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GROUND STATE SOLUTIONS FOR QUASILINEAR
SCHRODINGER EQUATIONS WITH PERIODIC POTENTIAL

JING ZHANG, CHAO JI

Commumnicated by Claudianor O. Alves

ABSTRACT. This article concerns the quasilinear Schrodinger equation
—Au — ulA(u?) + V(z)u = K(x)\u\Q‘Q*_Qu +g(z,u), = eRY,
we H'RY), wu>0,
where V and K are positive, continuous and periodic functions, g(z,w) is peri-
odic in z and has subcritical growth. We use the generalized Nehari manifold

approach developed by Szulkin and Weth to study the ground state solution,
i.e. the nontrivial solution with least possible energy.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS
In this article, we study the Schrédinger equation
—Au —uA(W?) + V(z)u = K(x)|u*? 2u+g(z,u), =eRV,

1.1
ue HY(RY), u>0, (1)

where V, K : RY — R and g : RN x R — R* are continuous functions. Note that
2-2% = ]ég corresponds to the critical exponent for problem .

Recent mathematical studies have focused on existence of solutions of with
K(z) = 0 and g(z,s) = |s|P7ls with 4 < p+1 < 2-2* N > 3 for example in
[7, 8, 12]. The quasilinear Schrédinger equations are derived as models of
several physical phenomena, see e.g. [7, [§] for an explanation. The existence of a
positive ground state solution has been proved by Poppenberg, Schmitt and Wang
[12] and Liu and Wang [7] by using the constrained minimization argument. Liu and
Wang [8] established the existence of a positive solution of an equation of type
for every positive p (in front of the nonlinear term) in an Orlicz space framework
via the Mountain Pass Theorem. Colin and Jeanjean [2] gave a simple and short
proof of the result of [§], which did not use Orlicz spaces, but rather developed in
the usual H1(RY). In [6] 18], with €2 in front of Au and uA(u?), has been
studied, with g of subcritical and critical growth. It was shown that there exists a
positive solution u. which concentrated at a local minimum of V' as € — 0. There
was also a result about existence of infinitely many solutions for in [5] and
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existence of multi-bump solutions was shown for a quasilinear Schrédinger equation
which is more general than in [9].

For problems with critical nonlinearities, see [10, 11} 15, 14, [I8] 20] and the
references therein. Moameni [I0] [T1] considered for N =2 and N > 3 under
different condition about g and V and obtained a nonnegative solution. Shi and
Chen [I5] obtained a positive solution by using the Mountain Pass Theorem in
combination with the concentration-compactness principle. Silva and Vieira [I3]
14] considered the quasilinear asymptotically periodic equation with subcritical or
critical growth, used a version of the Mountain Pass Theorem without compactness
condition to get a Cerami sequence associated with the minimax level to get a
nontrivial critical point. Xue in [20] took into account the same asymptotically
periodic equation as [14] and got a ground state solution. We take advantage of
generalized Nehari manifold of [5, [16] to gain the ground state solution of
which is different from [5] [T4] and a innovation point.

Setting G(z,u) = fou g(z, s)ds, we assume that V', K and g satisfy the following:

(H1) V is continuous, 1-periodic in z;, 1 < i < N, and there exists a constant
ap > 0 such that V(x) > ag for all z € RY;

(H2) K is continuous, 1-periodic in z;, 1 <i < N,

(i) K(z) > Kmin > 0 for all z € RV,

(i) K(z) — K(zo) = O(Jx — 20|V 72) as  — x¢, K (1) = maxp~y K(2);

(H3) g is continuous, 1-periodic in z;, 1 < i < N, |g(z,u)| < a(1 + |u[P~1) for
some a > 0 and 4 < p < 2-2*, where 2* = 225 if N >3,2" =0 if N =1
or N =2;

(H4) g(z,u) = o(u) uniformly in z as u — 0;

(H5) u s g(x,u)/u? is positive for u # 0, non-increasing on (—oo,0) and non-
decreasing on (0, +00);

(H6) G(z,u)/u* — oo uniformly in z as |u| — oo, if N > 10;

(H7) there exists an open bounded set € R containing xy given by (H2),
such that G(z,u)/u?>? ~ — oo, as |u| — oo, uniformly in Q, if 3 < N < 10.

We note that if ug is a solution of (L.I]), then so is the element ug(- — k) under
the action of ZV, set O(ug) = {ug(- — k) : k € ZV}, O(ug) is called the orbit of
up with respect to the action of Z%. Two solutions u; and ug of are said to
be geometrically distinct if O(u;) and O(ug) are disjoint. Now we state our main
result.

