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REPRESENTATION OF SOLUTIONS OF A SECOND ORDER
DELAY DIFFERENTIAL EQUATION

KEE QIU, JINRONG WANG

ABSTRACT. In this article, we study an inhomogeneous second order delay
differential equation on the fractal set R®™ (0 < a < 1), based on the theory
of local calculus. We introduce delay cosine and sine type matrix functions and
give their properties on the fractal set. We give the representation of solutions
to second order differential equations with pure delay and two delays.

1. INTRODUCTION

In 2003, Khusainov and Shuklin [5] introduced the useful notation of delayed
exponential matrix functions, which is used to represent solutions of linear au-
tonomous time-delay systems with permutation matrices. Khusainov and Diblik
[] transferred this idea for solving the Cauchy problem for an oscillating system
with second order and pure delay, by constructing special delayed matrix of co-
sine and sine type. These pioneer works led to many new results in integer and
fractional order differential equations with delays and discrete delayed system; see
[T, 2, B3 [, 7, [8, [l T0) 1T, 2] T3] 14l 5] [16] 17, 18|, 24] 25].

In 2012, Yang [20] transferred the standard calculus to local calculus on a fractal
set, which is utilized in various non-differentiable problems that appear in complex
systems of real-world phenomena. Furthermore, the non-differentiability occurring
in science and engineering was modeled by the local fractional ordinary or partial
differential equations [19, 21} 23]. As an effective research tool for continuous non-
differentiable function, local fractional calculus has attracted a lot of attention, see
[22].

In light of the above mentioned theory of local fractional calculus and delayed
matrix of cosine and sine type on real set, we shall introduce the notation of delayed
matrix of cosine and sine type on the fractal set R*" (0 < o < 1). The potential
applications of the delayed cosine and sine type matrix function on a fractal set
will be effective for homogeneous or inhomogeneous delay differential equation ona
fractal set with constant matrix coefficients. In this article, we use two new special
matrix functions to derive the representation of the solution to the following second

2010 Mathematics Subject Classification. 26A33, 28A80, 34A34.

Key words and phrases. Second order delay differential equations; delayed matrix functions;
fractal set.

(©2020 Texas State University.

Submitted March 24, 2020. Published July 7, 2020.

1



2 K. QIU, J. WANG EJDE-2020/72

order inhomogeneous delay differential equations on a fractal set:
yEI (@) + Ay(x —7) = f(z), y(z) R, ©>0, 7>0,

1.1
y(z) = ¢(z), y(x)=¢Y(z), —r<z<0, (1)

and
Yy (@) + Ay(z — 1) + BPy(x — ) = f(2),
y(z) €RY™, 2 >0, 71,72 > 0, (1.2)

y(@) = ¢(z), y () =9 (2), —T<z<0,

where 3("®)(z) is the na-local fractional derivative on the fractal set R®" (0 < a <
1), and f: Rf — R®" is a given function, the matrices A = (ag;)n and B = (b))n
are permutable constant matrices on a fractal set with det A # 0 and det B # 0,
and ¢(z) is an arbitrary twice local continuously differentiable vector function on
the fractal set, i.e., ¢ € Con([—T, 0], R*").

Following the approach in [4, Bl [I3], the main contribution of this article is
deriving the representation of and involving special matrix functions on
the fractal set. Section 2 introduces the concepts of matrix functions called delay
cosine and sine type on a fractal set, and gives their properties. Section 3 gives
the representation of solution to . The final section gives the representation of

solution to (1.2).

2. PRELIMINARIES

We recall some basic definitions of local fractional calculus from [20] 22]. Let R®
(0 < @ < 1) be a-type set of the real line. If a®,b%, ¢* € R®, then
i) a® +b* € R, a®b* € R™.

) a®+b*=b*4+a*=(a+b)*=(b+a)* and (a — b)* = a® — b™.
) a®+ (b* +¢*) = (a+b)* + ™.
v) a®b® = b*a® = (ab)* = (ba)*.
) a®(b%c®) = (a®b%)c”.

) a®(b* + ¢*) = a“b™ + a%c™.

) a® +0% =0%+4+a® = a® and a*1* = 1%* = a®.

