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Abstract. In this article, we study the solutions for the mean curvature equa-

tion in a weighted standard static spacetime, Pnf ×ρR1, having a warping func-

tion ρ whose weight function f does not depend on the parameter t ∈ R. We

establish a f -parabolicity criterion to study the rigidity of spacelike hypersur-
faces immersed in Pnf ×ρ R1 and, in particular, of entire Killing graphs con-

structed over the Riemannian base Pn. Also we give applications to weighted
standard static spacetimes of the type Gn ×ρ R1, where Gn is the Gaussian

space.

1. Introduction

Standard static spacetimes are part of the so called stationary spacetimes. Let us

recall that a stationary spacetime is a time-orientable Lorentzian manifold (M
n+1

, g)
where there exists an infinitesimal symmetry given by a timelike Killing vector field
Y (see [27]). The existence of Y enables us to define around each point a coordinate
system (t, x1, . . . , xn) such that Y coincides with the coordinate vector field ∂/∂t on
its domain of definition and such that the components of the metric tensor in these
coordinates are independent of t. When we normalize Y we obtain an observers
vector field Z = Y/

√
−g(Y, Y ). These observers measure a metric tensor that does

not change with time. Furthermore, if this timelike Killing vector field is also irro-

tational (that is, the distribution Y ⊥ of all smooth vector fields on M
n+1

that are
orthogonal to Y is involutive), then a local warped product structure appears and
the spacetime is called static (for more details see, for instance, [1]). In fact, when
this structure is global this spacetime is known as a standard static spacetime. More

precisely, a standard static spacetime (M
n+1

, g) endowed with a globally defined
timelike Killing vector field Y is isometric to the warped product

(Pn ×ρ R1 , π
∗
Pn(g̃) + (ρ ◦ πPn)2π∗R(−dt2) )

where πPn and πR denote the canonical projections from Pn ×R1 onto each factor,
g̃ is the Riemannian metric on the base Pn, R1 is the manifold R endowed with
the metric −dt2 and ρ =

√
−g(Y, Y ) is the warping function. In this context, it
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is known that any static spacetime is locally isometric to a standard static one
(see [23, Proposition 12.38]). Conversely, Sánchez [29] and more recently Aledo,
Romero and Rubio [1] obtained some sufficient conditions for a static spacetime
to be standard. Other properties on the geometry of standard static spacetimes
were studied by Sánchez [28, 29, 30]. The importance of standard static spacetimes
also comes from the fact that they include some classical spacetimes, such as the
(n+1)-dimensional Lorentz-Minkowski space Ln+1, Einstein static universe as well
as models that describe an universe where there is only a spherically symmetric
non-rotating mass, as a star or a black hole, like exterior Schwarzschild spacetime
and some regions of Reissner-Nordström spacetime (see, for example, [5, 17]).

On the other hand, the study of spacelike hypersurfaces immersed with constant
mean curvature in a spacetime has attracted the interest of a considerable group
of geometers as evidenced by the amount of works that it has generated in the
last decades. This is due not only to its mathematical interest, but also to its
relevance in General Relativity. For example, constant mean curvature spacelike
hypersurfaces are particularly suitable for studying the propagation of gravitational
radiation. See, for instance, [21, 31] for a summary of several reasons justifying
this interest. From the mathematical point of view, the study of the geometry
of constant mean curvature spacelike hypersurfaces is mostly due to the fact that
they exhibit nice Calabi-Bernstein type properties. More precisely, this study had
its beginnings when Bernstein [6] proved that the only entire minimal graphs in
the 3-dimensional Euclidean space R3 are planes. In the Lorentzian setting, there
is an analogue result to Bernstein’s theorem, which states that the only entire
maximal graphs in the 3-dimensional Lorentz-Minkowski space L3 are the spacelike
planes. This result was firstly proved by Calabi [7], and extended to the general
n-dimensional case by Cheng and Yau [9].

A natural extension to the Calabi-Bernstein problem is to determine a reason-
able set of sufficient conditions which guarantee the uniqueness (or nonexistence)
of complete spacelike hypersurfaces immersed into a certain ambient spacetime.
When such a spacetime is a standard static spacetime Pn×ρ R1, there is a remark-
able family of spacelike hypersurfaces, namely, the spacelike slices Pn × {t0}, with
t0 ∈ R, which are totally geodesics constituting a foliation for the ambient space-
time. Therefore, it is natural to approach Calabi-Bernstein problems in a standard
static spacetime. In this branch, the first author together with Lima Jr, de Lima
and Medeiros [12] extended a technique due to Romero et al. [25] to establish suffi-
cient conditions to guarantee the parabolicity of complete spacelike hypersurfaces in
Pn ×ρ R1 whose Riemannian base Pn has parabolic universal Riemannian covering
and, as applications, they obtain uniqueness results concerning these hypersurfaces.
Afterwards, Pelegŕın, Romero and Rubio [24] also studied complete spacelike hy-
persurfaces in spatially parabolic standard static spacetimes. In this context, they
used a similar parabolicity criterion to give new uniqueness and nonexistence results
for these spacelike hypersurfaces and to solve new Calabi-Bernstein-type problems.

At this point, we recall that a weighted manifold Mn+1
f is a semi-Riemannian

manifold (Mn+1, g) endowed with a weighted volume form dµ = e−fdM, where the
weight function f is a real-valued smooth function on Mn+1 and dM is the volume
element induced by the metric g (for details see, for instance, [4, 22]). Concerning
the weighted product space Gn × R1, where Gn stands for the so-called Gaussian
space which is nothing but that the Euclidian space Rn endowed with the Gaussian
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probability density e−f(x) = (2π)−(n+1)/2e−|x|
2/2, x ∈ Rn, An et al. [2] extended

the classical Bernstein’s theorem showing that the only weighted maximal graphs
Σ(z) of smooth functions z(x) = t over Gn, with supΣ(z) |Dz|G < 1, are the affine
hyperplanes t = constant.