Theorem 1.1. Suppose that (H1)—(H7) hold, then problem (1.1 has a ground state
solution.

2. PRELIMINARY RESULTS

In this section, we present the variational results which will be used in the proof
of Theorem [1.1} We observe that (1.1) is formally the Euler-Lagrange equation
associate with the energy functional

J(u) = %/RN(l—&—2u2)\Vu|2+%/RN V(x)uQ—%/RN K(x)|u|2‘2* —/RN G(z,u).

From the variational point of view, the first difficulty associated with problem
(1.1) is finding an appropriate function space where the functional J is well defined.
To avoid such difficulty, we use the change of variable introduced by [g], that is, we
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consider v = f~!(u), where f is defined by
! _ 1 n
f (t) - (1 I 2f2(t)>1/2 o [0’+OO)7
f(t)=—f(=t) on (-00,0],

having the following properties, which have been proved in [2] 3].

Lemma 2.1. The function f satisfies the following properties:
1) f is uniquely defined, C*° and invertible;

|f'(t)] <1 for all t € R;

PO < |t] for allt € R;

f@)/t=1ast—0;

f)/Vt— 2% ast — +oo;

F)/2 <tf/(t) < f(t) for all t > 0;

|F(t)] < 2Y4|¢[Y2 for all t € R;

FP@)/2 < ) ()t < f2(¢) for all t € R;

there exists a positive constant C' such that

Clil, t] <1,

t)| >

(10) |f(&)f'(t)] < 1/V/2 for all t € R.
As a consequence of Lemma the following has been proved in [4] [14].

Corollary 2.2. (i) The function f(t)f'(t)t~! is strictly decreasing for all t >
0.
(ii) The function fP(t)f' ()t~ is strictly increasing for all p > 3 and t > 0.
(iii) The function f>2 ~Y(t)f ()t~ is strictly increasing for all t > 0.
In [4[T4] it is stated that the functions in Corollary 2.2 are respectively decreasing
and increasing, but it is easy to see from the proofs there that they are strictly

decreasing and strictly increasing.
So, after the change of variables from J, we obtain the functional

1 1
10) =5 [ VP43 [ VE@re)
2 RN 2 RN
1 .
oy L K@IE@P - [ G f),
. RN RN
which is well defined in H*(RY) and belongs to C* under the hypotheses (H1)—(H4).
Moreover, the critical points of I are the weak solutions of the problem
— Av+ V(@) f(0)f'(v) = K@) f(0)* 2 f(0)f'(v) + g, f0) f'(v),  (2:2)
for v € HY(RY); that is

(I'(v), w) = VoVw +/ V(z)f()f (v)w
RY RN (2.3)

- [ K@U@P 2w [ g ro)f @

for all v, w € H*(RY). It has been shown in [2] that if v € H*(RY) is a critical
point of the functional I, then u = f(v) € H*(RY) and u is a solution of (.1)).

(2.1)
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We also observe that for obtaining a nonnegative solution for (2.1)), we set
g(z,s) = 0 for all x € RY, s < 0. Indeed, let v be a critical point of I. Tak-
ing w = —v~, where v~ = max{—wv, 0}, we obtain

LéNOVvW2+¥WMf@0f@0bw‘de=0~

Since f(v)(—v~) > 0, we have

/ Vo~ |2dzr =0 and —V(x)f(v)(—v’)dx =0
RN BV \/1+2f2(v)

Hence we conclude that v~ = 0 almost everywhere in RY and, therefore, v = v+ >
0. As u = f(v), we conclude that u is a nonnegative solution for the Problem ({1.1)).
Here, we consider the space H!(R") endowed with one of the following norms:

2 2\ /2
Jull = ([ 1Vl + Vi)
Let
M = {v e H'(BY)\ {0} : (I'(v).v) = 0},

Recall that M is called the Nehari manifold. We do not know whether M is of class
C' under our assumptions and therefore we cannot use minimax theory directly on
M. To overcome this difficulty, we employ an argument developed in [16] [17].

