, x)). We also assume that the potential u(t, x) decays, with
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speed 0 < α(t) < α0, to a constant −h (which we call the threshold of the field),
and that it increases proportionally to the sum of all the stimuli arriving with speed
b(t) at the neurons. Then, denoting by S(x, t) the intensity of the sum of applied
external stimuli at x at time t, and writing a(t) = 1/α(t) we have the following
non-autonomous evolution equation

∂tu(t, x) = −a(t)u(t, x) + b(t)

∫
RN

J(x, y)f(t, u(t, y)) dy − h+ S(t, x). (1.1)

Here we consider that the rate of the intensity of neuronal potential varies explicitly
accordingly to time. Thus, we expect to have a more realistic model in (1.1), when
compared to what happens in the brain, since the potential action of the electric
impulses of the neuronal membrane is a consequence of the inversion of the polarity
inside the membrane, which is not necessarily constant.

Note that, when a(t) = b(t) = 1/λ, for any t ∈ R, for some constant λ > 0, and
f(t, x) = f(x), equation (1.1) becomes

λ∂tu(t, x) = −u(t, x) +

∫
RN

J(x, y)f(u(t, y)) dy − λh+ λS(t, x).

In particular, if a(t) = b(t) = 1, for all t ∈ R and S(t, x) = h, equation (1.1)
becomes

∂tu(t, x) = −u(t, x) +

∫
RN

J(x, y)f(t, u(t, y)) dy.

Therefore, equation (1.1) generalizes the models studied in [1, 2, 5, 11, 13, 14, 15,
16, 18, 25, 26, 28, 31, 33].

Below we introduce the notation, terminology and some additional hypotheses,
which are already well known in the literature, (see, for example [1, 2, 5, 11, 17, 21]).

Let Ω ⊂ RN be a bounded smooth domain modelling the geometric configuration
of the network, u : R × RN → R be a function modelling the mean membrane
potential, u(t, x) be the potential of a patch of tissue located at position x ∈ Ω at
time t ∈ R and f : R × R → R be a time dependent transfer function. We say
that a neuron at a point x is active at time t if f(t, u(t, x)) > 0. In what follows,
b : R→ R is a continuous function such that

0 < b(t) ≤ b0 <∞,

and it denotes the increasing speed of the potential function u(t, x). Since the
decreasing speed of the potential function u(t, x) satisfies 0 < α(t) < α0, we can
assume that there exist positive constants a− and a0 such that

0 < a− ≤ a(t) ≤ a0 <∞.

Let us also denote the integrable function J : RN × RN → R as the connection
between locations, that is, J(x, y) is the strength of the connections of neuronal
activity at location y on the activity of the neuron at location x. The strength
of the connection is assumed to be symmetric, that is J(x, y) = J(y, x), for any
x, y ∈ RN and that ∫

RN
J(x, y)dy =

∫
RN

J(x, y)dx = 1.
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Under the above conditions, we study the following non-autonomous model for
neural fields

∂tu(t, x) = −a(t)u(t, x) + b(t)Kf(t, u(t, y)) dy − h+ S(t, x), t > τ, x ∈ Ω,

u(τ, x) = uτ (x), x ∈ Ω,

u(t, x) = 0, t > τ, x ∈ RN\Ω,
(1.2)

where the integral operator, with symmetric kernel, K is given, for all v ∈ L1(RN ),
by

Kv(x) :=

∫
RN

J(x, y)v(y) dy.

Also we will assume that f : R × R → R satisfies some growth conditions, as
presented along the Section 2, and that S : R× RN → R is continuous at variable
t and S(t, ·) ∈ Lp(Ω), for all t ∈ R.

We aim to study the asymptotic behavior of the evolution process associated to
the Cauchy problem (1.2) under an appropriate Banach space, as well as obtain
some biological conclusion. Then, using the same techniques employed in [5, 17],
we prove results on existence, uniqueness and smoothness of the solutions, and we
also prove the existence of pullback attractors for the evolution process associated
to (1.2), which is a more general model than the models analyzed in previous pub-
lished works on the subject. In addition, we prove a continuous dependence of the
solutions with respect to the external stimuli function S, concluding mathemati-
cally that the neuronal activity depends continuously on the sum of external stimuli
involved in the neuronal system. This suggests the need for intensive therapies to
stimulate people with poor neuronal activity as, in some cases, people with autism
or other neurological disorders. Furthermore, using the result of continuous depen-
dence of the evolution process, we also prove the upper semicontinuity of pullback
attractors with respect to function S.

This article is organized as follows. In Section 2, under the growth conditions
(2.7), (2.9), (2.11) and (2.14), on the function f , we prove that (1.2) generates a
C1 evolution process in the phase space

Xp = {u ∈ Lp(RN ) : u(x) = 0 for x ∈ RN\Ω} (1.3)

with the induced norm, satisfying the “variation of constants formula”

u(t, x) =


e−(A(t)−A(τ))uτ (x) +

∫ t
τ
e−(A(t)−A(s))b(s)Kf(s, u(s, ·))(x) ds

+
∫ t
τ
e−(A(t)−A(s))[S(s, x)− h]ds, x ∈ Ω,

0, x ∈ RN\Ω,

where A(ξ) =
∫ ξ

0
a(η)dη, for any ξ ≥ τ . In Section 3, we prove existence of a

pullback attractor in the phase space Xp. Section 4 is dedicated to continuity
with respect to the external stimuli function S. In Subsection 4.1 we study the
continuity of the process with respect to the function S, and in Subsection 4.2 we
use this result to prove an upper semicontinuity of the pullback attractors. Finally,
in Section 5, we conclude presenting a brief discussion about the model and about
a biological interpretation of the result on the continuous dependence of neuronal
activity with respect to the external stimuli function.
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2. Flow generated by the model problem

In this section we show the existence of global solution for problem (1.2) and
that it generates a C1 evolution process in an appropriate Banach space. For more
details on the process evolution (or infinite-dimensional non-autonomous dynamical
systems) see, for example [8, 10, 23, 22] and for finite-dimensional non-autonomous
dynamical systems, see [9]. See also [5, 30] for related works.

