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Abstract. This article presents an application of a theory, previously formu-

lated in the framework of rational extended irreversible thermodynamics, to

describe the thermal, mechanical and transport properties of a porous medium
filled by a fluid. Starting from the anisotropic rate equations for the porosity

field, its flux, and for the heat and fluid-concentration fluxes, the isotropic case

is studied when the body has symmetry properties invariant for all rotations
and inversions of the frame axes. Furthermore, the phenomenological tensors

have special symmetry properties coming from the used theoretic model. Then,
the propagation in one direction of coupled porosity and fluid-concentration

waves is investigated. The dispersion relation is carried out and the wave

propagation velocities as functions of the wavenumber are calculated and rep-
resented in a diagram for a given numerical set of the several coefficients char-

acterizing the considered porous media. The results obtained in this article

can be applied in several sciences such as seismology, medical sciences, geology
and nanotechnology, where there is propagation of high-frequency waves.

1. Introduction

In this article we apply a thermodynamic theory (see [5, 26, 27, 29, 30]), formu-
lated in the framework of rational extended thermodynamics [1, 3, 11, 12, 13, 15,
16, 18, 20, 22, 25, 32], with internal variables for the description of the behaviour
of porous media, to the study of a problem of propagation of coupled porosity and
fluid-concentration waves in isotropic media. The characterization of the media
taken into account is based on an approach à la Kubik [17], that considers an ele-
mentary sphere volume Ω of a structure with porous channels filled by a fluid, large
enough to use volume and area averaging procedures, being Ω = Ωs + Ωp, with Ωs

and Ωp the solid space and the pore space of this volume. Kubik introduces also
the central sphere section Γ of Ω, given by Γ = Γs + Γp, with Γs and Γp the solid
area and the pore area, and defines a so called structural permeability tensor, rij ,
by the equation

ᾱi(x) = rij(x)α̂j(x), (1.1)
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that gives a linear mapping between the average of a property of some physical field
ᾱ(x) calculated in the bulk-volume Ω and the average of the same quantity α̂(x)
calculated on the pore area Γs. It is assumed that such physical quantity is zero in
the solid space Ωs and on Γs, and that the volume porosity fv, defined as fv = Ωp

Ω ,
is constant. The tensor rij is symmetric, gives a macroscopic characterization of
the geometric structure of the porous medium and has unit m−2.

The introduction of rij in the thermodynamic state vector besides its gradient,
its flux and the other thermal and mechanical variables allows us to investigate
the behaviour of the considered media. Here, we focus our interest on the study
of their transport properties in the case of perfect isotropy. Isotropic media were
investigated also in [5]. The studies of phenomena regarding porous structures
saturated by a fluid have great importance (see also [4, 6, 31]) and the obtained
results can be used in several technological fields such as seismic waves, medical
sciences, biology, geology and nanotechnology (where the Knudsen number Kn =
l/L, with L the volume element size along a direction of a considered nanostructure
and l the free mean path of the heat carriers, is such that l/L� 1, namely L� l,
i.e. L is so small that it becomes comparable or smaller than l). Furthermore, in
nanosystems (such as porous semiconductors [8]) there are high-frequency waves
propagation and the transport properties of these systems have a rate variation
faster than the time scale of the relaxation times of the fluxes to their equilibrium
values.

The organization of this article is the following. In Section 2 we introduce the
model with the fundamental laws, derived in [26] in the framework of extended
thermodynamics with internal variables and describing the mechanical, thermal
and transport properties of a solid structure with porous channels saturated by a
fluid. Sections 3 and 4 are addressed to an application of the presented theory to
a problem of wave propagation in a porous medium, supposed at rest, when only
the porosity field, its flux, the fluid-concentration field and its flux are taken into
account. In particular, starting from the anisotropic case (see [29, 30]) we derive in
a special case a system of equations describing the propagation of coupled poros-
ity and fluid-concentration waves in a porous isotropic medium, having symmetry
properties invariant with respect to all rotations and inversions of frame axes (see
[10, 14]). The dispersion relation is obtained and the values of the wave propaga-
tion velocities are worked out as functions of the wavenumber k. The dispersion
curves are represented in a diagram for a given numerical set of the several coeffi-
cients characterizing the considered porous media. The Appendices deal with the
achievement of particular forms for fourth and sixth order isotropic tensors having
special symmetry properties and the detailed derivation of the transport equations
for the porosity field and fluid-concentration flux. A similar propagation prob-
lem of coupled waves was studied by one the authors (L. R.) in isotropic n-type
semiconductors (see [28]). The difference between both situations is that in [28]
the considered media were semiconductors with dislocation lines, described as thin
channels by an internal variable, the dislocation core tensor [21] (defined on the
basis of the structural permeability tensor à la Kubik), and the fluid-concentration
flux field was the flux of the concentration of electronic charge carriers.
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2. Fundamental laws