Definition 2.1. A function f : R — R is called local fractional continuous at
T = xg, if for each € > 0, there exists § > 0 such that

[f(x) = flzo)| <&

holds whenever |x — xg| < d, where €,§ € R. If f(x) is local fractional continuous
in the domain (a, b), then, we denote f(x) € Cy(a,b).

Definition 2.2. Suppose that f € C,(a,b), 0 < o < 1, and that for § > 0 and
0 < |z —x0| < 9, the limit

D@ f(z4) = d* f (=) — lim L1+ a)(f(z) — f(z0))

dz® =z, 250 (x — xg)™ ’

exists and is finite. Then D(® f(z) is said to be the local fractional derivative of
f of order o at x = x¢. It is convenient to denote the local fractional derivative as

F) ().
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Let f(u,x) be defined in a domain g of the uz-plane. The local fractional partial
derivative operator of f(u,x) of order av with respect to u in a domain p is defined

by
~ lim L1+ a)(f(u,z) — f(uO,l")).

u=uy  u—ug (u — up)®

f("‘)(uo, z) = %

Similarly, the local fractional partial derivative operator of f(u,x) of higher order
na with respect to u in a domain p is defined by

anaf( ) aan tzmesaa
(na) g Jwr) -9 9
f (UO’ x) 3ua U=1ug 6’&0‘ o 6’&0‘ (U7 x) u:uo’

where n is a positive integer.

Definition 2.3. Let f € C,la,b]. Then the local fractional integral of function f
of order « is defined by

(o) «
oy /(@) 1+ /f (b (1—|—a Ataozf At

where Atj = tj+1 — tj with a = to <t < - <tn_1 <ty = b [tj,t]_H] is a
partition of the interval [a, b]. Note that oI\ f(z) = 0 and ,I O‘)f( ) = —p I\ f(z)
ifa <b.

Now we introduce the concepts matrix functions called delay cosine and sine
type on the fractal set R (0 < o < 1).

Definition 2.4. The delayed cosine type matrix function is deifined as

o, —oco<x < —T,
I —717<x<0,
cos, (Az®) := ta
T 220 (z— 7_)
I-A r'(1+2a) +A4 gl+4o¢) +..
+(—1)kA2kF(’§+73;), (k—1)7 <z <kr, keN,
and the delayed sine type matrix function as
o, —oo < x < —T,
A;fg;;;, —r<2<0,
sin, (Az®) := (o47)* P
AF(H_Q) 4 F(143a) +(2k+1)
z—(k—1)7 “
+( )kA2k+1%, (k — ].)T S T < kT7 k S N,

where A = (ag;)n is a constant matrix on the fractal set, © is the null matrix and
I is the identity matrix. Moreover, N denotes the set of all nonnegative integers.

Next, we introduce two functions via an analogous delayed sine and cosine type
matrix functions on the fractal set, which are tools for solving differential equation
with two delays.

Definition 2.5. We define U2 (2), VAB (1) : R — L(R*") as follows:

T1,T2 T1,T2
iTl - jTQ)Q(i+j)a
F1+20G+j)a)

A (z
AR = X Uk A
,j>0
iT1+jT2 <z
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(x —ir — jro) R+
F1+2G+7)+1)a)

AB _ E i+J e 21 R2j
VTl,TQ(:E)_ (_1) CZ+JA B
,j>0
iT1+jme <z

where 71,79 > 0,A,B are n X n constant matrixes on the fractal set R*", by
definition UAZ (z) =0, VAZ (z) =0 if 2 < 0.

T1,7T2 T1,T2

Some properties of UAE (z), VA Z (x) are established in Lemma below.

71,72 ? T T1,T2

Now, we give some properties associated with the local fractional derivatives and
the local fractional integrals on the fractal set, see [20, 22].

Lemma 2.6. (i) Suppose that g\ (z) = f(x) € Cyla,b], then

o1y 1 (@) = g(b) — g(a).
(ii) Suppose that f,g € Cyla,b], and ,g € Dy(a,b), then
b

I (F@)g™ @) = f@)g(@)|| — oIy (D ()g().

