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FINITE CYCLICITY OF THE CONTACT POINT IN SLOW-FAST

INTEGRABLE SYSTEMS OF DARBOUX TYPE

RENATO HUZAK

Abstract. Using singular perturbation theory and family blow-up we prove
that nilpotent contact points in deformations of slow-fast Darboux integrable

systems have finite cyclicity. The deformations are smooth or analytic depend-

ing on the region in the parameter space. This article is a natural continuation
of [1, 3], where one studies limit cycles in polynomial deformations of slow-fast

Darboux integrable systems, around the “integrable” direction in the parame-

ter space. We extend the existing finite cyclicity result of the contact point to
analytic deformations, and under some assumptions we prove that the contact

point has finite cyclicity around the “slow-fast” direction in the parameter
space.

1. Introduction

A typical example of slow-fast Darboux integrable systems studied in [1, 3] is
given by

Xε :

{
ẋ = y − x2 − ε+ εy

ẏ = −2εx+ 2εxy,
(1.1)

where ε ≥ 0, ε ∼ 0, is the singular perturbation parameter. System Xε has the first
integral (of Darboux type)

H(x, y) = (y − x2)ε(1− y).

When ε > 0, Xε has a family of periodic orbits Oε bounded by {y − x2 = 0}
and {1 − y = 0} (see Figure 1). The fast subsystem X0 of Xε, has the curve of
singularities {y−x2 = 0}, often called the critical or slow curve, and (fast) regular
horizontal orbits (see Figure 2).

The goal in [1, 3] was to prove ε-uniform finiteness of the number of limit cycles
bifurcating from the compact set Ō := Oε in a polynomial deformation Xε,δ of
Xε, with δ = (δ1, . . . , δm) ∈ Rm, m ∈ N \ {0}, and δ ∼ 0. (Note that Ō is the
ε-independent region bounded by {y − x2 = 0} and {1 − y = 0}, including the
boundary.) More precisely, we consider a vector field Xε,δ := Xε +Q1(x, y, δ) ∂

∂x +
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Oε

Figure 1. Dynamics of Xε, with ε > 0.

Figure 2. Dynamics of X0.

Q2(x, y, δ) ∂∂y where Qi is an analytic δ-family of real polynomials in (x, y) and

Qi(x, y, 0) ≡ 0, i = 1, 2. Let ε > 0 be small and fixed. Let C(ε) := Cycl(Xε,δ, Ō)
be the maximal number of limit cycles of the system Xε,δ, bifurcating from Ō, for
δ ∼ 0. Following [1, Theorem 2.1], the cyclicity C(ε) is finite and uniformly bounded
in ε > 0, under the assumption that the parameter (ε, δ) is kept in a narrow region
around the ε-axis, i.e. around the integrable direction (see Figure 3).

ε

δ

Figure 3. Integrable direction in the parameter space (ε, δ) stud-
ied in [1, 3].

Let us recall that article [1] is a natural continuation of [2, 3] where the ε-uniform
finiteness property has been obtained in the integrable direction (see Figure 3) for
any compact set K contained in IntŌ by studying zeros of pseudo-Abelian integrals.
Thus, the cyclicity of the polycycle, i.e. the boundary of Ō, has not been studied in
[3]. In [1], Dulac maps and a technique based on the so-called “Petrov trick” (see
also [14]) have been used to obtain the ε-uniform finiteness property for Ō. One of
the reasons why the polynomial deformations of Xε have been studied in [1, 3] is
Hilbert’s 16th problem (see [13, 21]).

The main purpose of this article is to initiate the study of limit cycles of Xε,δ,
bifurcating from the compact set Ō (or any other compact set in the phase space),
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around the δ-axis in the (ε, δ)-space. Our focus is on the cyclicity of the (generic)
nilpotent contact point (0, 0) ∈ Ō, i.e. the nilpotent singularity of X0 at which the
critical curve {y − x2 = 0} of X0 has a (quadratic) contact with fast orbits (see
Figure 2). We use geometric singular perturbation theory and the family blow-up.
All singularities of the critical curve, located away from the origin, are normally
hyperbolic (attracting when x > 0 and repelling when x < 0). The contact point is
called turning point if it allows the passage from the attracting part of the critical
curve to the repelling part of the critical curve in Xε,δ, with (ε, δ) 6= (0, 0). We can
have diverse (nilpotent) contact points, depending on the region in the (ε, δ)-space:
jump points (see [11, 20]), slow-fast saddle points, slow-fast Hopf points (sometimes
called generic turning points)(see [11, 12, 16, 19]), slow-fast Bogdanov-Takens points
(see [8]), slow-fast codimension 3 saddle or elliptic points (see [9, 10, 15, 18]), slow-
fast codimension 4 saddle-node points (see [17]), etc.

To determine the type of our nilpotent contact point, we first blow up the origin
in the parameter space (ε, δ) by using the following homogeneous rescaling:

(ε, δ) = (ε̄E, ε̄D), ε̄ ≥ 0, ε̄ ∼ 0, (E,D) ∈ Sm, (1.2)

where D = (D1, . . . , Dm) ∈ Rm. The advantage of using the blow-up (1.2) is that
we now have only one small parameter ε̄ which is a singular perturbation parameter
((E,D) 6= (0, 0) because (E,D) ∈ Sm). Note that if we vary ε̄ ≥ 0 and (E,D), kept
on the unit sphere, then we cover a complete (small) neighborhood of the origin in
the (ε, δ)-space. As usual, we use different charts of the sphere:

(1) (“Integrable” direction E = ±1) We have (ε, δ) = (±ε̄, ε̄D) where ε̄ ≥ 0,
ε̄ ∼ 0 and D ∼ 0 ∈ Rm. See Figure 4(a). This region is covered by
[1, 3] working with polynomial deformations Xε,δ of Xε as explained above.
When E = 1 (resp. E = −1) we deal with a slow-fast Hopf point (resp.
a slow-fast saddle point). In the slow-fast Hopf region we prove ε-uniform
finiteness of the number of limit cycles Hausdorff close to the contact point
(x, y) = (0, 0) under analytic deformations of Xε (Q1 and Q2 are analytic).
In the slow-fast saddle region the compact set Ō produces no limit cycles
under smooth deformations (Q1 and Q2 are smooth). For more details see
Theorem 2.1.