2.1. Well posedness. In this subsection, under suitable growth condition on the
nonlinearity f , we show the well posedness of problem (1.2) in the phase space Xp,
for 1 ≤ p ≤ ∞, given by

Xp = {u ∈ Lp(RN ) : u(x) = 0, for x ∈ RN\Ω}

with the induced norm. It is easy to see that the Banach space Xp is canonically
isometric to Lp(Ω), then we usually identify the two spaces, without further com-
ment. For simplicity, we use the same notation for a function defined on the whole
RN and also for its restriction on Ω wherever we believe the intention is clear in the
context. To obtain well posedness of (1.2) in Xp, we consider the Cauchy problem

du

dt
= F (t, u), t > τ,

u(τ) = uτ ,
(2.1)

where the map F : R×Xp → Xp is defined by

F (t, u)(x) =

{
−a(t)u(x) + b(t)Kf(t, u)(x)− h+ S(t, x), if t ∈ R, x ∈ Ω,

0, if t ∈ R, x ∈ RN\Ω,
(2.2)

where

Kf(t, u)(x) :=

∫
RN

J(x, y)f(t, u(y))dy. (2.3)

The map K is well defined as a bounded linear operator in various function spaces,
depending on the properties assumed for J ; for example, with J satisfying the
hypotheses stated in the introduction, K is well defined in Xp as shown in the
lemma below, which was proved in [17].

Lemma 2.1. Let K be defined by (2.3) and ‖J‖r := supx∈Ω ‖J(x, ·)‖Lr(Ω), 1 ≤
r ≤ ∞. If u ∈ Lp(Ω) with 1 ≤ p ≤ ∞, then Ku ∈ L∞(Ω), and

|Ku(x)| ≤ ‖J‖q‖u‖Lp(Ω) for all x ∈ Ω, (2.4)

where 1 ≤ q ≤ ∞ is the conjugate exponent of p. Moreover,

‖Ku‖Lp(Ω) ≤ ‖J‖1‖u‖Lp(Ω) ≤ ‖u‖Lp(Ω). (2.5)

If u ∈ L1(Ω), then Ku ∈ Lp(Ω), 1 ≤ p ≤ ∞, and

‖Ku‖Lp(Ω) ≤ ‖J‖p‖u‖L1(Ω). (2.6)

The following definition is well known in the theory of ODEs in Banach spaces
and it can be found in [5].

Definition 2.2. If E is a normed space, and I ⊂ R is an interval, we say that a
function F : I ×E → E is locally Lipschitz continuous (or simply locally Lipschitz)
with respect to the second variable if, for any (t0, x0) ∈ I×E, there exists a constant
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C and a rectangle R = {(t, x) ∈ I × E : |t − t0| < b1, ‖x − x0‖ < b2} such that, if
(t, x) and (t, y) belong to R, then

‖F (t, x)− F (t, y)‖ ≤ C‖x− y‖.

We say that F is Lipschitz continuous on bounded sets with respect to the second
variable if the rectangle R in the previous definition can be chosen as any bounded
rectangle in R× E.

Remark 2.3. If the normed space E is locally compact the definitions of locally
Lipschitz continuous and Lipschitz continuous on bounded sets are equivalent.

Now, proceeding as in [5, 17], we prove that the map F , given in (2.2), is well
defined under appropriate growth conditions on f and it is locally Lipschitz con-
tinuous (see Proposition 2.5 below, which generalizes [5, Proposition 3.3] and [17,
Proposition 2.4]).

Lemma 2.4. Let us assume the same hypotheses stated in Lemma 2.1 hold, and
that the function f satisfies the growth condition

|f(t, x)| ≤ C1(t)(1 + |x|p), for any (t, x) ∈ R× RN , (2.7)

with 1 ≤ p < ∞ and C1 : R → R is a locally bounded function. Then the function
F given by (2.2) is well defined on R×Xp. If, for any t ∈ R, the function f(t, ·) is
locally bounded, then F is well defined on R× L∞(Ω).