Let us consider, in the framework of extended thermodynamics of irreversible
processes, a model for media with porous channels filled by a fluid, deduced in [26],
where it was assumed that the following fields interact with each other: the elastic
field described by the symmetric stress tensor τij and the small strain tensor εij ,
defined by εij = 1

2 (ui,j + uj,i), with ui the displacement field; the thermal field
described by the temperature T , its gradient and the heat flux qi; the field of the
fluid-concentration c, its gradient and its flux jci ; the porosity field described by the
structural permeability tensor rij , its gradient and its flux Vijk.

We suppose that the fluid filling the porous channels of the medium and the same
medium form a two-components mixture of total mass density ρ and we indicate by
ρ1 the fluid mass density and by ρ2 the mass density of the elastic porous structure,
such that we have

ρ = ρ1 + ρ2. (2.1)

The concentration of the fluid is defined by c = ρ1/ρ.
We assume that the following continuity equations are valid for the mixture of

the fluid and the porous skeleton as a whole and for each constituent

ρ̇+ ρvi,i = 0, (2.2)

∂ρ1

∂t
+ (ρ1v1i),i = 0, (2.3)

∂ρ2

∂t
+ (ρ2v2i),i = 0, (2.4)

where we have disregarded the source terms in each continuity equation, a superim-
posed dot indicates the material derivative, v1i and v2i are the velocities of the fluid
particles and the velocities of the elastic porous skeleton particles, respectively, the
velocity vi represents the barycentric velocity of the mixture, defined by

ρvi = ρ1v1i + ρ2v2i (2.5)

and jci by

jci = ρ1(v1i − vi). (2.6)

In the following we will use the standard Cartesian tensor notation in rectangular
coordinate systems and we consider a current configuration Kt at the time t.

We assume that the physical processes occurring in the above-defined situation
are governed by the following fundamental laws:
the continuity equation, obtained from (2.1)-(2.6) (see [3] and also [29]),

ρċ+ jci,i = 0; (2.7)

the momentum balance

ρv̇i − τji,j = 0; (2.8)

the internal energy balance

ρė− τjivi,j + qi,i = 0, (2.9)

where the mass density ρ is supposed constant, e is the specific internal energy (i.e.
internal energy per unit mass) and the body force and the heat source have been
neglected in (2.8) and (2.9), respectively;
the rate equations for the structural permeability field rij , its flux Vijk, the heat
flux qi and the fluid-concentration flux jci , constructed in such a way that they
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are obeying the objectivity and frame-indifference principles (see [9, 23, 24]) and
supposed having the form

∗
rij + Vijk,k −Rij(C) = 0, (2.10)
∗
Vijk − Vijk(C) = 0, (2.11)
∗
qi −Qi(C) = 0, (2.12)
∗
jci − Jci (C) = 0, (2.13)

where the fluxes of Vijk, qi and jci are not taken into consideration, to close the
system of equations describing the media under consideration, andRij(C), Vijk(C),
Qi(C) and Jci (C) are the source terms regarding the porosity field, its flux, the
heat and the fluid-concentration fluxes, respectively. These sources are constitutive
functions of the independent variables of the thermodynamic state vector chosen
as follows

C = {εij , c, T, rij , jci , qi,Vijk, c,i, T,i, rij,k}.
In (2.10)-(2.13) the superimposed asterisk defines the Zaremba-Jaumann derivative,
i.e.

∗
qi = q̇i − Ωikqk,

∗
jci = j̇ci − Ωikj

c
k,

∗
rij = ṙij − Ωikrkj − Ωjkrik,

∗
Vijk = V̇ijk − ΩilVljk − ΩjlVilk − ΩklVijl,

where Ωij = 1
2 (vi,j−vj,i) is the antisymmetric part of the velocity gradient vi,j and

vi the barycentric velocity field of the whole body.
All the admissible solutions of the proposed equations should be restricted by

the entropy inequality

ρṠ + φk,k −
ρh

T
≥ 0, (2.14)

where S denotes the entropy per unit mass, φk is the entropy flux and ρh
T is the ex-

ternal entropy production source (in the following neglected). In [26] Liu’s theorem
[19], establishing that all balance equations and rate equations are mathematical
constraints for the validity of (2.14), was applied and the state laws, the generalized
affinities, the entropy flux density and the functional form of the free energy F were
derived. In particular the entropy flux density φk was given by the expression