(iii) Suppose that f € Cyla,b], then
s [ r@@T=ra s, e @,

dx®

A

e [ 1O =T+ ) W @)

for x € [a,b] and u € Ci[a,b].
(iv) ‘Suppose that f(u,) € Ca(la,B], le,d)), 2= f € Calla,b], [c,d]), then

1 ’ .
o) = gy | fwa)dm)

is a local fractional derivative on [a,b], and

oo L [Tdfua) o,
dun‘b(u)_r(ua)/a GO

(v) Suppose that f(u,z) € Cy([a,],[c,d]), %f € Cq([a,b], [c,d]), c(u),d(u) €
Cila,b], c < c(u) < d, ¢ < d(u) <d for any u € [a,b], then

d(u)
)= — / F(u, 2)(da)

is a local fractional derivative on [a,b], and
dr 1 ) qr f(u, )

- — ) d @
o0 = e [ )

-y d(w) (@' () = Flu, () (@ (W), 0< k< 1.
Lemma 2.7. We have
doake I'(1+ ka) p(k=Da

dz® 1+ (k—1a) ’
1 I'(1+ ka)

b
ka a (k+1)a _ (k+1)a
L dr)* = —— = TR k> 0.
F(l—!—a)/ax 2)" = S e D) @), k>
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Lemma 2.8. Suppose that f(z),g(x) € Dy(a,b), A,y € R. The local fractional
differentiation rules of non-differentiable functions defined on fractal set are listed
as follows:

(i) (\f(2) £ g(x )) “) —Af(“( ) + 79 (@).
(it) (f(2)g(@) ) = f@(2)g(x) + f(2)g") (2).
(i) (f(z)/g(x)) = (f(“) (2)g(z) — F(2)9') (2))/g (), provided g(z) 0.
Suppose that g(z) = f(u(x)), and f(*)(u) and u'(x) exist. Then
I

9 (x) = flu(x))' ™ = F1 () (' ().

Lemma 2.9. Suppose that f(x),g(x) € Cqla,b], A,y € R. The local fractional
integral rules of non-differentiable functions defined on a fractal set are listed as
follows:

i) oI (@) £ y9(2) = NI f(2) + 1M g ().
(ii) all()a)f(m) = Y f(x) + CIl()o‘)f(:c), provided a < ¢ < b.

It should be noted that the fractional derivative in the following represent the
one-side derivative in nodes x = k7, k= 0,1,2,... and z = 7, 7».

Lemma 2.10. For delayed cosine type matriz function cos,(Ax®), one has

(cosr(aam) ™ = —Asin (A - 7)),

(22)

(2.1)
(cosT(Axa)> = —A%cos, (A(x — 1)%).

In other words, the delayed cosine type matrix function is a solution of differential
equation of the second order with pure delay on fractal set

y*) (@) + A%y(z —7) =0,
subject to initial value condition y(x) =1, —7 <z < 0.

Proof. Let A and 7 are fixed. Firstly, for arbitrary = € (—oo, —7), cos,(Az%) =
sing (A(z — 7)) = cos; (A(x — 7)*) = ©. Obviously, (2.1]) holds.
Secondly, cos;(Az®) = I, sin.(A(x — 7)%) = O, cos,(A(x — 7)*) = O, which

reduces to (cosT(AmO‘))(a) =TI =0 = sin.(A(z — 7)) and (cosT(Axo‘))(Qa) =
1% = @ = cos, (A(x — 7)%) for arbitrary 2 € [~7,0), then (2.1]) holds.
Finally, for an arbitrary « : (k — 1)7 < 2 < k7), we have
ay} ) 7 sz —m)te
(COST(A‘T )) - (I A T2 T T aa) 22)
— 1)7)2kay (a) :
4. ( )k:AQk ( (k ) ) ) ,
I'(14 2ka)
applying Lemmas 2.7 and we have
(@)
(COST(AxO‘))
A2 z* + 4 (.17 — T)Ba R (_1)kA2k (1‘ — (k — 1)7-)(2]671)&

L(1+a) (1 + 3a) T(1+ 2k — Da)
R O e Y
s L1+ (2k = 1)a) )

B (x —7)3
- _A(Am +a) A3r(1 T30y T (=1)
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= —Asin, (A(z — 7)%).