Motivated by the works described above, our purpose in this paper is to obtain
uniqueness results related to the mean curvature equation for entire Killing graphs
constructed over the Riemannian base Pn of a weighted standard static spacetime
Pnf ×ρ R1 having warping function ρ and whose weight function f does not depend

on the parameter t ∈ R (see Section 5). For this, in Section 2 we recall some
basic facts about spacelike hypersurfaces immersed in a weighted standard static
spacetime. Afterwards, in Section 3 we establish a suitable f -parabolicity criterion
and, under appropriate constraints on the Bakry-Émery Ricci tensor and on the
f -mean curvature, in Section 4 we study the rigidity of spacelike hypersurfaces
immersed in Pnf ×ρ R1. Finally, we point out that, in Section 5, applications of our
main results to weighted standard static spacetimes of the type Gn ×ρ R1 are also
given.

2. Weighted standard static spacetimes

Along this paper, we will consider an (n+1)-dimensional Lorentz manifold M
n+1

with Lorentzian metric g = g(·, ·) and endowed with a Killing timelike vector field
Y . Here timelike referred to a vector field means that Yp ∈ TpM is a timelike (and

so nonzero) vector for each p ∈ Mn+1
. On the other hand, Killing mean that the

LY g = 0, where LY stands for the Lie derivative of g in the direction of Y .

We observe that the distribution D of all smooth vector fields of M
n+1

that are
orthogonal to Y , defined at each point by

M
n+1 3 p 7→ D(p) = {v ∈ TpM : g(v, Yp) = 0},

is of constant rank and integrable. Given a Riemannian integral leaf Pn of that

distribution D, let Ψ : I × Pn → M
n+1

be the flow generated by Y with initial
values in Pn, where I is a maximal interval of definition. Without loss of generality,

in what follows we will consider I = R. In this setting, our space M
n+1

can be
regarded as the standard static spacetime Pn ×ρ R1 (cf. [23, Proposition 12.38]),
that is, the Lorentzian product manifold Pn×R1 endowed with the warping metric

〈·, ·〉 = π∗Pn(〈·, ·〉Pn) + (ρ ◦ πPn)2π∗R(−dt2), (2.1)

where πPn and πR denote the canonical projections from Pn ×R1 onto each factor,
〈·, ·〉Pn is the induced Riemannian metric on the base Pn, R1 is the manifold R
endowed with the metric −dt2 and

ρ = |Y | =
√
−〈Y, Y 〉 > 0

is the warping function. We mean by C∞(Pn ×ρ R1) the ring of real functions of
class C∞ on Pn ×ρ R1 and by X(Pn ×ρ R1) the C∞(Pn ×ρ R1)-module of vector
fields of class C∞ on Pn ×ρ R1. The Levi-Civita connections of Pn ×ρ R1 and Pn

will be denoted by ∇ and ∇̃, respectively.
Now, in the configuration described above, let (Pn×ρR1)f be a weighted standard

static spacetime, namely, a standard static spacetime Pn ×ρ R1 endowed with a
weighted volume form dσ = e−fdv, where f ∈ C∞(Pn ×ρ R1) is a real-valued
function, called weight function (or density function), and dv is the volume element
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induced by the warping metric 〈·, ·〉 defined in (2.1). For
(
Pn ×ρ R1

)
f
, we recall

that the Bakry-Émery-Ricci tensor Ricf is defined by

Ricf = Ric + Hessf, (2.2)

where Ric and Hess stand for the Ricci tensor and the Hessian operator in Pn×ρR1,
respectively.

Throughout this work, we will deal with complete spacelike hypersurfaces

ψ : Σn ↪→ (Pn ×ρ R1)f ,

namely, isometric immersions from a (connected) n-dimensional Riemannian mani-
fold Σn into weighted static spacetime (Pn×ρR1)f . In this setting, the Levi-Civita
connection of Σn will be denoted by ∇. As (Pn ×ρ R1)f is time-oriented by the
timelike vector field Y and x : Σn ↪→ (Pn ×ρ R1)f is a spacelike hypersurface, then
Σn is orientable (cf. [23, Proposition 5.26]) and one can choose a globally defined
unit normal vector field N on Σn having the same time-orientation of (Pn ×ρ R1)f
(cf. [23, Proposition 5.29]), that is,

〈Y,N〉 < 0. (2.3)

Such N is said the future-pointing Gauss map of Σn. Let A denote the shape
operator of Σn with respect to N . So that at each p ∈ Σn A restricts to a self-
adjoint linear map Ap : TpΣ→ TpΣ given by

Apv = −∇vN.

According to Gromov [16], the weighted mean curvature (or simply the f -mean
curvature) Hf of Σn is given by

nHf = nH − 〈∇f,N〉, (2.4)

where H = − 1
n tr(A) denotes the standard mean curvature of Σn with respect to

its orientation N . Moreover, we say that ψ : Σn ↪→ (Pn ×ρ R)f is f -maximal when
its f -mean curvature vanishes identically.

The f -divergence on Σn is divf : C∞(Σn)→ C∞(Σn), defined by

divf (X) = divX − 〈∇f,X〉,

where div(·) denotes the standard divergence on Σn. We define the f -Laplacian
(also called the drift Laplacian) of Σn by ∆f : C∞(Σn)→ C∞(Σn), as

∆f (u) = divf (∇u) = ∆u− 〈∇f,∇u〉 (2.5)

where ∆ is the standard Laplacian on Σn.
In what follows, associated with a spacelike hypersurface ψ : Σn ↪→ (Pn ×ρ

R1)f , we will consider two particular smooth functions, namely, the (vertical) height
function

h = (πR)
∣∣
Σn : Σn → R (2.6)

and the angle function Θ : Σn → R defined as

Θ(p) = 〈N(p), Y (p)〉, (2.7)

where N is the future-pointing Gauss map of Σn and Y is the Killing vector field
on (Pn ×ρ R1)f . From (2.3), we note that Θ will be always a negative function on
Σn.
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We have that

∇h = − 1

ρ2
Y >, (2.8)

where (·)> denote the projections of a smooth vector field in X(Pn×ρR1) on X(Σn).
Moreover,

N∗ = N +
1

ρ2
ΘY, (2.9)

where (·)∗ denote the projections of a smooth vector field in X(Pn×ρR1) on X(Pn).
Hence, from (2.8) and (2.9) it is not difficult to verify that

|∇h|2 =
1

ρ2
|N∗|2Pn . (2.10)

3. An f-parabolicity criterion for spacelike hypersurfaces in
(Pn ×ρ R1)f

Romero, Rubio and Salamanca [26] investigated the parabolicity of complete
spacelike hypersurfaces in GRW spacetimes whose Riemannian fiber has a para-
bolic universal Riemannian covering. In this setting, they were able to guarantee
the parabolicity of complete spacelike hypersurfaces, under suitable boundedness
assumptions on the warping function and on the hyperbolic angle function of these
hypersurfaces. Our aim in this section is just, following the ideas of [11], to ob-
tain an extension of this parabolicity criterion to the context of standard static
spacetimes.