3. PROOF OF THEOREM [L.1]

For the rest of this article, we assume that (H1)-((H7) hold. Firstly, (H3) and
(H4) imply that for each € > 0 there is C; > 0 such that

lg(z,u)| < elu| + CclulP™t, for all u € R. (3.1)
And using (H4) and (H5), one can easily check that
G(z,u) >0 and g(r,u)u>4G(z,u) >0 ifu#0. (3.2)
For t > 0, let
£ 2 1 2
h(t) = I(tu) = — [Vul® + = V(z)f(tu)
2 RN 2 RN
1 -
- | K@IfeP? - [ G ft).
2 ° 2 RN RN
Lemma 3.1. For each u € H*(R™)\ {0}, there exists a unique t, = t(u) > 0 such
that m(u) = tyu € M, I(m(u)) = max I(Rtu).
Proof. By (3.1) and Lemma [2.1] (7), for ¢ sufficiently small we have
t2 1 K| .
no 25 [ v g [ veren - FE P
_ = 2(tu) — == tu) P
s [ 0= [ e

t2 . .
> |Vu\2 — Oy t? / |u\2 _ Cgt”/z/ ‘u|p/27
RN RN RN
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where the constants C7,Cy are independent of t. Since v # 0 and p > 4, it is easy
to see that h( ) >0 Whenever t > 0 is small enough. On the other hand, using
Lemma - and (6), we have

h(t)
t2 , 12 9 1 g.0%
<5 [ Va5 [ V- o= [ K@l - | Gl f(t)
RN RN : RN RN
£ £ Gl Few)2 o
< 2 v 2 2
=2 Jon Val'+ 3 /RN Vie)” = 575 /RN K@) = |tu|2* ul™

then we can easily show that h(t) — —oo as t — oo. Therefore, max;~q h(t)
achieved at some ¢, = t(u) > 0 so that A/(¢,) = 0 and then t,u € M.
The condition A/(t) = 0 is equivalent to

o [ (K@U ) ()
Jo 7= L

tu

oo SRS 1) _ VL ()]

tu tu

+
Let

£(s) = K(x)lf(S)|2'28*’2f(8)f’(8) . g(w,f(z))f’(S) _ V(fﬂ)f?:)f’(S)'

By (H5) and Corollary 2.2 (ii), the function
9@, fNf'(s) _ gla, f(5)) f(s)f'(s)

s o f3(s) s
is strictly increasing for s > 0. Hence also s — &(s) is strictly increasing according to
Corollary 2.2 (i) and (iii). So there exists a unique ¢, > 0 such that h'(¢,) = 0. O

Lemma 3.2. (1) There exists p > 0 such that ¢ = infy; I > infg, I > 0, where
Sp ={u € H'RY) : Ju| = p}.
(2) |lul|* > 2c¢ for allu € M.

Proof. (1) According to [5] that f]RN |Vul? + Jan V(@) f?(u) > Cllul|* whenever
[ull < p. By (3.1) and Lemma [2.1] (3) and (7) we have

£ 2 % p
[Leran<s [ rw+S [ )
£ 2, CC: p/2

<s [ e

< Cellul|* + CC|ulP/?,
and
/ K(2)|f(w)? < 22*/2|K|<><>/ [ul* < Cluf*,
RN RN
therefore, for sufficiently small ¢,
I(w) = Clful)? = Cllu|P’* = Cljul|*,

and then infg, I > 0 is obtained when p is small enough. The inequality infy, I >
infg, I is a consequence of Lemma [3.1] since for every u € M there is s > 0 such
that su € S, and I(t,u) > I(su).
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(2) For u € M, by Lemma[2.1] (3),
¢ < I(u)
1 2 1 2
=5 [ IVu+5 [ V(z)f(u)
2 RN 2 RN
1

9. 9x /RNK(-T)lf(UN ' _/]RN G(z,u)

O

Lemma 3.3. If V is a compact subset of H*(RY) \ {0}, then m maps V into
bounded set in H'(RY).

Proof. We may assume without loss of generality that V C S. Arguing by contra-
diction, suppose there exist u, € V and v, = m(u,) = t,, u, such that |Jv,| = oo
as n — oo. Passing to a subsequence, there is u € H*(RY) with ||u|| = 1 such that
u, — u € S. Since |v,(x)| = oo if u(z) # 0, then by (H6), Lemma [2.1] (5) and
Fatou’s lemma that

Gz, fvn)) Gz, f(vn))us G fn) f'va) o

— — -~ 7 = s U, — 0Q.
RN 2. RN vz gy f4(vn) v "
By Lemma (3),
o<l 1 [ Clet)
2 ~2 Jow 2
a contradiction. O

Recall that S is the unit sphere in H'(RY) and define the mapping m : S — M

by setting
m(w) := ty,w,

where t,, is as in Lemma Note that ||m(w)|| = t,,. Lemma[3.4 below is taken
from [I7, Proposition 8 and Corollary 10]. That the hypotheses in [I7] are satisfied
is a consequence of Lemmas and Indeed, if h(t) = I(tw) and w € S,
then A'(t) > 0 for 0 < t < t,, and K'(t) < 0 for ¢t > t,, by Lemma[3.1] t, > 6 > 0
by Lemma [3.2] and t,, < R for w € V C S by Lemma [3.3

Lemma 3.4. The mapping m is continuous. Moreover, the mapping m is a home-
omorphism between S and M, and the inverse of m is m™1(u) = u/||ul|.