φk =
1

T
(qk −Πcjck −Πr

ijVijk), (2.15)

where Πc is the chemical potential of the concentration field and Πr
ij is the poten-

tial related to the structural permeability tensor. In [29] (see also [30]) we have
worked out the following rate equations in the anisotropic case for the structural
permeability tensor, its flux, the heat and fluid-concentration fluxes

ṙij + Vijk,k = β1
ijklεkl + β2

ijklrkl + β3
ijkj

c
k + β4

ijkqk + β5
ijklmVklm + β6

ijkc,k

+ β7
ijkT,k + β8

ijklmrkl,m,
(2.16)

V̇ijk = γ1
ijklj

c
l + γ2

ijklql + γ3
ijklmnVlmn + γ4

ijklc,l + γ5
ijklT,l + γ6

ijklmnrlm,n, (2.17)

τ q q̇i = χ1
ijj

c
j − qi + χ3

ijklVjkl + χ4
ijc,j − χ5

ijT,j + χ6
ijklrjk,l, (2.18)

τ j
c

j̇ci = −jci + ξ2
ijqj + ξ3

ijklVjkl − ξ4
ijc,j + ξ5

ijT,j + ξ6
ijklrjk,l. (2.19)
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In equations (2.16)-(2.19) we have considered physical situations where it is possible
to replace the Zaremba-Jaumann derivative by the material derivative. Equations
(2.16)-(2.19) describe disturbances having finite velocity of propagation and own
relaxation times to reach the respective thermodynamic equilibrium values and
show interactions among different fields.

In equation (2.18), generalizing Maxwell-Vernotte-Cattaneo relation τ q q̇i = −qi−
χ5
ijT,j (where only the influences of the heat flux and the temperature gradient field

on the evolution in time of qi are taken into consideration), τ q is the relaxation
time of the field qi and χ1

ij , χ
4
ij and χ5

ij are the thermo-diffusive kinetic tensor, the
thermo-diffusive tensor and the heat conductivity tensor, respectively. The phe-
nomenological tensors χ3

ijkl and χ6
ijkl describe the influences of the flux and the

gradient of the porosity field on the time derivative of the thermal flux. The field
rjk,l describe non-local effects of the porosity field.

When equation (2.18) reduce to qi = −χ5
ijT,j , we obtain Fourier’s law in the

anisotropic case, leading to propagation infinite velocities of thermal signals, being
the relaxation time τ q null (see [2, 7]).

In equation (2.19), generalizing Fick-Nonnenmacher’s law τ j
c

j̇ci = −jci − ξ4
ijc,j

(where only the influences of the fluid-concentration flux and the fluid-concentration
gradient field on the evolution in time of jci are taken into account), τ j

c

is the
relaxation time of the field jci , ξ

4
ik is the diffusion tensor and ξ5

ij is the thermo-

diffusive tensor. Furthermore, the phenomenological tensors ξ2
ij , ξ

3
ijkl and ξ6

ijkl

describe the influences of the heat flux, the porosity flux and the porosity gradient
field on the time derivative of the fluid-concentration flux, respectively.

When equation (2.19) reduces to jci = −ξ4
ijc,j , we have Fick’s law in the anisotropic

case, where the velocity of propagation of fluid-concentration flux is infinite and the
relaxation time τ j

c

is null.
Equations (2.16) and (2.17) describe the evolution in time of the structural per-

meability tensor and its flux and in their right hand sides there are present the
fields that have influence on them in the considered physical situation.

3. Equations governing the evolution of porosity and
fluid-concentration fields and their fluxes in a porous medium in

a special case

In this Section we consider the system of equations (2.7), (2.16), (2.17) and (2.19)
in a special case. In particular, in (2.16), (2.17) and (2.19) we neglect the influence
of the thermal phenomena, i.e. the presence of the fields qi and T,i. Furthermore,
in equation (2.16) we disregard the effects of the field εij and the porosity field rij ,
in the rate equation (2.17) the contribution of the fluid-concentration flux jci and
in the rate equation (2.19) the influence of the porosity flux Vijk. Thus, we obtain

ρ
∂c

∂t
= −jck,k, (3.1)

∂rij
∂t

+ Vijk,k = β3
ijkj

c
k + β5

ijklmVklm + β6
ijkc,k + β8

ijklmrkl,m, (3.2)

∂Vijk
∂t

= γ3
ijklmnVlmn + γ4

ijklc,l + γ6
ijklmnrlm,n, (3.3)

τ j
c ∂jci
∂t

= −jci − ξ4
ijc,j + ξ6

ijklrjk,l. (3.4)
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In the rate equation (3.2), because of the symmetry of rij , i.e. rij = rji, the phe-
nomenological coefficients β3

ijk, β5
ijklm, β6

ijk, β8
ijklm have the following symmetries

β3
ijk = β3

jik, β5
ijklm = β5

jiklm, β6
ijk = β6

jik,

β8
ijklm = β8

jiklm = β8
ijlkm = β8

jilkm.
(3.5)