Proof. Suppose 1 ≤ p < ∞. Given u ∈ Lp(Ω), denoting the function f(t, u)(x) =
f(t, u(x)) by f(t, u) and using (2.7), it easy to see that, for each t ∈ R

‖f(t, u)‖L1(Ω) ≤ C1(t)(|Ω|+ ‖u‖pLp(Ω)). (2.8)

Thus, using (2.6) and (2.8), it follows that

‖F (t, u)‖Lp(Ω)

≤ a0‖u‖Lp(Ω) + b0‖Kf(t, u)‖Lp(Ω) + ‖S(t, ·)‖Lp(Ω) + ‖h‖Lp(Ω)

≤ a0‖u‖Lp(Ω) + b0‖J‖p‖f(t, u)‖L1(Ω) + ‖S(t, ·)‖Lp(Ω) + h|Ω|1/p

≤ a0‖u‖Lp(Ω) + b0‖J‖p(C1(t)|Ω|+ C1(t)‖u‖pLp(Ω)) + ‖S(t, ·)‖Lp(Ω) + h|Ω|1/p

≤ a0‖u‖Lp(Ω) + b0C1(t)‖J‖p|Ω|+ b0C1(t)‖J‖p‖u‖pLp(Ω) + ‖S(t, ·)‖Lp(Ω) + h|Ω|1/p.

Since S(t, ·) ∈ Lp(Ω), it follows immediately that F is well defined in the space
Lp(Ω) for 1 ≤ p <∞. If p =∞ the result easily follows from (2.4). �

Proposition 2.5. Under the hypotheses of Lemma 2.4, if a and b are continuous
functions and f and S are continuous functions with respect to the first variable,
then F is also continuous on the first variable. Moreover if

|f(t, x)− f(t, y)| ≤ C2(t)(1 + |x|p−1 + |y|p−1)|x− y|, (2.9)

for any (x, y) ∈ RN×RN , t ∈ R, and for some strictly positive function C2 : R→ R,
then, for any 1 ≤ p <∞, the function F is locally Lipschitz continuous on bounded
sets with respect to the second variable. If p =∞, this is true if f is locally Lipschitz
fuction with respect to the second variable.
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Proof. Suppose that f(t, x) is continuous at t. Then for any (t, u) ∈ R × Xp, we
obtain

‖f(t, u)− f(t+ ξ, u)‖L1(Ω) ≤
∫

Ω

|f(t, u(x))− f(t+ ξ, u(x))| dx (2.10)

for a small ξ ∈ R. From (2.7), it follows that the integrand in (2.10) is bounded by
2C(1 + |u(x)|p), where C is a bound for C(t) in a neighborhood of t, and it goes to
0 as ξ → 0. Hence, using Lebesgue dominated convergence theorem, it follows that
‖f(t, u)− f(t+ ξ, u)‖L1(Ω) → 0 as ξ → 0. Thus, using (2.5) and (2.8), we obtain

‖F (t+ ξ, u)− F (t, u)‖Lp(Ω)

≤ |a(t)− a(t+ ξ)|‖u‖Lp(Ω) + |b(t+ ξ)− b(t)|‖K(f(t+ ξ, u)‖Lp(Ω)

+ |b(t)|‖K(f(t+ ξ, u)− f(t, u))‖Lp(Ω) + ‖S(t+ ξ, ·)− S(t, ·)‖Lp(Ω)

≤ |a(t)− a(t+ ξ)|‖u‖Lp(Ω) + |b(t+ ξ)− b(t)|‖J‖pC1(t)(|Ω|+ ‖u‖pLp(Ω))

+ |b(t)|‖J‖p‖f(t+ ξ, u)− f(t, u)‖L1(Ω) + ‖S(t+ ξ, ·)− S(t, ·)‖Lp(Ω)

which approaches 0 as ξ → 0, proving the continuity of F in t.
Now assume that

|f(t, x)− f(t, y)| ≤ C2(t)(1 + |x|p−1 + |y|p−1)|x− y|,
for some 1 < p <∞, where C2 : R→ R is a strictly positive function. Then, for u
and v belonging to Lp(Ω), using Hölder inequality, see [6], we obtain

‖f(t, u)− f(t, v)‖L1(Ω)

≤
∫

Ω

C2(t)(1 + |u(x)|p−1 + |v(x)|p−1)|u− v| dx

≤ C2(t)
[ ∫

Ω

(1 + |u(x)|p−1 + |v(x)|p−1)qdx
]1/q[ ∫

Ω

|u(x)− v(x)|pdx
]1/p

≤ C2(t)
[
‖1‖Lq(Ω) + ‖up−1‖Lq(Ω) + ‖vp−1‖Lq(Ω)

]
‖u− v‖Lp(Ω)

≤ C2(t)
[
|Ω|1/q + ‖u‖p/qLp(Ω) + ‖v‖p/qLp(Ω)

]
‖u− v‖Lp(Ω),

where q is the conjugate exponent of p.
Using (2.6) once again and the hypotheses on f , it follows that

‖F (t, u)− F (t, v)‖Lp(Ω)

≤ a0‖u− v‖Lp(Ω) + b0‖K(f(t, u)− f(t, v))‖Lp(Ω)

≤ a0‖u− v‖Lp(Ω) + b0‖J‖p‖f(t, u)− f(t, v)‖L1(Ω)

≤
(
a0 + b0C2(t)‖J‖p

[
|Ω|1/q + ‖u‖p/qLp(Ω) + ‖v‖p/qLp(Ω)

])
‖u− v‖Lp(Ω),

showing that F is Lipschitz on bounded sets of Lp(Ω) as claimed.
If p = 1, the proof is similar. Suppose finally that ‖u‖L∞(Ω) ≤ R, ‖v‖L∞(Ω) ≤ R

and let M be the Lipschitz constant of f in the interval [−R,R] ⊂ R. Then

|f(t, u(x))− f(t, v(x))| ≤M |u(x)− v(x)|, for any x ∈ Ω,

and this allows us to conclude that

‖f(t, u)− f(t, v)‖L∞(Ω) ≤M‖u− v‖L∞(Ω).