We shall consider the functional ¥ : .S — R given by
U(w) = I(m(w)).
Lemma 3.5. (1) ¥ e C'(S,R) and
(W' (w), 2) = [m(w)[[{I'(m(w)), 2)

for all z € T,,(S) = {v e HY(RY), (v, w) = 0}.

(2) If (wy,) is a Palais-Smale sequence for W, then (m(wy)) is a Palais-Smale
sequence for I. If (u,) C M is a bounded Palais-Smale sequence for I ,
then (m~1(uy)) is a Palais-Smale sequence for .
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(3) w is a critical point of ¥ if and only if m(w) is a nontrivial critical point
of I. Moreover, the corresponding values of ¥ and I coincide and infg ¥ =
infM I

Proof. The argument is similar to that [I6l Proposition 2.9 and Corollary 2.10]
except that we do not claim [ is coercive on M. But we obtain the following claim.

Claim: Each Palais-Smale sequence for [ is bounded. First of all we observe that
if a sequence (u,) C H*(RY) satisfies

[vul+ [ v <4

for some constant A > 0, then it is bounded in H(RY).
To show this claim we just need to show that f]RN u2 is bounded. In fact, by

Lemma - and ( , we observe that
1 1 A
2 2 2
I (un Si/ V(z)f (up) < 55—
/lun(r)<1 - [t (2)]<1 () C?%ay Jpw (@) (un) C?ayg
and
. 2% /2 .
[ so( [ vwl) o
[un (z)]>1 |un (z)|>1 RN
Therefore,

/ / u,, —|—/ ui <C.
RN lun (2)|<1 lun (2)|>1

To complete the proof, we only need to show that [5n [Vun|* + [on V(@) f?(un) is
bounded.
Let (u,) C H'(RY) be a Palais-Smale sequence for I at level ¢ € R, i.e.

I(uy) = ¢ and I'(u,) — 0.
Then for n large enough, by Lemma (6) and (8), and (3.2)), we have

c+o(1) > I(u,) — ;(I'(un) Up)

=3 [l s [ V@ - / K@)l ()
_/RNG(x,f(un))—%[/ Vun|? + /V £ ()t

- / ()| () P22 F 1) 1t i — / 92, £ () (1)t
RN

RN

G /RN g(m,f(un))f(un)—/N G(x,f(un)))
G- g [ K@)

_2N/ K@)\ ()

m1n 22*
> mn [ )

>
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which implies [y |f(un)*? < C. By (H3) and (H4) that for each & > 0 there
exists C. such that g(z,u) < elu| + Ce|u[?2"'[I], then by Lemma (6) and (8),

([ vl + [ V@)

2 /
< [l [ V@) e,
= (I'(un), un) + /RN K(x)|f(un)|22*72f(un)fl(un)u” +/R 9(@, f(un)) f (tn)tin

N

x Uy, 22" z, f(un Uy, On
< [ K@) + [ . ) ) +o.()
<Kl [ 7P+ [ P+ 0 [ )P 0,0,

Let ¢ € (0,a0/4). By the above inequality and the boundedness of [,y [f(un)|*?"
we have

1 2 (L & 2) 2 (u
<5 [ VuP+G-2) [ V@

2 an RN
= e /RN |f(un)]** + C. - |f(un) P < C,

then (u,) must be bounded. Then by Lemmas and one can follow the same
line of the proof of [I6, Corollary 2.10] to complete the present proof. O

Proof of Theorem[I.]. Tt follows from Lemma (1) that ¢ = infp, I > 0. By
Ekeland’s variational principle [I9], there exists a Palais-Smale sequence (wy,) C S
for ¥ such that ¥(w,) — c. Set u, = m(wy), then from Lemma [3.5] (2), (u,) C M
is a Palais-Smale sequence for I and I(u,) — c¢. According to the Claim in the
proof of Lemma [3.5] (u,) is bounded. Clearly, (u,) is either