(2) (“Slow-fast” direction D ∈ Sm−1) We have (ε, δ) = (ε̄E, ε̄D) where ε̄ ≥ 0,
ε̄ ∼ 0, D ∈ Sm−1 and E is kept in a large compact set in R. See Figure
4(b). This region is covered by our paper. As we will see in Sections 2
and 3, the type of the nilpotent contact point is closely related to the order
of vanishing of the slow dynamics of Xε,δ (defined along the slow curve
{y − x2 = 0}) at the contact point. The slow dynamics is given by

x′ = −E + Ex2 +
〈D, Q̃(x, x2, 0)〉

2x
, x 6= 0,

where we write Q2(x, y, δ) = 〈δ, Q̃(x, y, δ)〉 (〈·, ·〉 denotes the inner product
in Rm). For more details about the definition of the slow dynamics see

Section 2.1. Using 〈D, Q̃(x, x2, 0)〉 = α0+α1x+α2x
2+α3x

3+α4x
4+O(x5),

the slow dynamics can be written as

x′ =
α0

2x
+ (

α1

2
− E) +

α2

2
x+ (

α3

2
+ E)x2 +

α4

2
x3 +O(x4), x 6= 0.
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When α0 6= 0 for some D = D0 ∈ Sm−1, we deal with a jump contact
point and any compact set in the phase space (x, y) produces no limit cycles
under smooth deformations, for each D ∼ D0 and E kept in a large compact
set. See Theorem 2.2.

When α0 = 0 for some D = D0 ∈ Sm−1, then the contact point (resp.
any compact set in the phase space (x, y)) produces a finite number of
limit cycles under analytic deformations (resp. no limit cycles under smooth
deformations) uniformly in (E,D), with D ∼ D0 and α1

2 − E < 0 (resp.
α1

2 −E > 0). Like in the integrable direction, we deal with a slow-fast Hopf
point or a slow-fast saddle point. For more details see Theorem 2.4.

When α0 = 0, α1

2 − E = 0 and α2 6= 0, for some (E,D) = (E0, D0) ∈
R × Sm−1, then we deal with a slow-fast Bogdanov-Takens point and any
compact set in the phase space (x, y) produces at most 1 limit cycle under
smooth perturbations, with (E,D) ∼ (E0, D0). See Theorem 2.6.

When α0 = α1

2 − E = α2 = 0, α3

2 + E > 0 (resp. α3

2 + E < 0) and

α4 6= 0 for some (E,D) = (E0, D0) ∈ R × Sm−1, then any compact set in
the phase space (x, y) (resp. the contact point) produces at most 2 limit
cycles under smooth perturbations, for (E,D) ∼ (E0, D0). We deal with a
slow-fast codimension 3 saddle (resp. elliptic) point. See Theorem 2.8.

When α0 = α1

2 − E = α2 = α3

2 + E = 0 and α4 6= 0 for some (E,D) =

(E0, D0) ∈ R× Sm−1, then we deal with a slow-fast codimension 4 saddle-
node point and any compact set in the phase space (x, y) produces at most
2 limit cycle under smooth perturbations, with (E,D) ∼ (E0, D0). See
Theorem 2.9.

The cases “α0 = α1

2 − E = α2 = α4 = 0, α3

2 + E 6= 0” and “α0 =
α1

2 − E = α2 = α3

2 + E = α4 = 0” are topics of further study.

ε

δ

ε

δ

E = −1 E = 1

(a) (b)

Figure 4. (a) The “integrable” direction in the parameter space
(ε, δ). (b) The “slow-fast” direction in the (ε, δ)-space.

Besides the small-amplitude limit cycles of Xε,δ studied in this paper, we can
also have limit cycles in Xε,δ bifurcating from so-called detectable canard limit
periodic sets consisting of a fast orbit of X0,0 and the part of the critical curve
of X0,0 between the α-limit set and the ω-limit set of the fast orbit (see Figure
2). In the “slow-fast” direction, these canard limit cycles are possible only if the
slow dynamics points from the attracting part of the critical curve to the repelling
part of the critical curve. This happens, for instance, in the slow-fast Hopf case
and the slow-fast codimension 3 elliptic case. More precisely, we have to deal with
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detectable canard limit cycles when the order of the slow dynamics at the contact
point is 0, 2, 4, 6, . . . , with a negative coefficient. In the slow-fast Hopf case, i.e.
when the order of the slow dynamics is 0, we can study zeros of the so-called slow
divergence integral if the slow dynamics is regular (see [4]). If the slow dynamics
has isolated singularities (away from the contact point), we can use the results of
[5]. When the order of the slow dynamics is ≥ 2, we study zeros of the derivative
of the slow divergence integral if the slow dynamics is regular (see [6, 7]). If the
slow dynamics has isolated zeros, away from the contact point, we can combine
[6, 7] with [5]. The same can be done in the “integrable” direction (the slow-fast
Hopf case). Since there are a lot of different possibilities, we prefer to deal with the
detectable canard limit cycles in a separate paper. This is a topic of further study.

In the “slow-fast” direction, compact regions in which we have to study de-
tectable canard cycles can be larger than the compact region Ō in the “integrable”
direction. This happens, for example, in the slow-fast Hopf case with regular slow
dynamics. In the “integrable” direction, the slow dynamics has two hyperbolic
saddles x = ±1 for (E,D) = (1, 0). See also Figure 1.