Thus, by (2.5) we have that

‖F (t, u)− F (t, v)‖L∞(Ω) ≤ a0‖u− v‖L∞(Ω) + b0‖K(f(t, u)− f(t, v))‖L∞(Ω)
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≤ (a0 + b0M‖J‖1) ‖u− v‖L∞(Ω).

This completes the proof. �

Using Proposition 2.5 and well known results of ODEs in Banach spaces [12] it
follows that the initial value problem (2.1) has a unique local solution for any initial
condition in Xp. For the existence of a global solution, we use [24, Theorem 5.6.1].

Proposition 2.6. Under same hypotheses in Proposition 2.5, if there exists a con-
stant k1 ∈ R, independent of t, such that f satisfies the dissipative condition

lim sup
|x|→∞

|f(t, x)|
|x|

< k1. (2.11)

Then problem (2.1) has a unique globally defined solution for any initial condition
in Xp, which is given for t ≥ τ , by the “variation of constants formula”

u(t, x) =


e−(A(t)−A(τ))uτ (x) +

∫ t
τ
e−(A(t)−A(s))b(s)Kf(s, u(s, ·))(x) ds

+
∫ t
τ
e−(A(t)−A(s))[−h+ S(s, x)]ds, x ∈ Ω,

0, x ∈ Ωc,

(2.12)

where A(ξ) =
∫ ξ

0
a(η)dη, for any ξ ≥ τ , and Ωc = RN\Ω.

Proof. The existence and uniqueness of local solutions for (2.1), in Xp, follow from
Proposition 2.5 and the well-known results in [12]. The variation of constants
formula (2.12) can be easily verified by direct derivation. Now, using condition
(2.11), it follows that

|f(t, x)| ≤ k2(t) + k1|x|, for any (t, x) ∈ R× RN , (2.13)

for some continuous and strictly positive function k2 : R→ R.
If 1 ≤ p <∞, using (2.5) and (2.13), we obtain the estimate

‖Kf(t, u)‖Lp(Ω) ≤ ‖f(t, u)‖Lp(Ω) ≤ k2(t)|Ω|1/p + k1‖u‖Lp(Ω).

For p = ∞, using the same arguments (or passing to the limit p → ∞ in the
previous inequality), we have

‖Kf(t, u)‖L∞(Ω) ≤ k2(t) + k1‖u‖L∞(Ω) .

Now defining the function g : [t0,∞)× R+ → R+ by

g(t, r) = b0|Ω|1/pk2(t) + ‖S‖p + h|Ω|1/p + (k1 + a0)r,

it follows that problem (2.1) satisfies the hypothesis of [24, Theorem 5.6.1] and the
existence of a global solution follows immediately. �

2.2. Smoothness of the evolution process. In this subsection we show that
problem (1.2) generates a C1 flow in the phase space Xp.

Proposition 2.7. Assume the same hypotheses of Proposition 2.6 hold and that
the function f is continuously differentiable with respect to the second variable and
∂2f satisfies the growth condition

|∂2f(t, x)| ≤ C1(t)(1 + |x|p−1), for any (t, x) ∈ R× RN , (2.14)
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for 1 ≤ p < ∞. Then F (t, ·) is continuously Frechét differentiable on Xp with
derivative

DF (t, u)v(x) =

{
−a(t)v(x) + b(t)K(∂2f(t, u)v)(x), x ∈ Ω,

0, x ∈ RN\Ω.

Proof. Using that f is continuously differentiable in the second variable, by a simple
computation, it follows that the Gateaux’s derivative of F (t, ·) is

DF (t, u)v(x) :=

{
−a(t)v(x) + b(t)K(∂2f(t, u)v)(x), x ∈ Ω,

0, x ∈ RN\Ω,

where (∂2f(t, u)v)(x) := ∂2f(t, u(x)) · v(x). Note that the operator D2F (t, u) is a
linear operator on Xp.

Let u ∈ Lp(Ω), with 1 ≤ p <∞. Then, if q is the conjugate exponent of p, it is
easy to see that

‖∂2f(t, u)‖Lq(Ω) ≤ C1(t)
(
|Ω|1/q + ‖u‖p−1

Lp(Ω)

)
. (2.15)

From this estimate and Hölder’s inequality, it follows that

‖∂2f(t, u) · v‖L1(Ω) ≤ C1(t)(|Ω|1/q + ‖u‖p−1
Lp(Ω))‖v‖Lp(Ω).

Hence, by estimate (2.6), we conclude that

‖DF (t, u) · v‖Lp(Ω) ≤ ‖a0v‖Lp(Ω) + b0‖K(∂2f(t, u)v)‖Lp(Ω)

≤ ‖a0v‖Lp(Ω) + b0C1(t)‖J‖p‖∂2f(t, u)v‖L1(Ω)

≤ ‖a0v‖Lp(Ω) + b0C1(t)‖J‖p
(
|Ω|1/q + ‖u‖p−1

Lp(Ω)

)
‖v‖Lp(Ω)

= [a0 + b0C1(t)‖J‖p
(
|Ω|1/q + ‖u‖p−1

Lp(Ω)

)
]‖v‖Lp(Ω),

that is, DF (t, u) is a bounded operator. In the case p =∞, it follows that for each
u ∈ L∞(Ω), |∂2f(t, u)| is bounded by C2(t). Hence

‖∂2f(t, u)v‖L∞(Ω) ≤ C2(t)‖v‖L∞(Ω).