Then

( coS; (Ax’l)) 2

_ ((COST(Axa))(a))(a)

= —A(SinT(A(x . T)a)> ()

_ ® (x —T7)3 1 oy (@ — (K — 1)T)(2k—1)a ()
- _A<AF(1 To rarse t OV T e 1) )
_ (x —7)% B (@ — (k= 1)7)2(kDa
_—A(A—A3m+...+(_1)k 1A2k 1 F(1+2(k_1)a) )

= —A? 2 (& —7)* L1 gakeeny (@ = (B — 1)7)2(k— e

= a(ra T R e A S v (o 9 )

= —A%cos, (A(x — 7)%).
This completes the proof. O

Remark 2.11. Using a method similar to the one in the proof of Lemma the
following rule of fractional differentiation is true for the sine type matrix function.

<sinT (Aaca)) @ = Acos;(Az®), (sinT (Aaca)) 2 = —A%sin, (A(x — 7)%).

In this case, the delayed sine type matrix function is a solution of differential system
of the second order with pure delay on fractal set

y® (@) + A%y(x —7) =0,

that satisfies the initial conditions y(z) = A% for —7 <2 <0.

Lemma 2.12. Let 71,72 > 0, A = (af})n, B = (b§;)n be permutable constant
matrices on fractal set with det A # 0,det B # 0. Then both U;?ijfz (z) and V15 (z)
satisfy

y®) (z) + A%y(x — 1) + B*y(z — 72) = 0. (2.3)
for any x € R.
Proof. (i) If 7 := 11 = 79, then
2it)ex

UA,B — -1 i+jcr? ,AQisz (:L' —im 7‘7‘7_2)
7—1,7'2(55) ij2>0 ( ) i+j F(1+2(i+j)04)

iT1+jT2<w
it i i o (@ = (i 4 4)7)20 )

=2 > ()L ATEY T(1+2(i+j)a)

k>0 i,j>0 Je

kr<witj=k

_ kT)Qka

= “1)F(A2 + B2 R (@ — k7)™

];)( A+ B N oka)

kr<z

= cos, (\/m(x - 7)0‘),
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where k = i+ j. Using Lemma we have cos; (VA% + B2(z—7)%) is a solution
of y(QO‘)(x) + (A2 + B?)y(z—7) =0, ie.

(2a)
(UAvB (@) + A2UAB (2 — 1) + BHUAL (x — 1) = 0.

T1,T2 71,72 71,72
(ii) If 71 # 7o, suppose that 71 < 79. Firstly, we suppose that x < 71, so that
UAB(2)=1, UME(x—m)=0, UPE(z—m)=0,

71,72 71,72 71,72

since i11 + j72 < x < 71, Definition indicates that ¢ = 0 and j = 0. Thus, (2.3
holds.
Secondly, we suppose that 7 <z < 73, i.e., x — 75 < 0, then

UA’B (.’E 77’2) = 0,

and ( )2
UAB (2) = S (1) A% 2 T oo (A(e — 7)),
7'1,7'2(:]9) ZZZO( ) F(1+27/a) COS ( (I' 7_1) )
i1 <z

since iT1 + j72 < T < 72 in the Definition indicates that 7 = 0, using Lemma

we obtain .

Finally, we suppose that > 75. It suffices to note that

Ubyi (@) == I +wi (@) + wa (@) + wy(x), (2.4)
where
. . _ 2ic _ 2c o 27_ )4&
= _12142%%:_ o (r =) 4@ )
o) ; = ['(1+ 2ia) (1 +2a) T(1+ 4a) ’
it <z
. A — 7520 (m - )2a ({E _ 927 )4a
- _1JBQJM:_B2 2 B 2
wa(x) ; (=1) I'(1+2ja) (1 + 2a) (1 + 4a) ’
jiz_éx
I _a 2(i4j) o
= 1), A% B2 (x — i1 — j72)
w3($) Z ( ) i+j F(l T 2(2 +])O¢)
i,j>1
iT1+jT2<x

Calculating the second local fractal derivative of wq(z), we have

(2a) i i (@ — )20
wi (@) ; R VT
i<z
. . _ (s 1)7_1)2(1'71)04
— _A2 —1) 1A2(7, 1) ($ T1 (Z
; (=1) M(1+4+2(i—1)a)
ir <z
: 21
— A2 1 z‘Azi(x_Tl_Wl)
; (=1) (1 4+ 2ia)
i‘rlg_z—‘rl
A2 g2 qNi 2i($_71_i71)2ia
A4 Z (=14 (1 + 2ia)

i>1
it <Tx—T1

= —A2 — A2w1(:c — ’7'1).
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Analogously, we have
(2a) _ 2 2
wy (x) = =B — B wa(z — T2).