From the symmetry property of rij and (3.5), also the divergence of the porosity
field Vijk,k is symmetric in the indexes {i, j}

Vijk,k = Vjik,k. (3.6)

Also, from the symmetry property of rij in the rate equations (3.3) and (3.4) we
have for the phenomenological tensors γ6

ijklmn and ξ6
ijkl the symmetries

γ6
jiklmn = γ6

ijkmln, ξ6
ijkl = ξ6

ikjl. (3.7)

The symmetry relations (3.6) and (3.7) reduce the number of the significant compo-
nents of the considered phenomenological tensors. The number of these significant
components has a further reduction if we establish some other assumptions. Be-
ing rij a second order tensor, we can introduce its deviator, r̃ij , and its scalar (or
spherical) part, r, in the following way

r̃ij = rij −
1

3
rδij , r =

1

3
rkk, (i, j, k = 1, 2, 3) , (3.8)

where Einstein convention for the dummy indices is used, and rij can be written in
the form

rij = r̃ij + rδij , with r̃kk = 0, (3.9)

where, being rij symmetric, also r̃ij is symmetric.
Furthermore, we consider the case in which Vijk can be written as the sum of

three symmetric contributions

Vijk = Vkδij + Viδjk + Vjδik. (3.10)

For the sake of simplicity in the following we will consider only the spherical part
rij = rδij of the porosity field and the contribution Vkδij of its flux, i. e.

rij = rδij , Vijk = Vkδij , (3.11)

where Vkδij is symmetric in the indexes {i, j}.
Thus, by (3.11), the rate equations (3.2)-(3.4) keep the form

∂r

∂t
δij + Vk,kδij = β3

ijkj
c
k + β5

ijklmVmδkl + β6
ijkc,k + β8

ijklmr,mδkl, (3.12)

∂Vk
∂t

δij = γ3
ijklmnVnδlm + γ4

ijklc,l + γ6
ijklmnr,nδlm, (3.13)

τ j
c ∂jci
∂t

= −jci − ξ4
ijc,j + ξ6

ijklr,lδjk. (3.14)

In (3.13) the following symmetries are valid

γ4
ijkl = γ4

jikl, γ3
ijklmn = γ3

jiklmn = γ3
ijkmln = γ3

jikmln,

γ6
ijklmn = γ6

jiklmn = γ6
ijkmln = γ6

jikmln.
(3.15)

Properties (3.15)1 and (3.15)2 come from the symmetry of Vkδij and from the
fact that in γ3

ijklmn and in γ6
ijklmn the indexes {l,m} are dummy indexes with the

indexes of the tensors Vnδlm and r,nδlm, symmetric in {l,m}. In (3.15)3 the last two



EJDE-2020/73 COUPLED POROSITY AND FLUID-CONCENTRATION WAVES 7

symmetry properties for the tensor γ6
ijklmn are equal to the symmetry properties

(3.7).
Also, in (3.14) we have

ξ6
ijkl = ξ6

ikjl, (3.16)

because in ξ6
ijkl the indexes {j, k} are dummy indexes with the indexes of the tensor

r,lδjk, symmetric in {j, k}.

4. System of equations describing the propagation of coupled
porosity and fluid-concentration waves in an isotropic medium

In this Section we apply the theory presented in the previous Section to a problem
of propagation of coupled porosity and fluid-concentration waves in a porous perfect
isotropic medium, supposed at rest. The existence of spatial symmetry properties
in a material system may simplify the form of the rate equations in such a way that
the number of the significant Cartesian components of the phenomenological tensors
present in them has a further reduction. Here, we consider perfect isotropic systems
for which the symmetry properties are invariant with respect to all rotations and
the inversion of the frame of axes (i.e. under orthogonal transformations). Thus, in
this case of perfect isotropy we have (see [10, 14]):
The tensors of odd order vanish, i.e.

Lijk = 0, Lijklm = 0, (4.1)

so that in equation (3.12) the tensors

β3
ijk = β5

ijklm = β6
ijk = β8

ijklm = 0 (4.2)

vanish;
The tensors of order two keep the form

Lij = Lδij , (4.3)

so that the phenomenological tensor ξ4
ij takes the form

ξ4
ij = ξ4δij ; (4.4)

The tensors of order four must have the form

Lijkl = L1δijδkl + L2δikδjl + L3δilδjk, (4.5)

where Lr (r = 1, 2, 3) are the 3 significant components of Lijkl, so that γ4
ijkl and

ξ6
ijkl have only three significant components;

The tensors of order six (see γ3
jikmln and γ6

ijklmn present in (3.13)) assume the

following form [14]:

Lijklmn = L1δijδklδmn + L2δijδkmδln + L3δijδknδlm + L4δikδjlδmn

+ L5δikδjmδln + L6δikδjnδlm + L7δilδjkδmn + L8δilδjmδkn

+ L9δilδjnδkm + L10δimδjkδln + L11δimδjlδkn + L12δimδjnδkl

+ L13δinδjkδlm + L14δinδjlδkm + L15δinδjmδkl,

(4.6)

where Lr (r = 1, 2, . . . , 15) are the 15 significant components of Lijklmn.
Taking into account the isotropic form (4.2), (4.4), (4.5) and (4.6) of the phe-

nomenological tensors and their symmetry properties (3.15) and (3.16) we derive
from (2.7), (3.12), (3.13) and (3.14) (see detailed calculations in Section 5) the
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following simplified system of equations governing the evolution of porosity and
fluid-concentration fields and their fluxes

ρ
∂c

∂t
+ jck,k = 0, (4.7)

∂r

∂t
+ Vk,k = 0, (4.8)

τν
∂Vk
∂t

= −Vk −Dνr,k + ανc,k, (4.9)

τ j
c ∂jci
∂t

= −jci + αcr,i − ρDcc,i, (4.10)

where τν is the relaxation time of the field Vijk = Vkδij , given by relation (6.4)1

of Section 6, Dν and Dc are the diffusion coefficients of porosity field and fluid-
concentration flux, respectively, given by the relations (6.5) and (7.3)2 of Sections
6 and 7, αν and αc are coupling coefficients given by relations (6.4)2 and (7.3)1 of
Sections 6 and 7, respectively, being

τν ≥ 0, τ j
c

≥ 0, Dν ≥ 0, Dc ≥ 0. (4.11)

A detailed derivation of equations (4.9) and (4.10) has been obtained in Sections 6
and 7.

From equation (4.7), its derivative with respect to time and (4.10) we obtain

τ j
c ∂2c

∂t2
+
∂c

∂t
+ ᾱcr,ii −Dcc,ii = 0, (4.12)

where ᾱc = αc

ρ . In analogous way, from equation (4.8), its derivative with respect

to time and (4.9) we have

τν
∂2r

∂t2
+
∂r

∂t
−Dνr,ii + ανc,ii = 0. (4.13)

The system (4.12), (4.13) describes the coupled porosity and fluid-concentration
waves in a perfect isotropic medium. The aim of this paper is to find, from the
dispersion relation, the wave propagation velocities as functions of the wavenumber
and to obtain some particular propagation mathematical conditions.

We confine our considerations to one-dimensional plane waves. We suppose that
the porous medium occupies the whole space and we consider the propagation of
the coupled waves along x direction. Thus, assuming that the solutions of the set
of equations (4.12) and (4.13) have the form

r(x, t) = r̂eik(x−vt), (4.14)

c(x, t) = ĉeik(x−vt), (4.15)

with r̂ and ĉ the amplitudes of the waves r(x, t) and c(x, t), k the wavenumber,
v the wave velocity, defined by v = ω

k [m s−1], with ω the angular frequency, ω =

2πf [s−1], being f the wave frequency and k = 2π
λ [m−1], with λ the wavelength.

Thus, using the relations (4.14), (4.15) and their derivatives in (4.12)-(4.13) we
obtain the following system of equations(

Dck − τ j
c

kv2 − iv
)
ĉ− ᾱckr̂ = 0, (4.16)

ανk
2ĉ+

(
τνk2v2 −Dνk

2 + ikv
)
r̂ = 0, (4.17)
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that has non-trivial solutions only if its determinant vanishes, i.e.

D =

∣∣∣∣Dck − τ j
c

kv2 − iv −ᾱck
ανk

2 τνk2v2 −Dνk
2 + ikv

∣∣∣∣ = 0. (4.18)

Developing D we derive the following dispersion relation for the wave propagation
velocity v, concerning four possible modes:

τ j
c

τνk2v4 + ik
(
τ j

c

+ τν
)
v3 −

[(
Dcτ

ν +Dντ
jc
)
k2 + 1

]
v2

− ik (Dc +Dν) v + k2 (DcDν − ᾱcαν) = 0.
(4.19)

From the real part of the dispersion relation (4.19), we obtain

τ j
c

τνk2v4 −
[(
Dcτ

ν +Dντ
jc
)
k2 + 1

]
v2 + k2 (DcDν − ᾱcαν) = 0, (4.20)

from which we have two possible modes

v(1) =

√
G1 +

√
G2

1 − G2, v(2) =

√
G1 −

√
G2

1 − G2, (4.21)

where

G1 =
Dcτ

ν +Dντ
jc

2τ jcτν
+

1

2τ jcτνk2
, being G1 > 0, (4.22)