A smooth function u on a weighted manifold Σnf is said to be f -superharmonic if
∆fu ≤ 0. Taking this into account, the weighted manifold Σnf is called f -parabolic
if there is no nonconstant, nonnegative, f -superharmonic function on Σn.

On the other hand, given a weighted manifold Σnf we define, for any compact
subset K ⊂ Σn, the f -capacity of K as

capf (K) = inf
{∫

Σ

|∇u|2e−fdΣ : u ∈ Lip0(Σ)andu|K ≡ 1
}
,

where Lip0(Σ) is the set of all compactly supported Lipschitz functions on Σn. The
following statement relates the notion of f -capacity to the concept of f -parabolicity
(see [15, Proposition 2.1]).

Lemma 3.1. The weighted manifold Σnf is f -parabolic if and only if capf (K) = 0
for any compact set K ⊂ Σn.

Let us recall that given two Riemannian manifolds (Σ′, g′) and (Σ, g), a diffeo-
morphism ϕ from Σ′ onto Σ is called a quasi-isometry if there exists a constant
c ≥ 1 such that

c−1|v|g′ ≤ |dϕ(v)|g ≤ c|v|g′
for all v ∈ TpΣ

′, p ∈ Σ′ (see [19] for more details). In this case, given a smooth
function f : Σ → R, we can reason as in [14, Section 5] to verify that the (f ◦ ϕ)-
capacity of the compact subsets in Σ′ changes under a quasi-isometry at most by
a constant factor of the f -capacity of the compact subsets in Σ. The following
statement corresponds to [11, Lemma 1].

Lemma 3.2. Keeping the same notation above, we have:

(a) Given a quasi-isometry ϕ : Σ′ → Σ, Σ is f -parabolic if and only if Σ′ is
(f ◦ ϕ)-parabolic;



6 H. F. DE LIMA, A. F. A. RAMALHO, M. A. L. VELÁSQUEZ EJDE-2020/83

(b) Let Σ̃ be the universal Riemannian covering of Σ with canonical projection

πΣ : Σ̃→ Σ. If Σ̃ is (f ◦ πΣ)-parabolic, then Σ is f -parabolic.

Recall that every connected manifold Σ has an universal covering, that is, there

exist a simply connected manifold Σ̃ (called a universal covering of Σ) and a smooth

map π̃ : Σ̃→ Σ (called a covering map) such that each point p ∈ Σ has a connected
neighborhood U that is evenly covered by π̃, that is, π̃ maps each component of
π̃−1(U) diffeomorphically onto U (for more details, see [23, Appendix A]). Moreover,

if Σ is a Riemannian manifold, then it is possible to give Σ̃ a Riemannian structure

such that the covering map π̃ : Σ̃→ Σ is a local isometry. In this case, Σ̃ is said a
universal Riemannian covering of Σ (see [13, pg. 152]).

From now on, we will denote by P̃ the universal Riemannian covering of base

Pn with projection π̃ : P̃ → Pn and f̃ will denote the composition f ◦ π̃. In this
setting, a standard static spacetime (Pn ×ρ R1)f will be said spattialy f -parabolic

if the universal Riemannian covering P̃ of its base Pn is f̃ -parabolic.

Proposition 3.3. Let (Pn ×ρ R1)f be a weighted standard static spacetimes which

is spatially f̃ -parabolic. If ψ : Σn ↪→ Pn+1
is a spacelike hypersurface such that the

function η := Θ
ρ is bounded on it, then Σn is f -parabolic.

Proof. From Lemma 3.2 we have that

(i) f -parabolicity is invariant under a quasi-isometry;

(ii) if the universal Riemannian covering Σ̃ of Σn is (f ◦πΣ)-parabolic, then Σn

is also f -parabolic.

Denoting π = πP ◦ ψ : Σn → Pn, for any tangent vector v ∈ TΣ we have

〈v, v〉 = 〈π∗v, π∗v〉P − ρ2〈h∗v, h∗v〉R ≤ c〈π∗v, π∗v〉P,
where c = supΣ η

2 ≥ 1. In particular, by previous inequality we see that π∗,p :
TpΣ → Tπ(p)M is a isomorphism for every p ∈ Σn. Then, from inverse function
theorem we obtain that π is a local diffeomorphism and applying [13, Lemma 7.3.3]
(see also [20, Lemma 8.8.1]) we can conclude that π is a covering map and that Pn
is complete.

On the other hand, using the Cauchy-Schwartz inequality we see that

〈∇h, v〉2 ≤ 〈∇h,∇h〉〈v, v〉
and, consequently, since h∗v = dh(v) = 〈∇h, v〉, we have

〈v, v〉 = 〈π∗v, π∗v〉P − ρ2〈h∗v, h∗v〉R
= 〈π∗v, π∗v〉P − ρ2〈∇h, v〉2

≥ 〈π∗v, π∗v〉P − ρ2|∇h|2〈v, v〉;
that is,

〈v, v〉(1 + ρ2|∇h|2) ≥ 〈π∗v, π∗v〉P.
By definition of the function η and from (2.10) we obtain

〈v, v〉 ≥ 1

η2
〈π∗v, π∗v〉P

From our hypothesis we conclude that

c−1〈π∗v, π∗v〉P ≤ 〈v, v〉 ≤ c〈π∗v, π∗v〉P. (3.1)
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So, let Σ̃ be the universal Riemannian covering of Σn with projection πΣ : Σ̃→
Σn. Then, the map π0 = π ◦ πΣ : Σ̃ → Pn is a covering map. Now, if M̃ is the

universal Riemannian covering of Pn with projection π̃ : M̃ → Pn, then there exists

a diffeomorphism ϕ : Σ̃→ M̃ such that π̃◦ϕ = π0. Moreover, ϕ is a quasi-isometry.