Thus

‖DF (t, u) · v‖L∞(Ω) ≤ a0‖v‖L∞ + b0‖K(∂2f(t, u)v)‖L∞(Ω)

≤ a0‖v‖L∞ + b0‖J‖1‖∂2f(t, u)v‖L∞(Ω)

≤ a0‖v‖L∞ + b0C2(t)‖J‖1‖v‖L∞(Ω)

= (a0 + b0C2(t)‖J‖1)‖v‖L∞(Ω),

which results, also in this case, in the boundedness of DF (t, u).
Now, suppose that u1, u2 and v belong to Lp(Ω), 1 ≤ p < ∞. Using (2.6) and

Hölder’s inequality it follows that

‖(DF (t, u1)−DF (t, u2))v‖Lp(Ω) ≤ b0‖K[(∂2f(t, u1)− ∂2f(t, u2))v]‖Lp(Ω)

≤ b0‖J‖p‖(∂2f(t, u1)− ∂2f(t, u2))v‖L1(Ω)

≤ b0‖J‖p‖∂2f(t, u1)− ∂2f(t, u2)‖Lq(Ω)‖v‖Lp(Ω)

= b0‖J‖p‖∂2f(t, u1)− ∂2f(t, u2)‖Lq(Ω)‖v‖Lp(Ω) .

Then to prove continuity of the derivative, DF (t, ·), it is sufficient to show that

‖∂2f(t, u1)− ∂2f(t, u2)‖Lq(Ω) → 0
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as ‖u1 − u2‖Lp(Ω) → 0. On the other hand, by (2.14), it follows that

|∂2f(t, u1)(x)− ∂2f(t, u2)(x)|q ≤ [C1(t)(2 + |u1(x)|p−1 + |u2(x)|p−1)]q.

A simple computation shows that the right-hand-side of this inequality is integrable.
Then the result follows from Lebesgue convergence theorem.

In the case p = ∞, the continuity of DF follows from (2.5) and from the con-
tinuity of ∂2f(t, u). Therefore, it follows from [27, Proposition 2.8] that F (t, ·) is
Fréchet differentiable with continuous derivative in Xp. �

Thanks to Proposition 2.7 and well known results in [12, 20], we have the fol-
lowing result.

Corollary 2.8. Assume the hypotheses of Proposition 2.7 hold. Then, for each
t ∈ R and uτ ∈ Xp, the unique solution of (2.1) with initial condition uτ exists
for all t ≥ τ , and the solution (t, τ, x) 7→ u(t, x) = u(t; τ, x, uτ ) (defined by (2.12))
gives rise to a family of nonlinear C1 process on Xp, given by

T (t, τ)uτ (x) := u(t, x), t ≥ τ ∈ R.

3. Existence of a pullback attractor

In this section we prove the existence of a pullback attractor {A(t); t ∈ R} in Xp

for the evolution process {T (t, τ); t ≥ τ, τ ∈ R} for 1 ≤ p <∞, generalizing, among
others, [17, Theorem 3.2] and [5, Theorem 4.2].

Lemma 3.1. Assume that the hypotheses of Proposition 2.7 hold with the constant
k1 in (2.11) satisfying k1b0 < a−. Let

Rδ(t) =
1

a− − k1b0
(1 + δ)[b0k2(t)|Ω|1/p + ‖S(t, ·)‖Lp(Ω)], (3.1)

where k2 is derived from (2.13) and δ is any positive constant. Then the ball,
centered at the origin with radius Rδ(t), in the space Lp(Ω), 1 ≤ p <∞, which we
denote by B(0, Rδ(t)), pullback absorbs bounded subsets of Xp at time t ∈ R with
respect to the process T (·, ·) generated by (2.1).

Proof. If u(t, x) is the solution of (2.1) with initial condition uτ ∈ Xp, for 1 ≤ p <
∞, then

d

dt

∫
Ω

|u(t, x)|pdx

=

∫
Ω

p|u(t, x)|p−1sgn(u(t, x))ut(t, x)dx

= −pa(t)

∫
Ω

|u(t, x)|pdx+ pb(t)

∫
Ω

|u(t, x)|p−1sgn(u(t, x))Kf(t, u(t, x))dx

+ p

∫
Ω

|u(t, x)|p−1sgn(u(t, x))S(t, x)dx− ph
∫

Ω

|u(t, x)|p−1dx.

(3.2)
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Thus, if q is the conjugate exponent of p, by Hölder’s inequality, estimate (2.5),
and condition (2.11), we have∫

Ω

|u(t, x)|p−1sgn(u(t, x))Kf(t, u(t, x)) dx

≤
(∫

Ω

|u(t, x)|q(p−1)dx
)1/q(∫

Ω

|Kf(t, u(t, x))|pdx
)1/p

≤
(∫

Ω

|u(t, x)|pdx
)1/q

‖J‖1‖f(t, u(t, ·))‖Lp(Ω)

≤ ‖u(t, ·)‖p−1
Lp(Ω)

(
k1‖u(t, ·)‖Lp(Ω) + k2(t)|Ω|1/p

)
,

(3.3)

and ∫
Ω

|u(t, x)|p−1sgn(u(t, x))S(t, x) dx

≤
(∫

Ω

|u(t, x)|q(p−1)dx
)1/q(∫

Ω

|S(t, x)|pdx
)1/p

≤
(∫

Ω

|u(t, x)|pdx
)1/q

‖S(t, ·)‖Lp(Ω)

≤ ‖u(t, ·)‖p−1
Lp(Ω)‖S(t, ·)‖Lp(Ω) .