By using the properties of binomial numbers C, ;| = C/" +Cj*~! and Ck =cn="*
for n,m > 1, we find that

20
W' ()
= > (-1)HCLAYBY (2 —im — jmp) 207D
= itj Ti+20 47— 1)a)
i,j>1
iT1+jTe<x
o i \2(iti-1)a
= 2 @JY+“¥;;1AZB%(ﬁX;$QGZ?)_1)
2,7>1 Ji a)
im+jra<a
Ay — 4 2(i+j—1)a
1)t . A% B (LE 1T1 ]7'2)
: iaz; T T(1+2(i+j—1)a)
iTl-‘:-j;zga:
- Z (—1)i+jC?71 A21B2] (.’L' —T1 — (/L — ].)’7'1 — j72)2(i_1+j)a
o o T+ 26— 1+J)a)
iT14+jre<z
i+j (i~ (=i — jry) 2D
+ _1)itigdil AQszj( i)
;1 VT T(1+2(i+j— 1)a)
ir+jra<a
; \2(i—14j)
= > (=nMoD,,ATBY (x =7 — (i = Pr1 = jro)2 710
ij>1 I(142(i — 14+ j)a)
’LAleFj;zgcv

(x—m—ir —(j — 1)7’2)2(”]'71)0‘

T(1+2(i+j—Da)

+ ) (~yTed AMBY

i5>1

iT1+jme<x
L o ) . (s 1)7_1 7‘7‘7_2)2(i71+j)a
— A2 _1)i om0 f26-1) g2 (x—7 — (i
ijz>1 Y . F1+2(i—1+j)a)
imtjre <z
L ) . — 1o — i1 — (] — 1)72)2(i+j—1)a
_ B2 _1)iti—loi—l  f2ig2(i-1) (r — 79 —iT — (j
Z.;l =) i F(1+2(i+j—1)a)
T g <a

We now replace ¢ — 1 by 4 in the first sum and j — 1 — j in the second sum
above, then we have

(iC —T1 — iTl —jTg)Q(H_j)a

(2a) — A2 _q1\itiri A2 p2j
wy () =—A > (-1)TCL,AYB T3 201 )0)

120,521
iT1+jTe<r—T71

(x — T —iTy — j7o)2(F e

T+ 26 +j)a)

_ 2 _qYitid 422
B Y (-1)HC A%B
i>1,j>0
iT1+jTe<T—T2
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Further, we split the first sum into ¢ = 0 and 7 > 1 and the second sum into j =0
and j > 1, then

(2a) — A2 _1)iR% (x =11 —jm)
wi (@) ; (=1) T(1+ 2ja)

JT2<zT—T1

2ja

(z — 711 —im — jro)2lite
P(1+2(i+j)a)

_ A2 Z (_1)i+jcii+jA2iBQj
3,71
iT1+jre<z—T1
o (T — T —iTp)%@
_ BQ (_1)11421(—-
1_221 I'(1+ 2ia)
T <T—T2

(LC — T2 — iTl — j72)2(i+j)a

(1 +23+j)a)

4,521
iT1+jT2<T—T2
= —AQWQ({L' — 7'1) — Ang(x — 7'1) — ngl(,@ — Tg) — BZU.}g(l‘ — Tg).
Substituting the formulas for w%QO‘) (z), wga) (z), wém) (z) and calculating the second
fractal derivative both sides of (2.4)), we obtain

(20)
(U;‘}’,f; (3:)) =-A (I Fwi(z —7) +wa(e— 1) +ws(@— n))
_ 32 (I —i—wl(x — 7'2) +w2(x — 7—2) +Cd3(.’£ _ 7_2)>
= —AQUA,B (ZC _ 7_1) _ BQUA,B (IL‘ _ 7_2).