Indeed, if v ∈ T Σ̃, we have from (3.1) that

〈ϕ∗v, ϕ∗v〉M̃ = 〈π̃∗(ϕ∗v), π̃∗(ϕ∗v)〉M
= 〈(π0)∗v, (π0)∗v〉M
= 〈π∗((πΣ)∗v), π∗((πΣ)∗v)〉M
≤ c〈(πΣ)∗v, (πΣ)∗v〉Σ
= c〈v, v〉Σ̃.

Analogously, we obtain 〈ϕ∗v, ϕ∗v〉M̃ ≥ c−1〈v, v〉Σ̃. Therefore, since the universal
Riemannian covering of Pn is parabolic, it follows that the universal Riemannian
covering of Σn is parabolic and, hence, Σn must be also parabolic. �

4. Rigidity results for spacelike hypersurfaces in Pnf ×ρ R1

It follows from [8] that in a weighted timelike geodesically complete spacetime

M
n+1

f that contains a timelike line, with Ricf (X,X) ≥ 0 for all timelike vector
field X and whose weight function f is bounded, the weight function f must be

constant along timelike line ofM
n+1

f . Consequently, in any weighted standard static

spacetime (Pn ×ρ R1)f having nonnegative Bakry-Émery-Ricci tensor for timelike
vector fields and with bounded weight function f , we have that f does not depend
on the parameter of the flow associated with the Killing vector field ∂

∂t ≡ Y .
Motivated by this fact, we will consider standard static spacetimes Pn ×ρ R1

endowed with a weight function f not depending on the parameter t ∈ R, that
is, 〈∇f, Y 〉 = 0. For sake of simplicity, we will denote such an ambient space by
Pnf ×ρ R1.

In this section, we will apply the Proposition 3.3 in order to obtain rigidity results
for spacelike hypersurfaces in Pn ×ρ R1. For this, we will need of the following key
proposition, which provides an explicit formula for the drift Laplacian of the angle
function Θ defined in (2.7).

Proposition 4.1. Let ψ : Σn ↪→ Pnf ×ρ R1 be an immersed spacelike hypersurface

and let Θ ∈ C∞(Σn) be the angle function defined in (2.7). Then

∆fΘ = nY >(Hf ) +
(

R̃icf (N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗) + Θ2 ∆̃f (ρ)

ρ3
+ |A|2

)
Θ.

Proof. Firstly, since Y is a Killing vector field, for any X ∈ X(Σn), we have

〈∇Θ, X〉 = X(Θ) = X(〈N,Y 〉) = 〈∇XN,Y 〉+ 〈N,∇XY 〉 = 〈−A(Y >)−∇NY,X〉,
which assures that

∇Θ = −A(Y >)− (∇NY )>. (4.1)

On the other hand, from (2.4) we note that

nY >(H) = Y >(nHf + 〈∇f,N〉)

= nY >(Hf ) + Y >(〈∇f,N〉)

= nY >(Hf ) + 〈Y,Hessf(N)〉+ ΘHessf(N,N)− 〈A(Y >),∇f〉,
(4.2)
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where we used the decomposition Y = Y > −ΘN .
Moreover, since f is supposed to be invariant along the flow determinate by Y ,

from (4.1) we obtain that

〈∇Θ,∇f〉 = −〈A(Y >) + (∇NY )>,∇f〉

= −〈A(Y >),∇f〉 − 〈∇NY,∇f〉

= −〈A(Y >),∇f〉+ 〈Y,∇N∇f〉

= −〈A(Y >),∇f〉+ 〈Y,Hessf(N)〉.

(4.3)

Substituting (4.3) in (4.2) we obtain

nY >(H) = nY >(Hf ) + ΘHessf(N,N) + 〈∇Θ,∇f〉. (4.4)

From [3, Proposition 2.12] we have

∆Θ = nY >(H) + Θ(Ric(N,N) + |A|2), (4.5)

Thus, from (2.2), (2.5), (4.5) and (4.4) we obtain

∆fΘ = nY >(Hf ) + (Ricf (N,N) + |A|2)Θ. (4.6)

Now, if we consider the decomposition N = N∗ + N⊥ of N , where (·)⊥ denote
the projection of a vector field in X(Pn ×ρ R1) on X(R1), we have

Hessf(N,N) = 〈∇N∇f,N〉

= 〈∇N ∇̃f,N∗ +N⊥〉

= H̃essf(N∗, N∗) +
1

ρ
〈∇̃f, ∇̃ρ〉|N⊥|2

= H̃essf(N∗, N∗)− 1

ρ3
〈∇̃f, ∇̃ρ〉Θ2.

(4.7)

From [23, Corollary 7.43] we obtain

Ric(N,N) = R̃ic(N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗) + Θ2 ∆̃(ρ)

ρ3
. (4.8)

Hence, from (2.2), (4.7) and (4.8), we have

Ricf (N,N) = R̃icf (N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗) + Θ2 ∆̃f (ρ)

ρ3
(4.9)

Therefore, from (4.9) and (4.6) we obtain the desired result. �

Now, we are in position to present our first rigidity theorem.

Theorem 4.2. Let Pnf ×ρ R1 be a weighted standard static spacetimes which is

spatially f̃ -parabolic. Suppose that R̃icf ≥ 0, the warping function ρ is convex

and 〈∇̃f, ∇̃ρ〉 ≤ 0. Let ψ : Σn ↪→ Pn+1
be an immersed spacelike hypersurface

with constant f -mean curvature Hf such that its angle function Θ is bounded and
infΣ ρ > 0. Then, Σn is totally geodesic and ρ is a positive constant. In addition,

if R̃icf is positive at some point p0 ∈ Σn, then Σn is contained in a slice Pn×{t0},
for some t0 ∈ R.
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Proof. Since Hf is constant, from Proposition 4.1, we have the formula

∆fΘ =
(

R̃icf (N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗) + Θ2 ∆̃f (ρ)

ρ3
+ |A|2

)
Θ. (4.10)

Let us observe that at points where N∗ is different from zero we have

1

ρ
H̃essρ(N∗, N∗) =

|N∗|2

ρ
H̃essρ(

N∗

|N∗|
,
N∗

|N∗|
) =

Θ2 − ρ2

ρ3
H̃essρ(

N∗

|N∗|
,
N∗

|N∗|
) .

Taking a local orthonormal frame {E1 = N∗

|N∗| , E2, . . . , En} tangent to Pn, we also

have

Θ2

ρ3
∆̃(ρ) =

Θ2

ρ3
H̃essρ(

N∗

|N∗|
,
N∗

|N∗|
) +

Θ2

ρ3

n∑
i=2

H̃essρ(Ei, Ei).