(3.4)

Hence, using (3.3) and (3.4) in (3.2), we obtain

d

dt
‖u(t, ·)‖pLp(Ω)

≤ −pa(t)‖u(t, ·)‖pLp(Ω) + pb(t)‖u(t, ·)‖p−1
Lp(Ω)

(
k1‖u(t, ·)‖Lp(Ω) + k2(t)|Ω|1/p

)
+ p‖u(t, ·)‖p−1

Lp(Ω)‖S(t, ·)‖Lp(Ω) − ph|Ω|1/p‖u(t, ·)‖p−1
Lp(Ω).

Thus

d

dt
‖u(t, ·)‖pLp(Ω) ≤ −a−p‖u(t, ·)‖pLp(Ω)

+ pb0‖u(t, ·)‖p−1
Lp(Ω)

(
k1‖u(t, ·)‖Lp(Ω) + k2(t)|Ω|1/p

)
+ p‖S(t, ·)‖Lp(Ω)‖u(t, ·)‖p−1

Lp(Ω)

= −a−p‖u(t, ·)‖pLp(Ω) + pb0k1‖u(t, ·)‖pLp(Ω)

+ pb0|Ω|1/pk2(t)‖u(t, ·)‖p−1
Lp(Ω) + p‖S(t, ·)‖Lp(Ω)‖u(t, ·)‖p−1

Lp(Ω)

= p‖u(t, ·)‖pLp(Ω)

[
− a− + k1b0 +

(b0k2(t)|Ω|1/p + ‖S(t, ·)‖Lp(Ω))

‖u(t, ·)‖pLp(Ω)

]
.

Writing ε = a− − k1b0 > 0, since

‖u(t, ·)‖Lp(Ω) ≥
1

ε
(1 + δ)

(
b0k2(t)|Ω|1/p + ‖S(t, ·)‖Lp(Ω)

)
,

we obtain

d

dt
‖u(t, ·)‖pLp(Ω) ≤ p‖u(t, ·)‖pLp(Ω)

(
− ε+

ε

1 + δ

)
= − δp

(1 + δ)
ε‖u(t, ·)‖pLp(Ω).
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Therefore,

‖u(t, ·)‖pLp(Ω) ≤ e
− δp

(1+δ)
ε(t−τ)‖uτ‖pLp(Ω)

= e−
δp

(1+δ)
(a−−k1b0)(t−τ)‖uτ‖pLp(Ω).

(3.5)

Thus, the result follows immediately. �

Theorem 3.2. In addition to the conditions of Lemma 3.1, suppose that C1(t) and
k2(t) are non-decreasing functions and

‖Jx‖Lp(Ω) = sup
x∈Ω
‖∂xJ(x, ·)‖Lq(Ω) <∞, ‖∂xS‖p = sup

t∈R+

‖∂xS(t, ·)‖Lp(Ω) <∞.

Then there exists a pullback attractor {A(t); t ∈ R} for the process {T (t, τ); t ≥
τ, τ ∈ R} generated by (2.1) in Xp = Lp(Ω) and the “section” A(t) of the pullback
attractor A(·) of T (·, ·) is contained in the ball centered at the origin with radius
Rδ(t) defined in (3.1), in Lp(Ω), for any δ > 0, t ∈ R and 1 ≤ p <∞.

Proof. From Theorem 2.6 it follows that, for each initial value u(τ, ·) ∈ Xp and
initial time τ ∈ R, the process generated by (2.1) has a unique solution, which we
can to write, for x ∈ Ω, as

T (t, τ)u(τ, x) = T1(t, τ)u(τ, x) + T2(t, τ)u(τ, x),

where

T1(t, τ)u(τ, x) := e−(A(t)−A(τ))u(τ, x),

T2(t, τ)u(τ, x) :=

∫ t

τ

e−(A(t)−A(s))b(s)[Kf(s, u(s, x)) + S(s, x)− h]ds.

Now, we use [8, Theorem 2.37] to prove that T (·, ·) is pullback asymptotically
compact. For this, let u ∈ B be a bounded subset of Xp. Without loss of generality,
we suppose that B is contained in the ball centered at the origin of radius r > 0.
Then, for t ≥ τ , we have

‖T1(t, τ)u‖Lp(Ω) ≤ re−(A(t)−A(τ)) ≤ re−a−tea0τ = σ(t, τ)→ 0, t→∞.
Using (3.5), it follows that ‖u(t, ·)‖Lp(Ω) ≤M , for t ≥ τ , where M is given in (3.6)
below

M = M(t) = max
{
r,

2[b0k2(t)|Ω|1/p + ‖S(t, ·)‖Lp(Ω)]

a− − k1b0

}
> 0. (3.6)

Then, using (2.8), we have

‖f(t, u)‖L1(Ω) ≤ C1(t)(|Ω|+ ‖u‖pLp(Ω)) ≤ C1(t)(|Ω|+M(t)p).