G2 =
DcDν − ᾱcαν

τ jcτν
. (4.23)

From the imaginary part of the dispersion relation (4.19), we derive

k
(
τ j

c

+ τν
)
v3 − k (Dc +Dν) v = 0, (4.24)

from which we obtain the other two values for v

v(3) = 0, v(4) =

√
Dc +Dν

τ jc + τν
, being

Dc +Dν

τ jc + τν
> 0. (4.25)

From (4.25)3 and (4.11) the velocity v(4) is always real, whereas the velocity v(1) is
real when

G2
1 − G2 ≥ 0, (4.26)

namely when[(
Dcτ

ν −Dντ
jc
)2

+ 4τ j
c

τν ᾱcαν

]
k4 + 2

(
Dcτ

ν +Dντ
jc
)
k2 + 1 ≥ 0, (4.27)

that is always true because sum of positive quantities, and then also the velocity
v(1) is always real. From (4.25)3 the velocity v(2) is real when

G1 −
√
G2

1 − G2 ≥ 0, (4.28)

from which we obtain
G2 ≥ 0, (4.29)

and thus
DcDν ≥ ᾱcαν , (4.30)

Thus, in the assumption that (4.29) (or (4.30)) holds v(2) is real.
In Figure 1 the wave propagation speeds as functions of k are represented for

a given numerical set of the several coefficients present in the examined problem:
Dc = 10−1 m2 s−1, Dν = 10−1 m2 s−1, τ j

c

= 10−2 s, τν = 10−3 s, αν = 10−2 s−1 and
ᾱc = 10−1 m4 s−1, being αc = ᾱcρ, with ρ = 103 kg m−3 and αc = 10−2 kg m s−1.
In this assumption the condition (4.30) is satisfied and thus the velocity v(4) is real.
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Figure 1. Representation of the three wave propagation speeds:
v(1), v(2) and v(4) as functions of k, for a given numerical set of
several coefficients present in the studied problem. The two hori-
zontal lines are the horizontal asymptotes of the wave propagation
velocities v(1) and v(2), respectively

The results presented in Fig. 1 show that for bigger values of k (for shorter wave
lengths λ) the propagation velocity v(1) decreases, while the propagation velocity
v(2) increases and the velocity v(4) remains constant.

Conclusions

In this article a theoretical approach was used, developed in previous papers in
the framework of rational extended irreversible thermodynamics. It was supposed
that the media with porous channels filled by a fluid can be studied as a mixture
of two components. An internal variable, the structural permeability tensor rij ,
its gradient rij,k and its flux Vijk were introduced in the thermodynamic state
vector besides the other classical variables to describe the mechanical, porous and
transport properties.

Here, the rate equations for the porosity field, its flux, the heat and fluid-
concentration fluxes, previously obtained in the anisotropic case, were considered
in a special case for perfect isotropic media having symmetry properties invariant
under orthogonal transformations. It was assumed that the mass density of the
mixture of the porous skeleton and the fluid is constant. The body force, the heat
source and the external entropy production source were negligible. The obtained
results were applied to the study of the propagation in one direction x of coupled
porosity and fluid-concentration waves when the body is supposed occupying the
whole space. The dispersion relation was carried out and three possible propaga-
tion modes were found, with particular propagation mathematical conditions. The
wave propagation velocities as functions of the wavenumber k were represented
for a given numerical set of the several coefficients characterizing in an example
the porous media under consideration. The study of propagation of these coupled
waves has several application fields, such as hydrology, biology, nanotechnology,
physiology and seismic waves.
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5. Appendix: Perfect isotropic tensors with special symmetry
properties

In the following Subsections we will consider perfect isotropic tensors of fourth
and sixth order, having special symmetry properties, and thus a reduced number
of independent significant components (see [10, 14]).

5.1. Special form for forth order perfect isotropic tensors. In this Subsec-
tion we treat special symmetry properties of the fourth order tensors γ4

ijkl and

ξ6
ijkl and demonstrate that these tensors can be expressed only by 2 significant

components.