In Section 2 we state our main results. We prove the results in Section 3. Al-
though in this paper we are mostly interested in the slow-fast Darboux system
(1.1), our methods can be used in a more general framework of slow-fast integrable
systems of Darboux type introduced in [3], under assumption that our contact point
is of generic nilpotent type. See Section 4.

2. Slow dynamics and statement of results

In Section 2.1 we define the notion of slow dynamics of (2.1) along the critical
curve {y − x2 = 0}. We state our main results in Section 2.2.

2.1. The fast subsystem and slow dynamics. We consider an (ε, δ, λ)-family
of 2-dimensional vector fields

Xε,δ,λ :

{
ẋ = y − x2 − ε+ εy +Q1(x, y, δ, λ)

ẏ = −2εx+ 2εxy +Q2(x, y, δ, λ)
(2.1)

where ε ∈ (R, 0), δ ∈ (Rm, 0), λ ∈ (Rn, λ0) (m,n ∈ N \ {0}) and Q1 and Q2 are
smooth functions withQ1(x, y, 0, λ) = Q2(x, y, 0, λ) ≡ 0. (For the sake of generality,
Q1 and Q2 may depend on extra parameter λ.) We focus on system Xε̄E,ε̄D,λ where
ε̄ ≥ 0, ε̄ ∼ 0 and (E,D) ∈ Sm (see (1.2)).

The dynamics of the fast subsystem X0,0,λ is given in Figure 2, and the dynamics
of Xε̄E,ε̄D,λ, with ε̄ ∼ 0 and ε̄ > 0, away from the critical curve, is governed by
the dynamics of X0,0,λ. The dynamics of Xε̄E,ε̄D,λ near the critical curve, away
from the contact point (x, y) = (0, 0), can be studied using the slow dynamics.
Let us define the slow dynamics. Center manifolds at the normally hyperbolic (or
semi-hyperbolic) singularity (x, y, ε̄) = (x, x2, 0), x 6= 0, of Xε̄E,ε̄D,λ + 0 ∂

∂ε̄ can be
written as

y = x2 + ε̄
(
− 〈D, Q̄(x, x2, 0, λ)〉+

〈D, Q̃(x, x2, 0, λ)〉
2x

+O(ε̄)
)
,

with Q1(x, y, δ, λ) = 〈δ, Q̄(x, y, δ, λ)〉 and Q2(x, y, δ, λ) = 〈δ, Q̃(x, y, δ, λ)〉. The
dynamics inside these center manifolds can be obtained from the first equation in
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(2.1):

ẋ = ε̄
(
− E + Ex2 +

〈D, Q̃(x, x2, 0, λ)〉
2x

+O(ε̄)
)
.

If we divide this equation by ε̄ and if we let ε̄→ 0, we find the slow dynamics

x′ = f(x,E,D, λ) := −E + Ex2 +
〈D, Q̃(x, x2, 0, λ)〉

2x
, x 6= 0. (2.2)

Using (2.2) we can write

f(x,E,D, λ) =

3∑
k=−1

βkx
k +O(x4),

where

β−1(D,λ) =
〈D, Q̃(0, 0, 0, λ)〉

2
;

β0(E,D, λ) =
〈D, ∂Q̃∂x (0, 0, 0, λ)〉

2
− E;

β1(D,λ) =
〈D,

(
∂2Q̃
∂x2 + 2∂Q̃∂y

)
(0, 0, 0, λ)〉

4
;

β2(E,D, λ) =
〈D,

(
∂3Q̃
∂x3 + 6 ∂2Q̃

∂x∂y

)
(0, 0, 0, λ)〉

12
+ E;

β3(D,λ) =
〈D,

(
∂4Q̃
∂x4 + 12 ∂3Q̃

∂x2∂y + 12∂
2Q̃
∂y2

)
(0, 0, 0, λ)〉

48
.

Clearly, the order of vanishing of the slow dynamics f , with λ = λ0, at x = 0
depends on (E,D) ∈ Sm, the function Q̃ and its partial derivatives at (x, y, δ, λ) =
(0, 0, 0, λ0). As explained in Section 1, limit cycles of (2.1) cannot be studied
uniformly. We have to use different techniques depending on the order of vanishing
of f at x = 0.

2.2. Statement of results. In the parameter space (ε, δ), we distinguish between
the integrable direction {E = ±1}, with D ∼ 0 ∈ Rm, and the slow-fast direction
{D ∈ Sm−1}, with E kept in a large compact set in R.

2.2.1. Integrable direction. In this section we study limit cycles of system X±ε̄,ε̄D,λ
where (ε̄, D, λ) ∼ (0, 0, λ0) ∈ R×Rm×Rn and ε̄ ≥ 0. We have β−1 = 0 and β0 6= 0
for (E,D, λ) = (±1, 0, λ0). We obtain the following result.

Theorem 2.1. Let the family X±ε̄,ε̄D,λ be as defined above. The following state-
ments are true:

(1) (Slow-fast Hopf case E = 1) Suppose that Q1 and Q2 are analytic. Then
there exists ε̄0 > 0, a neighborhood W of (0, λ0) in the (D,λ)-space, a
neighborhood V of (x, y) = (0, 0) and N ∈ N such that system Xε̄,ε̄D,λ has
at most N limit cycles in V, for each value (ε̄, D, λ) ∈ [0, ε̄0]×W.

(2) (Slow-fast saddle case E = −1) Let Q1 and Q2 be smooth and let K be an
arbitrary compact set in the phase space (x, y). Then there exists ε̄0 > 0 and
a neighborhood W of (0, λ0) in the (D,λ)-space such that system X−ε̄,ε̄D,λ
has no limit cycles in K, for each value (ε̄, D, λ) ∈ [0, ε̄0]×W.
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To prove Theorem 2.1 in the region E = 1, first we bring the analytic family
Xε̄,ε̄D,λ near (x, y) = (0, 0) to a normal form of Liénard type using [16]. Then,
we use a finite cyclicity result for analytic slow-fast Hopf points of Liénard type
obtained in [12]. See Section 3.1.