Since

∂x(T2(t, τ)u(τ, x)) =

∫ t

τ

e−(A(t)−A(s))[b(s)
∂

∂x
Kf(t, u)(t, x) +

∂S

∂x
(s, x)]ds.

proceeding as in (2.6) (with Jx replacing J) and using (2.8), it follows that

‖∂x(Kf(t, u))‖Lp(Ω) ≤ ‖Jx‖Lp(Ω)b0‖f(t, u)‖L1(Ω) ≤ C1(t)‖Jx‖Lp(Ω)(|Ω|+M(t)p).

Thus, since C1 and k2 are non-decreasing, we obtain

‖∂x(T2(t, τ)u)‖Lp(Ω)

≤
∫ t

τ

e−(A(t)−A(s))
(
b(s)‖∂xKf(s, u(s, ·))‖Lp(Ω) + ‖∂xS(s, ·)‖Lp(Ω)

)
ds
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≤
∫ t

τ

e−(A(t)−A(s))
(
b0C1(s)‖Jx‖Lp(Ω)|Ω|1/p +M(s)p + ‖∂xS‖p

)
ds

≤
∫ t

τ

e−(A(t)−A(s))
(
b0C1(t)‖Jx‖Lp(Ω)|Ω|1/p +M(t)p + ‖∂xS‖p

)
ds

≤ C1(t)‖Jx‖p
1

a0
[e(a0−a−)t − e−a−tea0τ ]

(
|Ω|1/p +M(t)p

)
+ C1(t)

1

a0
[e(a0−a−)t − e−a−tea0τ ]‖∂xS‖p

≤ C1(t)‖Jx‖p
1

a0
e(a0−a−)t(|Ω|+M(t)p) + C1(t)

1

a0
e(a0−a−)t‖∂xS‖p

=
C1(t)‖Jx‖p(|Ω|+M(t)p) + ‖∂xS‖p

a0
e(a0−a−)t.

Hence, for any u ∈ B and t > τ , the value of ‖ ∂∂xT2(t, τ)u‖Lp(Ω) is bounded by
a constant (independent of u ∈ B). Then T2(t, τ)u belongs to a ball in the space
W 1,p(Ω) for all u ∈ B. Hence, by the Sobolev embedding theorem, it follows that
T2(t, τ) is a compact operator, for any t > τ .

Therefore, using Lemma 3.1 and [8], there exists the pullback attractor {A(t); t ∈
R} and each “section” A(t) of the pullback attractor A(·) is the pullback ω-limit
set of any bounded subset of Xp containing the ball centered at the origin with
radius Rδ, given in (3.1), for any δ > 0. Since the ball centered at the origin with
radius Rδ pullback absorbs bounded subsets of Xp, it also follows that the set A(t)
is contained in the ball centered at the origin of Xp and of radius

R(t) =
1

a− − k1b0
[b0k2(t)|Ω|1/p + ‖S‖p]

for any t ∈ R and 1 ≤ p <∞. �

4. Continuity with respect to parameter S

A natural question to examine at this point is the depedence of the process
with respect to parameters that arise in the equation. In this section we prove the
continuity of the process with respect to a external stimuli function and we use this
result to prove the upper semicontinuity of the pullback attractors.

4.1. Continuity of the process with respect to external stimuli. From now
on we denote by TS(t, τ) the family of processes associated with the family of
problems

∂tuS(t, x) = −a(t)uS(t, x) + b(t)Kf(t, uS(t, x)) + S(t, x), t ≥ τ, x ∈ Ω,

uS(τ, x) = uτ (x), x ∈ Ω,

uS(t, x) = 0, t ≥ τ, x ∈ RN\Ω.
(4.1)

In this subsection we prove the continuous dependence of the process with respect
to the stimuli function S at S0 ∈ Σ, where

Σ = {S : R× RN → R, ‖S‖p = sup
t∈R+

‖S(t, ·)‖Lp(Ω) <∞}.

More precisely we have the following result.
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Theorem 4.1. In addition to the hypotheses of Theorem 3.2, suppose that the
function C2 given in (2.9) is non-decreasing. Then, if TS(·, ·) denotes the pro-
cess generated by the problem (4.1), for S ∈ Σ, we have that TS(t, τ)uτ converges
uniformly to TS0

(t, τ)uτ in Xp, as ‖S − S0‖p → 0, for t ∈ [τ, L], and any L > τ .

Proof. Let L > τ and uS(t, x) = TS(t, τ)uτ (x) be the solution of (4.1) for t ∈ [τ, L],
given by (2.12). Then, for x ∈ Ω, and

uS(t, x)− uS0
(t, x) =

∫ t

τ

e−(A(t)−A(s))b(s)[K(f(s, uS(s, x))− f(s, uS0
(s, x)))]ds

+

∫ t

τ

e−(A(t)−A(s))[S(s, x)− S0(s, x)]ds

Thus, for x ∈ Ω, using (2.6), we obtain

‖uS(t, ·)− uS0
(t, ·)‖Lp(Ω)

≤
∫ t

τ

e−(A(t)−A(s))b0‖J‖p‖f(s, uS(s, ·))− f(s, uS0
(s, ·))‖L1(Ω)ds

+

∫ t

τ

e−(A(t)−A(s))‖S(s, ·)− S0(s, ·)‖Lp(Ω)ds.