Case 1. A fourth order perfect isotropic tensor Lijkl has the symmetry

Lijkl = Ljikl, (5.1)

(valid for the tensor γ4
ijkl in equation (3.3)), from relation (4.5) we have

Ljikl = L1δjiδkl + L2δjkδil + L3δjlδik. (5.2)

Adding equations (4.5) and (5.2), with the help of (5.1), and multiplying by 1/2
we have

Lijkl = A1δijδkl +A2(δikδjl + δilδjk), with A1 = L1, A2 = (L2 + L3)/2. (5.3)

Thus, the tensor γ4
ijkl keeps the form

γ4
ijkl = γ4

1δijδkl + γ4
2(δikδjl + δilδjk). (5.4)

Case 2. A fourth order perfect isotropic tensor Lijkl has the symmetry

Lijkl = Likjl, (5.5)

(valid for the tensor ξ6
ijkl in equation (3.4)), from relation (4.5) we have

Likjl = L1δikδjl + L2δijδkl + L3δilδkj . (5.6)

Using the same procedure seen in the case 1, we obtain

Lijkl = A1δilδjk +A2(δijδkl + δikδjl), with A1 = L3, A2 = (L1 + L2)/2. (5.7)

Thus, the tensor ξ6
ijkl can be written as

ξ6
ijkl = ξ6

1δilδjk + ξ6
2(δijδkl + δikδjl). (5.8)

5.2. Special form for sixth order perfect isotropic tensors. In the case where
a sixth order perfect isotropic tensor Lijklmn has the two symmetries

Lijklmn = Ljiklmn, Lijklmn = Lijkmln, (5.9)

equivalent to

Lijklmn = Ljiklmn = Lijkmln = Lijkmln, (5.10)

(valid for the tensors γ3
ijklmn and γ6

ijklmn in equation (3.3)) we show that the
number of significant components of this tensors reduce from 15 to 6. In fact,



12 A. FAMÀ, L. RESTUCCIA EJDE-2020/73

writing relation (4.6) in the case of Ljiklmn (i.e. changing the index i with j), we
have

Ljiklmn = L1δjiδklδmn + L2δjiδkmδln + L3δjiδknδlm + L4δjkδilδmn

+ L5δjkδimδln + L6δjkδinδlm + L7δjlδikδmn + L8δjlδimδkn

+ L9δjlδinδkm + L10δjmδikδln + L11δjmδilδkn + L12δjmδinδkl

+ L13δjnδikδlm + L14δjnδilδkm + L15δjnδimδkl.

(5.11)

Matching expressions (5.11) and (4.6), by (5.9), we obtain

Lijklmn = B1δijδklδmn +B2δijδkmδln +B3δijδknδlm +B4(δikδjl + δilδjk)δmn

+B5(δikδjm + δimδjk)δln +B6(δikδjn + δinδjk)δlm

+B7(δilδjm + δimδjl)δkn +B8(δilδjn + δinδjl)δkm

+B9(δimδjn + δinδjm)δkl;

(5.12)

with

B1 = L1, B2 = L2, B3 = L3, B4 = L4 = L7, B5 = L5 = L10,

B6 = L6 = L13, B7 = L8 = L11, B8 = L9 = L14, B9 = L12 = L15.
(5.13)

Writing relation (4.6) in the case of Lijkmln (i.e. changing the index l with m), we
have

Lijkmln = L1δijδkmδln + L2δijδklδmn + L3δijδknδml + L4δikδjmδln

+ L5δikδjlδmn + L6δikδjnδml + L7δimδjkδln + L8δimδjlδkn

+ L9δimδjnδkl + L10δilδjkδmn + L11δilδjmδkn + L12δilδjnδkm

+ L13δinδjkδml + L14δinδjmδkl + L15δinδjlδkm.

(5.14)

Matching relations (5.14) and (4.6) and using (5.10), we obtain

Lijklmn

= C1(δklδmn + δkmδln)δij + C2δijδknδlm + C3(δjlδmn + δjmδln)δik

+ C4δikδjnδlm + C5(δilδmn + δimδln)δjk + C6(δilδjm + δimδjl)δkn

+ C7(δilδkm + δimδkl)δjn + C8δinδjkδlm + C9(δjlδkm + δjmδkl)δin,

(5.15)

with

C1 = L1 = L2, C2 = L3, C3 = L4 = L5, C4 = L6; C5 = L7 = L10,

C6 = L8 = L11, C7 = L9 = L12, C8 = L13, C9 = L14 = L15.
(5.16)

From the match of relations (5.12) and (5.15), we obtain the special form of a
sixth order perfect isotropic tensor having the symmetries (5.10) with 6 significant
components

Lijklmn

= D1(δklδmn + δkmδln)δij +D2δijδknδlm +D3[(δikδjl + δilδjk)δmn

+ (δikδjm + δimδjk)δln] +D4(δikδjn + δinδjk)δlm

+D5(δilδjm + δimδjl)δkn +D6[(δilδjn + δinδjl)δkm+

+ (δimδjn + δinδjm)δkl],

(5.17)
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with

D1 = B1 = B2 = C1 = L1 = L2, D2 = B3 = C2 = L3,

D3 = B4 = B5 = C3 = C5 = L4 = L5 = L7 = L10,

D4 = B6 = C4 = C8 = L6 = L13, D5 = B7 = C6 = L8 = L11,

D6 = B8 = B9 = C7 = C9 = L9 = L12 = L14 = L15,

(5.18)

where we have used expressions (5.13) and (5.16).