Then

−1

ρ
H̃essρ(N∗, N∗) +

Θ2

ρ3
∆̃(ρ) =

1

ρ
H̃essρ(

N∗

|N∗|
,
N∗

|N∗|
) +

Θ2

ρ3

n∑
i=2

H̃essρ(Ei, Ei)

and, from (2.5), we obtain

− 1

ρ
H̃essρ(N∗, N∗) +

Θ2

ρ3
∆̃f (ρ)

=
1

ρ
H̃essρ(

N∗

|N∗|
,
N∗

|N∗|
) +

Θ2

ρ3

n∑
i=2

H̃essρ(Ei, Ei)−
Θ2

ρ3
〈∇̃f, ∇̃ρ〉 ≥ 0,

(4.11)

where in the last step we use the convexity of ρ and the hypothesis 〈∇̃f, ∇̃ρ〉 ≤ 0.

Using our constraint on R̃icf and equation (4.11), it follows that Θ is a bounded
f -superharmonic function on Σn. From Proposition 3.3, Σn is f -parabolic and,
thus, Θ is constant on it. So, returning to (4.10), we obtain |A|2 = 0, that is, Σn

is totally geodesic. Now we claim that ρ is a positive constant. Indeed, for any
X ∈ TΣ, we can write

X = X∗ − 〈X,Y 〉
ρ2

Y,

where X∗ denotes the orthogonal projection of X onto TP. Since Σn is totally
geodesic, from [23, Proposition 7.35], we have

X(Θ) = 〈N,∇XY 〉

= 〈N,∇X∗Y 〉 −
〈X,Y 〉
ρ2

〈N,∇Y Y 〉

=
1

ρ
〈X,∇ρ〉〈N,Y 〉 − 1

ρ
〈X,Y 〉〈N,∇ρ〉.

Thus, from the above equation, we conclude that

∇Θ =
1

ρ
(Θ∇ρ− 〈N,∇ρ〉Y ).

Since Θ is constant, taking into account that ∇ρ and Y are linearly independent,
it follows that ρ is a positive constant.
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Furthermore, we have, again from (4.10), that R̃icf (N∗, N∗)(p0) = 0. So, if R̃icf
is positive at some point p0 ∈ Σn, then N∗(p0) = 0. Consequently, using (2.10) it
is not difficult to see that

|∇h|2 =
1

ρ2
|N∗|2P =

1

ρ2

(Θ2

ρ2
− 1
)

= 0,

which means that Σn is contained in a slice Pn × {t0}, for some t0 ∈ R. �

In the next result, we treat the case where R̃icf is not necessarily nonnegative.

Theorem 4.3. Let Pnf ×ρ R1 be a weighted standard static spacetimes which is

spatially f̃ -parabolic. Suppose that R̃icf ≥ −κ, for some constant κ > 0, and that

ρ is a convex warping function such that 〈∇̃f, ∇̃ρ〉 ≤ 0. Let ψ : Σn ↪→ Pnf ×ρ R1 be
an immersed spacelike hypersurface with constant f -mean curvature, bounded angle
function Θ and such that infΣ ρ > 0. If the height function h satisfies

|∇h|2 ≤ α

κρ2
|A|2, (4.12)

for some constant α ∈ (0, 1), then Σn is contained in a slice Pn × {t0}, for some
t0 ∈ R.

Proof. Noting that Hf is constant, Θ < 0 on Σn and taking into account our

constraint on R̃icf , from (2.10) and (4.11) jointly with Proposition 4.1, we obtain

∆fΘ ≤ (−κρ2|∇h|2 + |A|2)Θ. (4.13)

Using the hypothesis (4.12), from (4.13) we obtain

∆f (Θ) ≤ (1− α)|A|2Θ. (4.14)

Hence, from (4.14) follows that Θ is a bounded f -superharmonic function on Σn.
Since Proposition 3.3 guarantees that Σn is f -parabolic, Θ must be constant on Σn.
So, returning to (4.14), we see that Σn is totally geodesic. Therefore, hypothesis
(4.12) assures that h is constant on Σn, that is, there exists t0 ∈ R such that
Σn ⊂ Pn × {t0}. �

Next we study specific weight functions that will be defined in terms of the warp-
ing function ρ. The following proposition give us an expression for the Laplacian
of the height function h in terms of the weighted mean curvature Hlog ρ2 .

Proposition 4.4. Let ψ : Σn ↪→ Pn ×ρ R1 be an immersed spacelike hypersurface
and let h ∈ C∞(Σn) be the height function. Then

∆h = −nρ−2ΘHlog ρ2 , (4.15)

where Θ is the angle function and Hlog ρ2 is the log ρ2-mean curvature of Σn.

Proof. Let {E1, . . . , En} be an orthonormal frame defined in a neighborhood of
some point of Σn. From (2.8) we note that

ρ−2 div(∇h) = ρ−2 div(−ρ−2 Y >)

= −ρ−2〈∇ρ−2, Y >〉 − ρ−4 div(Y >)

= 〈∇ρ−2,∇h〉 − ρ−4 div(Y + ΘN)

= 〈∇ρ−2,∇h〉 − ρ−4
n∑
i=1

langle∇Ei
(Y + ΘN), Ei〉
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= 〈∇ρ−2,∇h〉 − ρ−4
n∑
i=1

〈∇Ei
(Y + ΘN), Ei〉

= 〈∇ρ−2,∇h〉 − ρ−4
n∑
i=1

〈∇Ei
Y,Ei〉︸ ︷︷ ︸
0

−ρ−4
n∑
i=1

〈∇Ei
(ΘN), Ei〉

= 〈∇ρ−2,∇h〉 − ρ−4
n∑
i=1

〈Ei(Θ) 〈N,Ei〉︸ ︷︷ ︸
0

+Θ∇Ei
N,Ei〉

= 〈∇ρ−2,∇h〉+ ρ−4Θ tr(A)

= 〈∇ρ−2,∇h〉 − nρ−4HΘ.