71,72 T1,T2

Thus, we arrive at the relation. Further, we proceed by analogy with V;?;f; (x).

Statement holds with V2B () instead of UA-Z (). Therefore, we have the results.
U

3. SOLUTIONS OF DIFFERENTIAL EQUATION WITH PURE DELAY ON FRACTAL SET
We study the linear homogeneous differential delay equations on fractal sets,
Yy (z) + A%y(xz —7) =0, ylx)eR*™, >0, 7>0,
y(@) = ¢(x),y V(@) = ¢!V (z), -7 <z <0

Theorem 3.1. Suppose that the matriz A = (ag;)n is a constant matriz on a fractal

set with det A # 0, and ¢(x) € Con([—7,0],R*™). Then the solution y(z) of (3.1)
can be expressed as

y(@) = (cosr (Ax®))d(—7) + A~ (sin, (Az))p!®) (~7)

(3.1)

- i 3.2
+ ]__‘(j]fl—’_a) /_T MDT(A($ - T — S)Q)¢(20‘)(3)(d8)o¢. ( )
Proof. We seek for a solution of in the form
y(-T) = (COST(Axa))Cl —+ (Sil’lT(Axa))C2
0
+ ﬁ [T sing (A(x — 7 — S)a)z(Qa) (s)(ds)®, (3.3)
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where ¢, co are unknown constant vectors on R*” and z(z) : [—7,+00) — R*" is
an unknown twice continuously differentiable vector function. From Lemma [2.10)
and Remark , i.e., due to linearity, we know that is a solution of
for arbitrary c1, co and vector function z(z) € Caq([—7,0],R*™). Now we try to fix
the constants c1,ce and the vector function z(z) in such manner that the initial
conditions y(z) = ¢(z), ¥ (z) = ¢{*)(z), -1 < x < 0, are satisfied.

We use to represent the first initial condition y(z) = ¢(x), -7 < a < 0,
ie.,

(cosr(Axz¥))er + (sin,(Az®))co
1 /0 : Alr — 7 — 5)® (2a) ds)® =
—|—m _TsmT( (x —7—5)%)2"Y(s)(ds)* = ¢(x).
This leads to

(’l,’+7‘)a 1 0 . Ie% « a
cl+cQAm+a) +F(1+a) /7TsmT(A(1:fos) )22 (5)(ds)™ = ¢(x), (3.4)

where ( )
T+ T7)%

Az®)) =1, (sin,(Az®)) = AL T

(cos;(Az®)) =1, (sin,(Az")) T+ a)

Since

0 <s<0

s (A(w —7 =) =4 g o
Am, —-T<s<ux,

it follows that
1 0
R : A ) L (20) «
I'(1+4 «) /,TsmT( (=7 = 8)%)z7(s)(ds)

= 714 : z — 5)*229(s)(ds)e. (35)
(F(1+a))2/—7( )22(29) (5) (ds)

Using (i) and (ii) of Lemma and Lemma to the right-hand side of (3.5)),
i.e., using local fractional integration by parts and local fractional derivative for
the right of (3.5]), it is necessary to verify that

A4 xm—so‘z(m)s s)“
(F(lm))z/_; )0 )

_ mia) (e =) - ﬁ /_x £(5) (@ — 5)°)((ds)")
= mia) (=)= g 1+ 3 / 2 (5)(ds)°T(1 + )
— i (@ + [ )
= —m‘ia)(l« ) (1) + mi - /_ £ (5)(ds)°
= —m‘i o 7 () + Ax(s) -
A
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submitting this and (3.5) into (3.4)), it follows that
(+m)* A
Nl4+a) T(1+a)

Let us rewrite the above equalityin the form
o Az + 1)
(01 - AZ(*T)> + (cz — 2t )(*T)) 1“((1—1—04)) + Az(z) = ¢(). (3.7)

Applying Lemmas and to both sides of (3.7) and paying attention to the
second initial condition y(®(z) = ¢(*) (), —7 < 2 < 0, we have

c1 + A (z+ T)O‘z(a)(—T) + Az(z) — Az(—7) = ¢(x). (3.6)