By (2.9) it follows that

‖uS(t, ·)− uS0(t, ·)‖Lp(Ω) ≤
∫ t

τ

e−(A(t)−A(s))b0‖J‖pC2(s)

[
|Ω|1/q + ‖uS(s, ·)‖p/qLp(Ω)

+ ‖uS0
(s, ·)‖p/qLp(Ω)

]
‖uS(s, ·)− uS0

(s, ·)‖Lp(Ω)ds

+

∫ t

τ

e−(A(t)−A(s)) sup
s∈R
‖S(s, ·)− S0(s, ·)‖Lp(Ω)ds.

Let B ⊂ Xp be a bounded subset (for example a ball of radius ρ) such that
uS(t, ·) ∈ B for all S ∈ Σ and t ∈ [τ, L]. Then

eA(t)‖uS(t, ·)− uS0
(t, ·)‖Lp(Ω)

≤
∫ t

τ

b0‖J‖pC2(s)
[
|Ω|1/q + 2ρp/q

]
eA(s)‖uS(s, ·)− uS0

(s, ·)‖Lp(Ω)ds

+

∫ t

τ

eA(s)‖S − S0‖pds.

Using the Gronwall Generalized inequality [19], we obtain

eA(t)‖uS(t, ·)−uS0(t, ·)‖Lp(Ω) ≤
(∫ t

τ

eA(s)‖S−S0‖pds
)
e
∫ t
τ
b0‖J‖pC2(s)[|Ω|1/q+2ρp/q ]ds.

Hence, for t ∈ [τ, L], it follows that

‖uS(t, ·)− uS0(t, ·)‖Lp(Ω)

≤
(∫ t

τ

e−(A(t)−A(s))‖S − S0‖pds
)
e
∫ t
τ
b0‖J‖pC2(s)[|Ω|1/q+2ρp/q]ds

≤ e(a0−a−)t

a0
e
∫ t
τ
b0‖J‖pC2(s)[|Ω|1/q+2ρp/q]ds‖S − S0‖p.

The result follows. �
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4.2. Upper semicontinuity of the pullback attractors. In this subsection
{AS(t); t ∈ R} denotes the pullback attractor for the process TS(·, ·) in Xp, for
1 ≤ p < ∞. Using Theorem 4.1, we prove that the family of pullback attractors
{AS(t); t ∈ R}S∈Σ is upper-semicontinuous at S0 ∈ Σ, i.e., we show that

lim
t→∞

distH(AS(t),AS0(t)) = 0,

where distH(·, ·) denotes the Hausdorff semi-distance.

Theorem 4.2. Under the hypotheses of Theorem 4.1 the family of pullback attrac-
tors {AS(t); t ∈ R}S∈Σ is upper semicontinuous at S0 ∈ Σ.

Proof. Note that, from Theorem 3.2, it follows that

∪S∈ΣAS(t) ⊂ B(0, R),

where R = R(t) = 1
a−−k1b0 [b0k2(t)|Ω|1/p + p‖S‖p]. Let us fix ε > 0 and t ∈ R.

Thus choose τ ∈ R, τ ≤ t, such that

distH(TS0
(t, τ)B(0, R),AS0

(t)) <
ε

2
.

Now, by Theorem 4.1, it follows that there exists δ > 0 such that, for ‖S−S0‖p < δ,
we have

sup
aS∈AS(τ)

dist(TS(t, τ)aS , TS0
(t, τ)aS) <

ε

2
.

Then, for ‖S−S0‖p < δ, using the invariance of the pullback attractors, we obtain

distH(AS(t),AS0
(t))

≤ distH(TS(t, τ)AS(τ), TS0(t, τ)AS(τ)) + distH(TS0(t, τ)AS(τ), TS0(t, τ)AS0(τ))

= sup
aS∈AS(τ)

distH(TS(t, τ)aS , TS0
(t, τ)aS) + distH(TS0

(t, τ)AS(τ),AS0
(t))

<
ε

2
+
ε

2
= ε.

�

5. Discussions and biological interpretation

As we saw in the introduction, equation (1.1) generalizes the model studied in
[1], which is already well known in the literature, because we consider that the
rate in the intensity of neuronal potential is explicitly time dependent, while in [1]
this rate was considered constant. We expect to have a more realistic model when
compared to what happens in the brain, since this behavior is due to variations
of polarity inside the membrane, which is not necessarily constant. Furthermore,
in Proposition 2.6 and Corollary 2.8, we are not considering that the synaptic
connectivity function J(x, y) is smooth, as occurs for example in [1, 2, 5, 13]. For
these results, we assume J ∈ L1(RN ), leaving the model closer to real situation
of mild autism, where simple breaks in the synaptic connections occurs. Thus,
we hope that the results on global existence and smoothness of solutions, given in
Proposition 2.6 and Corollary 2.8 contribute to future research.

In Theorem 4.1 we show that the neuronal activity depends continuously on the
sum of the external stimuli involved in the process. This reinforces the importance
of appropriate continuous stimulation for a good neural activity, especially in indi-
viduals suffering from neurological disorder, as occurs in cases of cerebral paralysis
and in some cases of autism.
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Finally, we expect that the mathematical results presented in Theorem 3.2 and
Theorem 4.2 will contribute to other mathematical properties associated with the
dynamics of this model and that other biological conclusions may be possible.
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