Therefore,

∆h = div(∇h) = ρ2〈∇ρ−2,∇h〉 − nρ−2HΘ

= 〈∇ log ρ−2,−ρ2 Y >〉 − nρ−2HΘ

= −ρ−2〈∇ log ρ−2, Y >〉 − nρ−2HΘ

= −ρ−2〈∇ log ρ−2, Y + ΘN〉 − nρ−2HΘ

= −ρ−2 〈∇ log ρ−2, Y 〉︸ ︷︷ ︸
0

−ρ−2〈∇ log ρ−2, N〉Θ− nρ−2HΘ

= −ρ−2Θ{nH + 〈∇(log ρ−2), N〉}
= −nρ−2ΘHlog ρ2 ,

where in the last equality we used (2.4). �

In the next theorem, the weighted mean curvature Hlog ρ2 of the spacelike hy-
persurface is not supposed to be constant. Indeed, we just assume a certain control
on the sign of Hlog ρ2 . We recall that a slab of a standart static spacetime Pn×ρR1

is a region of the type

Pn ×ρ [t1, t2] = {(t, q) ∈ Pn ×ρ R1 : t1 ≤ t ≤ t2 }.

Theorem 4.5. Let Pnlog ρ2 ×ρ R1 be a weighted standard static spacetimes which

is spatially log ρ̃ 2-parabolic. Let ψ : Σn ↪→ Pnlog ρ2 ×ρ R1 be an immersed spacelike

hypersurface such that η is bounded. Suppose that the log ρ2-mean curvature Hlog ρ2

and the function 〈∇ρ,∇h〉 have opposite signs. If Σn lies in a slab, then Σn is
contained in a slice Pn × {t0}, for some t0 ∈ R.

Proof. By (2.5) and from Proposition 4.4, we have

∆log ρ2h = −nρ−2ΘHlog ρ2 − 〈∇ log ρ2,∇h〉

= −nρ−2ΘHlog ρ2 −
2

ρ
〈∇ρ,∇h〉.

Taking into account that Hlog ρ2 and 〈∇ρ,∇h〉 have opposite signs, we conclude
that ∆log ρ2h does not change sing. Therefore, since Proposition 3.3 guarantees the
log ρ2-parabolicity of Σn, h must be constant and, consequently, Σn is contained in
a slice Pn × {t0}, for some t0 ∈ R. �
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We recall that a spacelike hypersurface Σn is said f -maximal if its f -mean cur-
vature vanishes identically on it. In this setting, from Theorem 4.5 we also have
the following result.

Corollary 4.6. Let Pnlog ρ2 ×ρ R1 be a weighted standard static spacetimes which

is spatially log ρ̃ 2-parabolic. Let ψ : Σn ↪→ Pn+1
be a log ρ2-maximal spacelike

hypersurface, contained in a slab, such that η is bounded. If the function 〈∇ρ,∇h〉
does not change sign, then Σn is contained in a slice Pn × {t0}, for some t0 ∈ R.

Proceeding as above, we obtain the following rigidity result.

Theorem 4.7. Let Pnlog ρ−2 ×ρ R1 be a weighted standard static spacetimes which

is spatially log ρ̃−2-parabolic. Let ψ : Σn ↪→ Pnlog ρ−2 ×ρ R1 be a maximal spacelike

hypersurface such that η is bounded and infΣ ρ > 0. If Riclog ρ−2 ≥ κ, for some
constant κ > 0, then Σn is contained in a slice Pn × {t0}, for some t0 ∈ R.

Proof. Firstly, observe that, reasoning as in the proof of Proposition 4.4, we obtain

∆h = div(∇h) = ρ2〈∇ρ−2,∇h〉 − nρ−2HΘ

= 〈∇ log ρ−2,∇h〉 − nρ−2HΘ.

Therefore, using (2.5), we obtain

∆log ρ−2h = −nρ−2HΘ. (4.16)

Now, from Bochner’s formula (see [32, page 378]) we have

1

2
∆log ρ−2 |∇h|2 = |Hessh|2 + Riclog ρ−2(∇h,∇h) + 〈∇∆log ρ−2h,∇h〉. (4.17)

Consequently, taking into account our restriction on Riclog ρ−2 and the assumption
that Σn is maximal, from (4.16) and (4.17), we obtain

1

2
∆log ρ−2 |∇h|2 ≥ Riclog ρ−2(∇h,∇h) ≥ κ|∇h|2 ≥ 0. (4.18)

On the other hand, Proposition 3.3 guarantees that Σn is log ρ−2-parabolic.
Since, from (2.10), infΣ ρ > 0 implies in the boundedness of |∇h| and, consequently,
in the boundedness of |∇h|2, we conclude from log ρ−2- parabolicity of Σnthat |∇h|2
is constant, and then ∆log ρ2 |∇h|2 = 0. Returning to (4.18), we obtain that |∇h| = 0
and Σn is contained in a slice. �

5. Entire Killing graphs and the mean curvature equation in Pnf ×ρ R1

According to [10], we define the entire Killing graph Σ(z) associated with a
smooth function z ∈ C∞(P) as been the hypersurface given by

Σ(z) = {Ψ(x, z(x)) : x ∈ Pn} ⊂ Pn ×ρ R1.

The metric induced on Pn from the Lorentzian metric (2.1) via Σ(z) is given by

〈, 〉z = 〈, 〉P − ρ2dz2.

Moreover, Σ(z) is spacelike if, and only if, ρ2|Dz|2P < 1, where Dz denotes the
gradient of a function z with respect to the metric 〈, 〉P of Pn. Indeed, if Σ(z) is
spacelike, then

0 < 〈Dz,Dz〉z = 〈Dz,Dz〉P − ρ2〈Dz,Dz〉2P
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and, hence, we conclude that ρ2|Dz|2P < 1. Conversely, if ρ2|Dz|2P < 1 and X is a
vector field tangent to Σ(z), we obtain, from Cauchy-Schwarz inequality,

〈X,X〉z = 〈X∗, X∗〉P − ρ2〈Dz,X∗〉2P ≥ 〈X∗, X∗〉P(1− ρ2|Dz|2P),

where X∗ is the orthogonal projection of X onto TPn. Thus, 〈X,X〉z ≥ 0 and
〈X,X〉z = 0 if, and only if, X = 0.

The function g : Pn × R1 → R given by g(x, t) = z(x) − t is such that Σ(z) =
Ψ(g−1(0)). Thus, for each vector field X tangent to Pn ×ρ R1, we have

X(g) = X∗(g)− 1

ρ2
〈X, ∂t〉∂t(g) = 〈 1

ρ2
∂t +Dz,X〉.