2.2.2. Slow-fast direction. In this section we deal with limit cycles of systemXε̄E,ε̄D,λ

where ε̄ ∼ 0, ε̄ > 0, E is kept in a large compact set in R, D ∈ Sm−1 and λ ∼ λ0.
We start with the simplest case when β−1 6= 0, i.e. with the jump case.

Theorem 2.2 (Jump case). Let Q1 and Q2 be smooth and β−1(D0, λ0) 6= 0 for
some D0 ∈ Sm−1. For each compact set K in the phase space (x, y) and for each
compact set C in the parameter space E there exists ε̄0 > 0 and a neighborhood W
of (D0, λ0) in the (D,λ)-space such that Xε̄E,ε̄D,λ has no limit cycles in K for each
value (ε̄, E,D, λ) ∈ [0, ε̄0]× C ×W.

The above theorem will be proved in Section 3.2.2. When m = 1, we have
D = ±1 and the condition β−1 6= 0 is equivalent to Q̃(0, 0, 0, λ0) 6= 0. Now, as a
direct consequence of Theorem 2.1 and Theorem 2.2, we obtain the following finite
cyclicity result of the contact point in analytic families (2.1), in a full neighborhood
of (ε, δ) = (0, 0).

Theorem 2.3. Suppose that Q1 and Q2 are analytic, m = 1 and ∂Q2

∂δ (0, 0, 0, λ0) 6=
0. There exists a neighborhood W of (ε, δ, λ) = (0, 0, λ0), a neighborhood V of
(x, y) = (0, 0) and N ∈ N such that system Xε,δ,λ has at most N limit cycles in V,
for each (ε, δ, λ) ∈ W.

As in Section 2.2.1, in the slow-fast direction we can also encounter slow-fast
Hopf and saddle cases (β−1 = 0 and β0 6= 0).

Theorem 2.4. Suppose that β−1(D0, λ0) = 0 and β0(E0, D0, λ0) 6= 0 for some
(E0, D0) ∈ R× Sm−1. The following statements are true:

(1) (Slow-fast Hopf case β0 < 0) Suppose that Q1 and Q2 are analytic. If
β0(E0, D0, λ0) < 0, then there exists ε̄0 > 0, a neighborhoodW of (E0, D0, λ0)
in the (E,D, λ)-space, a neighborhood V of (x, y) = (0, 0) and N ∈ N
such that system Xε̄E,ε̄D,λ has at most N limit cycles in V, for each value
(ε̄, E,D, λ) ∈ [0, ε̄0]×W.

(2) (Slow-fast saddle case β0 > 0) Let Q1 and Q2 be smooth functions, let
β0(E0, D0, λ0) > 0 and let K be an arbitrary compact set in the phase space
(x, y). Then there exists ε̄0 > 0 and a neighborhood W of (E0, D0, λ0) in
the (E,D, λ)-space such that system Xε̄E,ε̄D,λ has no limit cycles in K, for
each value (ε̄, E,D, λ) ∈ [0, ε̄0]×W.

The proof of the above theorem is similar to the proof of Theorem 2.1 (see Section
3.1). When m = 1, Theorem 2.1, Theorem 2.4 and the definition of β−1, β0 imply

Theorem 2.5. Let Q1 and Q2 be analytic functions, m = 1, ∂Q2

∂δ (0, 0, 0, λ0) = 0
and let

S±(ρ) :=
{

(ε̄E,±ε̄) | ε̄ ∈]0, 1[, E ∈ B
(
±

∂2Q2

∂x∂δ (0, 0, 0, λ0)

2
, ρ
)}
, ρ > 0, (2.3)

where B is an open ball in R. For each (small) ρ > 0 there exists a neighborhoodW1

of (ε, δ) = (0, 0), a neighborhood W2 of λ = λ0, a neighborhood V of (x, y) = (0, 0)
and N ∈ N such that system Xε,δ,λ has at most N limit cycles in V, for each
(ε, δ, λ) ∈ (W1 \ (S+(ρ) ∪ S−(ρ)))×W2.
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When β−1 = β0 = 0 and β1 6= 0, we deal with the slow-fast Bogdanov-Takens
case.

Theorem 2.6 (Slow-fast Bogdanov-Takens case). Let Q1 and Q2 be smooth func-
tions, β−1(D0, λ0) = β0(E0, D0, λ0) = 0 and β1(D0, λ0) 6= 0 for some (E0, D0) ∈
R × Sm−1. For each compact set K in the (x, y)-space there exists ε̄0 > 0 and a
neighborhood W of (E0, D0, λ0) in the (E,D, λ)-space such that system Xε̄E,ε̄D,λ

has at most 1 limit cycle in K, for each value (ε̄, E,D, λ) ∈ [0, ε̄0]×W.

We prove Theorem 2.6 in Section 3.2.3. When m = 1, Theorem 2.6 gives us
better understanding of limit cycles in the narrow parameter region S+(ρ)∪ S−(ρ)
defined in (2.3).

Theorem 2.7. Let Q1 and Q2 be smooth functions, m = 1, ∂Q2

∂δ (0, 0, 0, λ0) = 0

and
(
∂3Q2

∂x2∂δ + 2∂
2Q2

∂y∂δ

)
(0, 0, 0, λ0) 6= 0. For each compact set K in the (x, y)-space

there exists ρ > 0, a neighborhood W1 of (ε, δ) = (0, 0) and a neighborhood W2 of
λ = λ0 such that system Xε,δ,λ has at most 1 limit cycle in K, for each (ε, δ, λ) ∈
(W1 ∩ (S+(ρ) ∪ S−(ρ)))×W2.

When β−1 = β0 = β1 = 0 and β2 > 0 (resp. β2 < 0), we deal with the slow-fast
codimension 3 saddle (resp. elliptic) case. Moreover, when β3 6= 0, we have the
following result.