(1) Vanishing: For each r > 0,

lim sup / lu,|? = 0,
n— oo yERN Br(y)
or (ii) Non-vanishing: There exists 7,§ > 0 and a sequence (y,,) C RY such that

lim |, |? > 6.
In (ii) we may assume y,, € Z" by taking a larger r if necessary. Suppose (ii) holds
and let u,, () := up (x+yy). Since I is invariant and VI is equivariant with respect
to the ZN-action, u, — wu after passing to a subsequence, I'(u) = 0 and since
limy, 00 fBT(O) |ul? > &, u # 0. So u is a nontrivial critical point of I. Therefore
u € M and I(u) > c. Furthermore, from Lemma [2.1] (6) and (8), and Fatou’s

lemma, we have
c+o(1)

= I(un) — %U’(Un)vuﬁ
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5 [ Vulg [ Ve un>—212* |, K@l
[ Gt s - [5 [ 1Vl 45 [ V@) @)
RN 2 Jrw 2 Jan

1 9% _ , 1 ,
=5 | K@U )P 2 ) =5 [ oo f)f ]

:%/ V(@) [f*(un) — fun) f (un)un)]
(% / )22 72 f () f () )| ) *)
+ (%/ g(@, fup)) f (un)un — . G(%f(“n)))
>3 [ V@I - ff @
-
1 2.9%_9 22
+(3 [ KE@@ET DlfwE)
+(; / Lo f)f - [ GG f(u))) + o<1>

which implies I(u) < ¢. Hence I(u) = ¢ and thus u is a ground state solution of
problem (1.1). Hence to complete the proof of Theorem it remains to show
that vanishing cannot occur. This will be done in the following three lemmas. [

Before stating the next result, we recall that the best constant for Sobolev em-
bedding DV2(RN) «— L* (RV) is

fRN |VU‘2

inf =~ JRNIYUL 3.3
ueDL2(RN)\{0} (f]RN ‘u|2 )2/2 ( )

S:

Lemma 3.6 ([14]). Suppose (H1)—(H4) are satisfied. Then
(1) lim,—00 f]RN V( )[f2(un) — f(un) f'(un)un] =0,
5 o e Vi T o) (o] =0
(3) limy o0 frn K@) /2|u - lfa)**] =0,
(4) limy, oo fon K (@)[51F (n)[? =2 (un) £ (un)un — 3257 un[2'] = 0.

Lemma 3.7. Suppose (H1)—(H4) are satisfied. If c € (0, ﬁ|K|ng)/2SN/2), then
(up) cannot be vanishing.

Proof. Suppose by contradiction that (u,) is vanishing, then it follows from P.L.
Lions’ lemma (see [19, Lemma 1.21]) that u,, — 0 in L*(RY) whenever 2 < s < 2*.
Thus by (3.1), as in [I3], we can deduce that

[ st i, 0. [ Gl ) o0 (3.4

RN
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Since (uy,) is a (Palais — Smale). sequence for the functional I, it follows that

c+ 0(1) = I(un) - <I'(un), un>

1 /
=5 [ V@) = fu) ()] -
s [ B ) i = 1 (00) 2.
From Lemma [3.6] (1), (3) and (4), we have
rl 22 22*272 22*;2 )
cto(l) = . K (2)|un|? [52 - ] =5 L. K (2)|un)? .
Hence
lim K(z)|un|* = % > 0. (3.6)
n—oo [pN =
Consequently, using Lemma (4), we have
lim [ K ()| f(un)" 2 f (un) £ (n)un = Ne. (3.7)

n—oo RN

On the other hand, taking the first limit in (3.4)), Lemma (2) and the fact
(I'(un), up) — 0, so that

n—oQ

tim [ [ K@) ) 2 ) £ ()t — 7] = 0
]RN

Therefore, from (3.7)), it follows that
lim |ju,|* = Ne. (3.8)

n— oo

By the definition of S in (3.3)),

1 . .1 272 flunl2\2/2
— K W< W7 < 7/ Vuy,|? < (==L .
= | K@l —/RN'“' <(g [ vuk) "= (M)

Passing to the limit in the above inequality, in view of (3.6) and (3.8, one can
obtain
1 Nc Ncy\27/2
S (7) )

Koo 255 S

that is
1
> K(Q—N)/QsN/Q
¢z oyl ’

which is contradicts to the assumption that ¢ < ﬁ|K|gD—N)/QSN/2, then the proof
is complete. ([

Lemma 3.8 ([14]). Suppose that (H1)—(HT7) are satisfied. Then there exists u €
HY(RN)\ {0} such that

1
(2—N)/2 aN/2
rilzagcl(tu) < 2N|K|°O SHe.
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