Hence,

∇g =
1

ρ2
∂t +Dz

is a normal vector field on g−1(0) and, consequently,

N0 = Ψ∗(∇g) =
1

ρ2
Y + Ψ∗(Dz)

is a normal timelike vector field on Σ(z). Since

|N0| =
(1− ρ2|Dz|2P)1/2

ρ
,

it follows that

N =
N0

|N0|
=

1

ρ(1− ρ2|Dz|2P)1/2
(Y + ρ2Ψ∗(Dz)) (5.1)

defines the future-pointing Gauss map of Σ(z) such that its angle function is

Θ = 〈N,Y 〉 = − ρ

(1− ρ2|Dz|2P)1/2
< 0. (5.2)

Moreover, for each vector field X tangent to Pn, the shape operator A of Σ(z) with
respect to N is given by

AX = − ρ

(1− ρ2|Dz|2P)1/2
DXDz −

ρ3〈DXDz,Dz〉
(1− ρ2|Dz|2P)3/2

Dz − ρ2〈Dρ,X〉|Dz|2P
(1− ρ2|Dz|2P)3/2

Dz

− 〈Dρ,X〉
(1− ρ2|Dz|2P)1/2

Dz − 〈Dz,X〉
(1− ρ2|Dz|2P)1/2

Dρ,

(5.3)
where D denotes the Levi-Civita connections in Pn.

So, it follows from (5.3) that the mean curvature Hz of a spacelike entire Killing
graph Σ(z) is given by

nH(z) = Div(
ρDz

(1 + ρ2|Dz|2P)1/2
) +

〈Dz,Dρ〉
(1 + ρ2|Dz|2P)1/2

,

where Div stands for the divergence operator on Pn with respect to the metric 〈, 〉P.
A direct computation shows that the f -mean curvature is given by

n(Hz)f = Divf (
ρDz

(1− ρ2|Dz|2P)1/2
) +

〈Dz,Dρ〉
(1− ρ2|Dz|2P)1/2

.
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From the previous discussion, an entire Killing graph Σ(z) is spacelike with
constant f -mean curvature C if, and only if, the function z ∈ C∞(P) satisfies the
following elliptic partial differential equation of f -divergence form

Divf

( ρDz

(1− ρ2|Dz|2P)1/2

)
+

〈Dz,Dρ〉
(1− ρ2|Dz|2P)1/2

= C, in Pn

ρ2|Dz|2P < 1.

(5.4)

In what follows, we will use the theorems obtained in the previous section,
on entire Killing graph context, to obtain uniqueness results for equations of the
type (5.4). We start by applying the Theorem 4.2 to get the following result.

Theorem 5.1. Let Pnf ×ρ R1 be a weighted standard static spacetimes which is

spatially f̃ -parabolic with convex warping function ρ, 〈∇̃f, ∇̃ρ〉 ≤ 0 and R̃icf ≥ 0.
If the entire Killing graph Σ(z) associated with z ∈ C∞(P) is such that ρ|Σ(z) is

bounded and R̃icf is positive at some point p0 ∈ Σ(z), then the only solutions of
the problem

Divf

( ρDz

(1− ρ2|Dz|2P)1/2

)
+

〈Dz,Dρ〉
(1− ρ2|Dz|2P)1/2

= C, z ∈ C∞(P)

sup
Σ(z)

(ρ2|Dz|2P) < 1,

are constants.

Proof. Since we are supposing that sup ρ2|Dz|2P < 1, from (5.2), the boundness
of ρ|Σ(z) is equivalent to the boundness of Θ. Furthermore, we observe that the

condition sup ρ2|Dz|2P < 1 also implies the boundness of η. Indeed, using (5.2)
again, we have that

η =
1

(1− ρ2|Dz|2P)1/2
.

Hence, we can disregard the hypothesis infΣ(z) ρ > 0 in Theorem 4.2 to obtain the
present result. �

An important example of weighted Riemannian manifold is the so-called Gauss-
ian space Gn, which corresponds to the Euclidean space Rn endowed with the
Gaussian probability measure

e−fdx2 = (2π)−
n
2 e−

|x|2
2 dx2.

Concerned with the weighted product space Gn×R1, An et al extended the classi-
cal Bernstein’s theorem [6] showing that the only weighted minimal graphs Σn(z)
of functions z(x2, · · · , xn+1) = x1 over Gn, with supΣ(z) |Dz|G < 1, are the hyper-

planes x1 = constant (see [2, Theorem 4]).
Taking into account this previous discussion, from Theorem 5.1 we obtain an

extension of Theorem 4 of [2].

Corollary 5.2. Consider the weighted standard static spacetime Gn ×ρ R1, where

Gn is the Gaussian space and the warping function ρ is convex with 〈∇̃f, ∇̃ρ〉 ≤ 0.
If the entire Killing graph Σ(z) associated with z ∈ C∞(G) is such that ρ|Σ(z) is
bounded, the only solutions of the problem

Divf (
ρDz

(1− ρ2|Dz|2G)1/2
) +

〈Dz,Dρ〉
(1− ρ2|Dz|2G)1/2

= C, z ∈ C∞(G)
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sup
Σ(z)

(ρ2|Dz|2G) < 1,

are constants.

Proof. We note that, since Volf (Gn) = 1, [18, Remark 3] guarantees that Gn is f -

parabolic. Moreover, with a straightforward computation, we obtain that R̃icf = 1.
Therefore, since Gn is also simply connected, the result follows from Theorem 5.1.

�

The next result is an application of Theorem 4.3.

Theorem 5.3. Let Pnf ×ρ R1 be a weighted standard static spacetime which is

spatially f̃ -parabolic with convex warping function ρ, 〈∇̃f, ∇̃ρ〉 ≤ 0 and R̃icf ≥ −κ,
for some constant κ > 0. If the entire Killing graph Σ(z) associated with z is such
that ρ|Σ(z) is bounded and α ∈ (0, 1) is a constant, the only solutions of the problem

Divf

( ρDz

(1− ρ2|Dz|2P)1/2

)
+

〈Dz,Dρ〉
(1− ρ2|Dz|2P)1/2

= C, z ∈ C∞(P)

sup
Σ(z)

(ρ2|Dz|2P) <
α|A|2

α|A|2 + κ
,

(5.5)

are constants.