Theorem 2.8. Let Q1 and Q2 be smooth functions, β−1 = β0 = β1 = 0, β2 6= 0
and β3 6= 0 for some (E0, D0) ∈ R× Sm−1. The following statements are true:

(1) (Slow-fast codimension 3 saddle case) Let β2(E0, D0, λ0) > 0 and let K
be an arbitrary compact set in the phase space (x, y). Then there ex-
ists ε̄0 > 0 and a neighborhood W of (E0, D0, λ0) in the (E,D, λ)-space
such that system Xε̄E,ε̄D,λ has at most 2 limit cycles in K, for each value
(ε̄, E,D, λ) ∈ [0, ε̄0]×W.

(2) (Slow-fast codimension 3 elliptic case) Let β2(E0, D0, λ0) < 0. Then there
exists ε̄0 > 0, a neighborhood W of (E0, D0, λ0) in the (E,D, λ)-space and
a neighborhood V of (x, y) = (0, 0) such that system Xε̄E,ε̄D,λ has at most
2 limit cycles in V, for each value (ε̄, E,D, λ) ∈ [0, ε̄0]×W.

We prove the above theorem in Section 3.2.4.
When β−1 = β0 = β1 = β2 = 0 and β3 6= 0, we deal with the slow-fast codimen-

sion 4 saddle-node case.

Theorem 2.9 (Slow-fast codimension 4 saddle-node case). Let Q1 and Q2 be
smooth functions, β−1 = β0 = β1 = β2 = 0 and β3 6= 0 for some (E0, D0) ∈
R × Sm−1. For each compact set K in the (x, y)-space there exists ε̄0 > 0 and a
neighborhood W of (E0, D0, λ0) in the (E,D, λ)-space such that system Xε̄E,ε̄D,λ

has at most 2 limit cycles in K, for each value (ε̄, E,D, λ) ∈ [0, ε̄0]×W.

The above theorem will be proved in Section 3.2.5.

3. Proof of Theorems 2.1–2.9

There are essentially two types of normal forms of (2.1) near the origin (x, y) =
(0, 0) which turn out to be useful for proving the results stated in Section 2.2. One
type is analytic Liénard normal form (3.1), used in the slow-fast Hopf region in the
parameter space (see Section 3.1). The other type of normal form is smooth and
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given in (3.11). We use it to prove the results in the other regions in the parameter
space (see Section 3.2).

3.1. Proof of Theorems 2.1 and 2.4.

3.1.1. Slow-fast Hopf case. We consider slow-fast systems

Xε̄,µ :

{
ẋ = y − F (x, µ)

ẏ = ε̄G(x, µ),
(3.1)

where ε̄ ≥ 0, ε̄ ∼ 0, µ ∼ µ0 ∈ Rp and F and G are analytic. Following [12], we say
that system Xε̄,µ for (ε̄, µ) = (0, µ0) has a slow-fast Hopf point (at (x, y) = (0, 0))

if F (0, µ0) = ∂F
∂x (0, µ0) = G(0, µ0) = 0, ∂

2F
∂x2 (0, µ0) 6= 0 and ∂G

∂x (0, µ0) < 0. Suppose
that system Xε̄,µ has a slow-fast Hopf point for (ε̄, µ) = (0, µ0). Then Theorem 1.2
in [12] implies that the slow-fast Hopf point in the analytic Liénard family Xε̄,µ

has a finite cyclicity. More precisely, there exists ε̄0 > 0, a neighborhood V of
(x, y) = (0, 0), a neighborhood W of µ0 in the µ-space and some N ∈ N such that
Xε̄,µ has at most N limit cycles in V, for all (ε̄, µ) ∈ [0, ε̄0]×W.

To prove Theorem 2.1.1 (resp. Theorem 2.4.1), it suffices to bring (non-Liénard
analytic) system Xε̄E,ε̄D,λ, near (x, y) = (0, 0), into an analytic Liénard normal form
of type (3.1) and to show that the obtained normal form has a slow-fast Hopf point
at (x, y) = (0, 0) for (ε̄, E,D, λ) = (0, E0, D0, λ0) where (E0, D0) = (1, 0) (resp.
(E0, D0) is introduced in Theorem 2.4.1). When (ε̄, E,D, λ) = (0, E0, D0, λ0), the
linearized vector field of X0,0,λ0 = (y− x2)∂x + 0∂y at (x, y) = (0, 0) is of nilpotent
type. This implies that the linear part of X0,0,λ0 at the origin is not radial, i.e. not
of the form αx∂x + αy∂y. Using this and the fact that Q1 and Q2 are analytic we
can find an analytic (ε̄, E,D, λ)-family of coordinate changes

(x̄, ȳ) = Φε̄,E,D,λ(x, y) =
(
Φε̄,E,D,λ1 (x, y),Φε̄,E,D,λ2 (x, y)

)
,

with (x, y) ∼ (0, 0), (ε̄, E,D, λ) ∼ (0, E0, D0, λ0) and Φ0,E0,D0,λ0(0, 0) = (0, 0), and
a nowhere zero analytic function ψε̄,E,D,λ(x̄, ȳ) such that

ψε̄,E,D,λ(x̄, ȳ) ·
(
ȳ − F (x̄, ε̄, E,D, λ)
Ḡ(x̄, ε̄, E,D, λ)

)
= DΦε̄,E,D,λ(x, y)Xε̄E,ε̄D,λ(x, y), (3.2)

for some analytic functions F and Ḡ, F (0, 0, E0, D0, λ0) = Ḡ(0, 0, E0, D0, λ0) = 0.
Thus, there exists a local analytic (ε̄, E,D, λ)-family of coordinate changes trans-
forming Xε̄E,ε̄D,λ to an analytic (ε̄, E,D, λ)-family of Liénard equations, up to
multiplication by a nowhere zero analytic function. See [16, Theorem 1].