6. Appendix: Derivation of the rate equation for the porosity field
flux

To obtain equation (4.9), we use (3.11) and the special forms (5.4) and (5.17),
assumed by the forth order tensor γ4

ijkl and the sixth order tensors γrijklmn (r = 3, 6),

so that equation (3.3) takes the form

δij
∂Vk
∂t

= {γ3
1(δklδmn + δkmδln)δij + γ3

2δijδknδlm + γ3
3 [(δikδjl + δilδjk)δmn

+ (δikδjm + δimδjk)δln] + γ3
4(δikδjn + δinδjk)δlm + γ3

5(δilδjm

+ δimδjl)δkn + γ3
6 [(δilδjn + δinδjl)δkm + (δimδjn + δinδjm)δkl]}Vnδlm

+ [γ4
1δijδkl + γ4

2(δikδjl + δilδjk)]c,l + {γ6
1(δklδmn + δkmδln)δij

+ γ6
2δijδknδlm + γ6

3 [(δikδjl + δilδjk)δmn + (δikδjm + δimδjk)δln]

+ γ6
4(δikδjn + δinδjk)δlm + γ6

5(δilδjm + δimδjl)δkn

+ γ6
6 [(δilδjn + δinδjl)δkm + (δimδjn + δinδjm)δkl]}r,nδlm,

(6.1)

where γ3
s and γ6

s (s = 1, . . . 6) are the 6 independent significant components of
the sixth order tensors γ3

ijklmn and γ6
ijklmn, respectively, and γ4

1 , γ4
2 are the 2

independent significant components of the fourth order tensor γ4
ijkl. Then, from

(6.1) we obtain

δij
∂Vk
∂t

=
[(

2γ3
1 + 3γ3

3 + 2γ3
5

)
Vk +

(
2γ6

1 + 3γ6
3 + 2γ6

5

)
r,k + γ4

1c,k
]
δij

+
[(

3γ3
2 + 2γ3

4 + 2γ3
6

)
Vj +

(
3γ6

2 + 2γ6
4 + 2γ6

6

)
r,j + γ4

2c,j
]
δik

+
[(

3γ3
2 + 2γ3

4 + 2γ3
6

)
Vi +

(
3γ6

2 + 2γ6
4 + 2γ6

6

)
r,i + γ4

2c,i
]
δjk.

(6.2)

Thus, when i = j we have

∂Vk
∂t

=
(
2γ3

1 + 6γ3
2 + 3γ3

3 + 6γ3
4 + 2γ3

5 + 6γ3
6

)
Vk +

(
γ4

1 + 2γ4
2

)
c,k

+
(
2γ6

1 + 6γ6
2 + 3γ6

3 + 6γ6
4 + 2γ6

5 + 6γ6
6

)
r,k,

(6.3)

i.e. equation (4.9), τν ∂Vk∂t = −Vk −Dνr,k +ανc,k, when we introduce the following
definitions (with the minus sign coming from physical reasons)

2γ3
1 + 6γ3

2 + 3γ3
3 + 6γ3

4 + 2γ3
5 + 6γ3

6 = − (τν)
−1
, αν = τν

(
γ4

1 + 2γ4
2

)
, (6.4)

Dν = −τν
(
2γ6

1 + 6γ6
2 + 3γ6

3 + 6γ6
4 + 2γ6

5 + 6γ6
6

)
. (6.5)
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7. Derivation of the rate equation for the fluid-concentration flux

To derive (4.10), we use equation (3.4), the assumption (3.11)1 and the special
form (4.3) and (5.8) of the tensors ξ4

ij and ξ6
ijkl, so that we obtain

τ j
c ∂jci
∂t

= −jci − ξ4δijc,j + [ξ6
1δilδjk + ξ6

2(δijδkl + δikδjl)]r,lδjk, (7.1)

where ξ6
1 , ξ6

2 are the 2 significant independent components of the fourth tensor ξ6
ijkl

and ξ4 is the only one significant component of the second order tensor ξ4
ij . Then,

equation (7.1) keeps the form

τ j
c ∂jci
∂t

= −jci − ξ4c,i + (3ξ6
1 + 2ξ6

2)r,i, (7.2)

i.e. equation (4.10), τ j
c ∂jci
∂t = −jci +αcr,i−ρDcc,i, when we introduce the following

definitions

αc = 3ξ6
1 + 2ξ6

2 , Dc =
ξ4

ρ
. (7.3)
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