Proof. From equation (5.11) we have

|N∗|2P =
ρ2|Dz|2P

1− ρ2|Dz|2P
. (5.6)

Then (2.10) and (5.6) give us the relation

|∇h|2 =
|Dz|2P

1− ρ2|Dz|2P
. (5.7)

Now, using (5.7) we conclude that the hypothesis the hypothesis (4.12) is equivalent
to

ρ2|Dz|2P ≤
α|A|2

α|A|2 + κ
.

Furthermore, since κ > 0, we have that that α|A|2
α|A|2+κ ≤ 1. Hence, the result follows

from Theorem 4.3. �

Reasoning as in the Corollary 5.2, we have the following result.

Corollary 5.4. Consider the weighted standard static spacetime Gn ×ρ R1, where

Gn is the Gaussian space and the warping function ρ is convex with 〈∇̃f, ∇̃ρ〉 ≤ 0.
If the entire Killing graph Σ(z) associated with z ∈ C∞(G) is such that ρ|Σ(z) is
bounded, then, for any constants k > 0 and α ∈ (0, 1), the only solutions of the
problem

Divf (
ρDz

(1− ρ2|Dz|2G)1/2
) +

〈Dz,Dρ〉
(1− ρ2|Dz|2G)1/2

= C, z ∈ C∞(G)

sup
Σ(z)

(ρ2|Dz|2G) <
α|A|2

α|A|2 + κ
,

(5.8)

are constants.
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From Theorem 4.5, we obtain the following result.

Theorem 5.5. Let Pnlog ρ2 ×ρ R1 be a weighted standard static spacetimes which is

spatially log ρ̃ 2-parabolic. If the entire Killing graph associated with z is such that
〈∇ρ,Ψ∗(Dz)〉 does not change sign, then the only bounded solutions of the problem

Divlog ρ2(
ρDz

(1− ρ2|Dz|2P)1/2
) +

〈Dz,Dρ〉
(1− ρ2|Dz|2P)1/2

= C, z ∈ C∞(P)

sup
Σ(z)

(ρ2|Dz|2P) < 1.
(5.9)

are constants.

Proof. Firstly, observe that

〈∇ρ,∇N〉 = ∇h(ρ) = − 1

ρ2
Y >(ρ)

= − 1

ρ2
Y >
(
(−〈Y, Y 〉)1/2

)
= − 1

ρ2

(1

2
(−〈Y, Y 〉)1/2Y >〈Y, Y 〉

)
= − 1

2ρ3
Y >〈Y, Y 〉

)
= − 1

ρ3
〈∇Y >Y, Y 〉

= − 1

ρ3
〈∇Y+ΘNY, Y 〉

= − 1

ρ3

(
〈∇Y Y, Y 〉︸ ︷︷ ︸

0

+〈∇ΘNY, Y 〉
)

= − 1

ρ3
〈∇ΘNY, Y 〉

= −Θ

ρ3
〈∇NY, Y 〉

= − Θ

2ρ3
N〈Y, Y 〉 = − Θ

2ρ3
N(ρ2)

= − Θ

2ρ3
− 2ρN∗(ρ)

=
Θ

ρ2
〈∇ρ,N∗〉.

(5.10)

On the other hand, from (5.1), we have

N∗ = N −N⊥ =
ρΨ∗(Dz)

(1− ρ2|Dz|2P)1/2
. (5.11)

Hence, from (5.10) and (5.11) we obtain

〈∇ρ,∇N〉 =
Θ

ρ
〈∇ρ, ρΨ∗(Dz)

(1− ρ2|Dz|2P)1/2
〉 =

Θ

ρ(1− ρ2|Dz|2P)1/2
〈∇ρ,Ψ∗(Dz)〉.

Therefore, 〈∇ρ,∇N〉 do not change of sign if and only if 〈∇ρ,Ψ∗(Dz)〉 do not
change of sign and the result follows from Corollary 4.6. �
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Taking

ρ =
(
e
|x|2
2 +log (2π)

n
2
)1/2

(5.12)

in Theorem 5.5, we obtain the following consequence.

Corollary 5.6. Consider the weighted standard static spacetime Gn ×ρ R1, where
Gn is the Gaussian space and ρ is defined in (5.12). If the entire Killing graph
associate to z is such that 〈∇ρ,Ψ∗(Dz)〉 does not change sign, then the only bounded
solutions of the problem

Divf

( ρDz

(1− ρ2|Dz|2G)1/2

)
+

〈Dz,Dρ〉
(1− ρ2|Dz|2G)1/2

= C, z ∈ C∞(G)

sup
Σ(z)

(ρ2|Dz|2G) < 1,

are constants.

Applying the Theorem 4.7 we obtain the following result.

Theorem 5.7. Let Pnlog ρ−2 ×ρ R1 be a weighted standard static spacetimes which

is spatially log ρ̃−2-parabolic. If the entire Killing graph associate to z is such that
|Dz|2P is bounded and Riclog ρ−2 ≥ κ, for some constant κ > 0, then the only bounded
solutions of the problem

Div(
ρDz

(1− ρ2|Dz|2P)1/2
) +

〈Dz,Dρ〉
(1− ρ2|Dz|2P)1/2

= 0, z ∈ C∞(P)

sup
Σ(z)

(ρ2|Dz|2P) < 1,
(5.13)

are constants.

Proof. We observe that if z ∈ C∞(P) is solution of problem (5.13), then the entire
Killing graph Σ(z) is spacelike and maximal. Moreover using (5.7), we note that the
boundness of |∇h|2 follows from the boundness of |Dz|2P. Then, the result follows
from Theorem 4.7. �

Finally, considering

ρ = (e
|x|2
2 +log (2π)

n
2 )−1/2 (5.14)

in Theorem 5.7, we have the following result.

Corollary 5.8. Consider the weighted standard static spacetime Gn ×ρ R1, where
Gn is the Gaussian space and ρ is defined in (5.14). If the entire Killing graph
associate to z is such that |Dz|2P is bounded and Riclog ρ−2 ≥ κ, for some constant
κ > 0, then the only bounded solutions of the problem

Div(
ρDz

(1− ρ2|Dz|2G)1/2
) +

〈Dz,Dρ〉
(1− ρ2|Dz|2G)1/2

= 0, z ∈ C∞(G)

sup
Σ(z)

(ρ2|Dz|2G) < 1,

are constants.
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