First, let us show that Ḡ = O(ε̄). When ε̄ = 0, system Xε̄E,ε̄D,λ has the critical
curve {y = x2}. Combining this fact with (3.2) we obtain

Ḡ
(
Φ0,E,D,λ

1 (x, x2), 0, E,D, λ
)

= 0 (3.3)

and
Φ0,E,D,λ

2 (x, x2)− F (Φ0,E,D,λ
1 (x, x2), 0, E,D, λ) = 0. (3.4)

If we differentiate (3.4) with respect to x, we obtain

∂Φ0,E0,D0,λ0

2

∂x
(0, 0)− ∂F

∂x
(0, 0, E0, D0, λ0)

∂Φ0,E0,D0,λ0

1

∂x
(0, 0) = 0. (3.5)

It follows from (3.5) that
∂Φ

0,E0,D0,λ0
1

∂x (0, 0) 6= 0. Using this and (3.3) we obtain

Ḡ(x̄, ε̄, E,D, λ) = ε̄G(x̄, ε̄, E,D, λ) where G is analytic and x̄ ∼ 0.
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In the rest of this section we prove that the analytic family

˙̄x = ȳ − F (x̄, ε̄, E,D, λ)

˙̄y = ε̄G(x̄, ε̄, E,D, λ)
(3.6)

has a slow-fast Hopf point at (x̄, ȳ) = (0, 0) for (ε̄, E,D, λ) = (0, E0, D0, λ0). We

have Φ0,E0,D0,λ0

2 (x, 0) ≡ 0 because Φ0,E0,D0,λ0 preserves the line {y = 0}. Using
this and the first component of (3.2) we obtain

ψ0,E0,D0,λ0
(
Φ0,E0,D0,λ0(x, 0)

)
F (Φ0,E0,D0,λ0

1 (x, 0), 0, E0, D0, λ0)

=
∂Φ0,E0,D0,λ0

1

∂x
(x, 0)x2.

(3.7)

Since Φ0,E0,D0,λ0(0, 0) = (0, 0),
∂Φ

0,E0,D0,λ0
1

∂x (0, 0) 6= 0 and ψ0,E0,D0,λ0(0, 0) 6= 0,

(3.7) implies that F (0, 0, E0, D0, λ0) = ∂F
∂x (0, 0, E0, D0, λ0) = 0 and

∂2F

∂x2
(0, 0, E0, D0, λ0) =

2

ψ0,E0,D0,λ0(0, 0)
∂Φ

0,E0,D0,λ0
1

∂x (0, 0)

6= 0. (3.8)

On the other hand, as a consequence of the Implicit Function Theorem, the x-
nullcline of Xε̄E,ε̄D,λ near the origin, defined in (2.1), is given by y = η(x, ε̄, E,D, λ)
where η is analytic and η = x2 +O(ε̄). If we substitute the function η(x, ε̄, E,D, λ)
for y in (3.2), divide the second component of (3.2) by ε̄ and let (ε̄, E,D, λ) →
(0, E0, D0, λ0), we obtain

ψ0,E0,D0,λ0
(
Φ0,E0,D0,λ0(x, x2)

)
.G(Φ0,E0,D0,λ0

1 (x, x2), 0, E0, D0, λ0)

=
∂Φ0,E0,D0,λ0

2

∂y
(x, x2)2xf(x,E0, D0, λ0)

(3.9)

where f is the slow dynamics defined in (2.2). Note that β−1(D0, λ0) = 0 and
β0(E0, D0, λ0) < 0 for (E0, D0) = (1, 0) or for a parameter (E0, D0) satisfying
the assumptions of Theorem 2.4.1 where β−1 and β0 are defined after (2.2). Since

∂Φ
0,E0,D0,λ0
2

∂x (0, 0) = 0 (Φ0,E0,D0,λ0

2 (x, 0) ≡ 0), we have
∂Φ

0,E0,D0,λ0
2

∂y (0, 0) 6= 0 and

(3.9) implies G(0, 0, E0, D0, λ0) = 0 and

∂G

∂x
(0, 0, E0, D0, λ0) =

2
∂Φ

0,E0,D0,λ0
2

∂y (0, 0)β0(E0, D0, λ0)

ψ0,E0,D0,λ0(0, 0)
∂Φ

0,E0,D0,λ0
1

∂x (0, 0)

6= 0. (3.10)

Since the critical curve {y = x2} of X0,0,λ0
is concave up, we conclude that

∂Φ
0,E0,D0,λ0
2

∂y (0, 0) > 0 (resp.
∂Φ

0,E0,D0,λ0
2

∂y (0, 0) < 0) if the critical curve of (3.6),

for (ε̄, E,D, λ) = (0, E0, D0, λ0), is concave up, i.e. (3.8) is positive (resp. con-
cave down, i.e. (3.8) is negative). Now comparing expressions (3.8) and (3.10), we
see that ∂G

∂x (0, 0, E0, D0, λ0) < 0. This completes the proof of Theorem 2.1.1 and
Theorem 2.4.1.

3.1.2. Slow-fast saddle case. In this section we prove Theorems 2.1.2 and 2.4.2. Let
us recall that β−1(D0, λ0) = 0 and β0(E0, D0, λ0) > 0 for (E0, D0) = (−1, 0) or
for a parameter (E0, D0) satisfying the assumptions of Theorem 2.4.2. It can be
easily seen that system Xε̄E,ε̄D,λ has a hyperbolic saddle near (x, y) = (0, 0), for
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(ε̄, E,D, λ) ∼ (0, E0, D0, λ0) and ε̄ > 0. Thus we have no limit cycles near the
origin in the phase space. On the other hand, there are no detectable canard limit
cycles for (ε̄, E,D, λ) ∼ (0, E0, D0, λ0), ε̄ ≥ 0, because the slow dynamics (2.2)
points from the repelling part of the critical curve to the attracting part of the
critical curve near x = 0 (x′ = β0 +O(x) > 0 for (E,D, λ) = (E0, D0, λ0)).

3.2. Proof of Theorems 2.2, 2.6, 2.8 and 2.9.

3.2.1. Bringing Xε̄E,ε̄D,λ to a smooth normal form for generic nilpotent contact
points. We consider slow-fast systems

ẋ = y

ẏ = −xy + ε̄g(x, ε̄, µ) + ε̄y2H(x, y, ε̄, µ),
(3.11)

where ε̄ ∼ 0, ε̄ ≥ 0, µ ∼ µ0 ∈ Rp and g and H are smooth functions. System (3.11)
has a generic nilpotent contact point at the origin. The cyclicity of this nilpotent
contact point has been studied in [8, 9, 17], depending on the singularity order at
the contact point, i.e. the order of vanishing of g(x, 0, µ0) at x = 0. Suppose that
Q1 and Q2 in (2.1) are smooth. We transform system Xε̄E,ε̄D,λ, near (x, y) = (0, 0),
to a slow-fast system of type (3.11).

Lemma 3.1. Consider a smooth slow-fast system Xε̄E,ε̄D,λ, defined in (2.1), with
(E,D, λ) ∼ (E0, D0, λ0), ε̄ ∼ 0 and ε̄ ≥ 0. There exists a local smooth (ε̄, E,D, λ)-
family of coordinate changes

(x, y) 7→ Φε̄,E,D,λ(x, y),

with Φ0,E,D,λ(0, 0) = (0, 0), bringing Xε̄E,ε̄D,λ in a smooth (ε̄, E,D, λ)-family (up
to multiplication by a smooth strictly positive function)

ẋ = y

ẏ = −xy + ε̄g(x, ε̄, E,D, λ) + ε̄y2H(x, y, ε̄, E,D, λ),
(3.12)

with smooth functions g and H, and

g(x, 0, E,D, λ) = xf(
x√
2
, E,D, λ), (3.13)

where f is the slow dynamics of Xε̄E,ε̄D,λ.

Proof. We can write the slow-fast system Xε̄E,ε̄D,λ as

ẋ = y − x2 +O(ε̄)

ẏ = ε̄
(
− 2Ex+ 2Exy + 〈D, Q̃(x, y, ε̄D, λ)〉

) (3.14)

where O(ε̄) is a smooth function in (x, y, ε̄, E,D, λ) and Q̃ is a smooth function
defined in Section 2.1. Using the (smooth) coordinate change Y = y − x2 + O(ε̄)
near (x, y) = (0, 0), the vector field (3.14) changes into

ẋ = y

ẏ = ε̄
(
− 2Ex+ 2Ex(y + x2) + 〈D, Q̃(x, y + x2, 0, λ)〉+O(ε̄)

)
+ (−2x+O(ε̄))y

(3.15)
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where we denote Y again by y and where the O(ε̄)-terms are smooth functions
in (x, y, ε̄, E,D, λ). Using the first-order Taylor expansion of the y-component in
(3.15) w.r.t. y about y = 0, the vector field (3.15) can be written as

ẋ = y

ẏ = (−2x+O1(ε̄))y + ε̄
(
2xf(x,E,D, λ) +O2(ε̄)

)
+O(ε̄y2)

(3.16)

where f is defined in (2.2), O1(ε̄), O2(ε̄) and O(ε̄y2) are smooth functions and O1(ε̄)
and O2(ε̄) are independent of y. After a translation x→ x+ ε̄α, with α smooth in
(ε̄, E,D, λ), the vector field (3.16) becomes

ẋ = y

ẏ = −xl(x, ε̄, E,D, λ)y + ε̄
(
2xf(x,E,D, λ) +O(ε̄)

)
+O(ε̄y2)

(3.17)

where l is a smooth function, l(x, 0, E,D, λ) ≡ 2, O(ε̄) and O(ε̄y2) are smooth and
O(ε̄) is independent of y. Since l is strictly positive near x = 0, there exists a
strictly positive smooth function L(x, ε̄, E,D, λ) (L(x, 0, E,D, λ) ≡ 2) such that

x2

2
L(x) =

∫ x

0

sl(s)ds.

After differentiating this with respect to x and after division by x we obtain

L(x) +
x

2
L′(x) = l(x). (3.18)

Using the coordinate change X = x
√
L(x) (we write x = XL̃(X) where L̃ is a

smooth function and L̃(x, 0, E,D, λ) ≡ 1√
2
), the expression (3.18) and multiplica-

tion by

√
L(x)

l(x) > 0, the vector field (3.17) changes into

ẋ = y

ẏ = −xy + ε̄
( 2x

l(xL̃(x))
f(xL̃(x), E,D, λ) +O(ε̄)

)
+O(ε̄y2)

(3.19)

where we denote X again by x and O(ε̄) and O(ε̄y2) are new smooth functions. It
is clear now that the vector field (3.19) is of type (3.12) with

g(x, ε̄, E,D, λ) =
2x

l(xL̃(x))
f(xL̃(x), E,D, λ) +O(ε̄).

This implies that g(x, 0, E,D, λ) = xf( x√
2
, E,D, λ). �

We use the normal form (3.12) when we study limit cycles of Xε̄E,ε̄D,λ near
(x, y) = (0, 0) (see Sections 3.2.2–3.2.5).

3.2.2. Proof of Theorem 2.2. Suppose that Q1, Q2 are smooth and β−1(D0, λ0) 6= 0
for some D0 ∈ Sm−1. Since β−1(D0, λ0) 6= 0, (3.13) implies that the order of
vanishing of g(x, 0, E,D0, λ0) at x = 0 is 0 for each E kept in a compact subset
of R. Thus, the contact point of (3.12) (or Xε̄E,ε̄D,λ) is of jump type and there
are no limit cycles of Xε̄E,ε̄D,λ. See e.g. [9, Section 3.4] for a detailed study of the
jump point. (Note that system (3.12) (or Xε̄E,ε̄D,λ) has no singularities in a fixed
neighborhood of (x, y) = (0, 0) for ε̄ ∼ 0, ε̄ > 0, (D,λ) ∼ (D0, λ0) and E kept in
the compact subset of R.)
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3.2.3. Proof of Theorem 2.6. Suppose that Q1 and Q2 are smooth, β−1(D0, λ0) =
β0(E0, D0, λ0) = 0 and β1(D0, λ0) 6= 0 for some (E0, D0) ∈ R×Sm−1. Using (3.13)
we have that the order of vanishing of g(x, 0, E0, D0, λ0) at x = 0 is 2. This implies
that the contact point of (3.12) (or Xε̄E,ε̄D,λ) is of slow-fast Bogdanov-Takens
type and we can apply the results of [8]. Following [8], system (3.12) has at most 1
(hyperbolic) limit cycle in an (ε̄, E,D, λ)-uniform neighborhood of (x, y) = (0, 0) for
(ε̄, E,D, λ) ∼ (0, E0, D0, λ0) and ε̄ ≥ 0. On the other hand, there are no detectable
canard limit cycles in Xε̄E,ε̄D,λ for (ε̄, E,D, λ) ∼ (0, E0, D0, λ0) and ε̄ ≥ 0 because
the passage from the attracting part to the repelling part of the critical curve is not
possible (for (E,D, λ) = (E0, D0, λ0), x ∼ 0 and x 6= 0, the slow dynamics (2.2) is
given by x′ = x(β1(D0, λ0) +O(x))). This completes the proof of Theorem 2.6.

3.2.4. Proof of Theorem 2.8. Suppose thatQ1 andQ2 are smooth, β−1 = β0 = β1 =
0, β2 6= 0 and β3 6= 0 for some (E0, D0) ∈ R × Sm−1. Since β2 6= 0, (3.13) implies
that the order of vanishing of g(x, 0, E0, D0, λ0) at x = 0 is 3, and the contact
point of (3.12) is of slow-fast codimension 3 saddle (β2 > 0) or elliptic (β2 < 0) type
studied in [9]. Following [9, 10, 15, 18], the number of limit cycles near (x, y) = (0, 0)
depends on the higher order terms in g(x, 0, E0, D0, λ0) and when the (symmetry
breaking) coefficient in front of the quartic term in g(x, 0, E0, D0, λ0) is nonzero (i.e.
β3 6= 0), system (3.12) (or Xε̄E,ε̄D,λ) has at most 2 limit cycles in an (ε̄, E,D, λ)-
uniform neighborhood of (x, y) = (0, 0) for (ε̄, E,D, λ) ∼ (0, E0, D0, λ0) and ε̄ ≥ 0.
Moreover, in the saddle case detectable canard limit cycles of Xε̄E,ε̄D,λ are not
possible because the slow dynamics of Xε̄E,ε̄D,λ points from the repelling part of the
critical curve to the attracting part of the critical curve (x′ = x2(β2(E0, D0, λ0) +
O(x)) > 0, for (E,D, λ) = (E0, D0, λ0), x ∼ 0 and x 6= 0). This completes the
proof of Theorem 2.8.

3.2.5. Proof of Theorem 2.9. Suppose that Q1 and Q2 are smooth, β−1 = β0 =
β1 = β2 = 0 and β3 6= 0 for some (E0, D0) ∈ R × Sm−1. Then the order of
g(x, 0, E0, D0, λ0) at x = 0 is 4 and the contact point of (3.12) is of slow-fast
codimension 4 saddle-node type studied in [17]. Following [17], system (3.12) (i.e.
Xε̄E,ε̄D,λ) has at most 2 limit cycles in an (ε̄, E,D, λ)-uniform neighborhood of
(x, y) = (0, 0) for (ε̄, E,D, λ) ∼ (0, E0, D0, λ0) and ε̄ ≥ 0. Large (canard) limit
cycles of Xε̄E,ε̄D,λ are not possible because the passage from the attracting part of
the critical curve to the repelling part of the critical curve is not possible. We have
x′ = x3(β3(D0, λ0) + O(x)) for (E,D, λ) = (E0, D0, λ0), x ∼ 0 and x 6= 0. This
completes the proof of Theorem 2.9.

4. Generalization of the slow-fast Darboux integrable system Xε

We consider a slow-fast Darboux integrable system

Yε :


ẋ = −P0(x, y)

∂P1

∂y
(x, y)− εP1(x, y)

∂P0

∂y
(x, y)

ẏ = P0(x, y)
∂P1

∂x
(x, y) + εP1(x, y)

∂P0

∂x
(x, y),

where ε ∼ 0 and P0 and P1 are smooth or analytic functions. System Yε has the
first integral (of Darboux type) H = P ε0P1. (When P0 = y− x2 and P1 = 1− y, Yε
becomes Xε defined in (1.1).) The fast subsystem of Yε is given by Y0. We assume
that the vector field Yε satisfies the following conditions (see [3] or [1]).
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• There is a compact region Ō bounded by {P0 = 0} and {P1 = 0} and the
fast subsystem Y0 has no singularities in the interior of Ō (i.e. ∇P1 6= (0, 0)
in the interior of Ō).
• The curve {P0 = 0} is transverse to Y0, i.e. 〈∇P0, (−∂P1

∂y ,
∂P1

∂x )〉 6= 0 (nor-

mally hyperbolic singularities), except for one point where we deal with
a nilpotent singularity, i.e. 〈∇P0, (−∂P1

∂y ,
∂P1

∂x )〉 = 0, ∇P0 6= (0, 0) and

∇P1 6= (0, 0). Moreover, we assume that the contact at the nilpotent
singularity is quadratic.

Like in Sections 1 and 2, we can try to find a suitable blow-up at (ε, δ) = (0, 0)
and to study the cyclicity of the nilpotent contact point in smooth or analytic
deformations of Yε, in different directions in the parameter space (ε, δ). In the
integrable direction, polynomial deformations of Yε have been studied in [3].
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