A(CQ - z(“)(—r)) + A2 (z) = ¢ (2). (3.8)
In this case, a combination of and , one has
e1 = ¢(=7)ier = A7V (=7), 2(z) = A7 (),
since det(A) # 0. Putting ¢1,c; and z(z) into (3.3)), we obtain (3.2). O

Remark 3.2. To obtain some alternative conclusions, with the assumptions in
Theorem |3.1} one can apply integration by parts via Lemma We have

A1 0 . o 1 (201) N
m/f“T<A<x—T—s> )62 (5)(ds)

_ 7-1 1 0 . o () el
—4 m[TSInT<A<z—T—s> )(d6@ (s)

=A"! (sinT(A(x — 7 —5)")9*)(s) '

-7

1 ? 4@ () A cos. (A ) (ds)®
b iy [ 6 Ao (e~ — 7))
= A sin (A(x — 7)*)6()(0) — A~ sing (A2®)p (~7)
1 0 o o
+m _TACOST((.’E—T_S) )(do(s))

= A sing (A(z — 7)) (0) — A7 sing (Az®) (™) (—7)

+ cosr (A(x — 7 — 8)Y)o(s) ’

A 0 -
Tt ) (s)sing ((z — 27 — s)¥)(ds)”
= A" sing (A(z — 7))@ (0) — A7 sin, (Az®) ™) (—7)
+ cosr (A(x — 7)¥)¢(0)
A 0
- cos, (4s°)0(7) = £ /_ sin (@ = 27 = 9)°)(s) ()"
This implies that the conclusion of Theorem [3.1] can be expressed as

y(x) = (cos, (A(z — 7)) p(0) + A_l(SinT(A(x _ T)a))¢(a)(0)

A o N N
i s -2 - 90 s,
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To end this section, we consider the inhomogeneous differential delay system on
a fractal set
Y2 () + A%y(x —7) = f(z), y(z) €eR™ 2>0, 7>0,

y(z) =0, —7<z<0. (39)

Theorem 3.3. Suppose that the matriz A = (a%)n is a constant matriz on a fractal
set with det A # 0, and f : R§ — R is a given function. Then the solution yo(x)

of the inhomogeneous equation (3.9)) can be expressed as

1 T
A ] /0 sing (A(x — 7 — 8)%) f(s)(ds)“.

Yo(z) = m

Proof. We will try to seek a particular solution yo(z) of the inhomogeneous equation
(3.9), employing the method of variation of an arbitrary constant in the form

yolz) = ﬁ / "sin (Afz — 7 — 5)*)C(s)(ds)*,

where C(s),0 < s < z, is an unknown function. Local fractional differentiating the
function yo(x), we obtain
y ()
ﬁ /0 Acos (A(x — 1 — $)")C(s)(ds)* + sin, (A(x — 7 — 5)¥)C(s)
A xr
_ m/o cos-(A(z — 7 — 5)*)C(s)(ds)?,

and

& ()
A

= o) /Ow ((A sin, (A(x — 27 — S)Q)C(5)> (ds)”

+ Acos - (A(x — 7 — 8)*)C(s)

A2 ® . o a « @
= _m/o sing (A(x — 27 — 5)*)C(s)(ds)® + Acos, (A(—7)*)C(z)

S=x

A2 T ) . X
= —M/o sin, (A(x — 27 — 5)*)C(s)(ds)™ + AC(x),

since sin, (A(x — 27 — $)*) = 0, when  — 7 < s < . Hence,

2 r—T
W@ ==y (Al =2 =) + ACG),

Substituting y((fa)(x) and yo(z — 7) into system (3.9), we obtain

A2 xr—T
e /O sin, (A(z — 27 — 5))C(s)(ds)* + AC(x)
A2 r—T
+ Tita) /0 sin, (A(x — 27 — 5)%)C(s)(ds)™ = f(z).
Since det A # 0, we obtain C(x) = A~!f(x). Thus, we arrive at the results in
Theorem 3.3 O
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As we know, the solution of system (1.1)) is the sum of solution of homogeneous
problem (3.1) and a particular solution of (3.9). Therefore, collecting the results
of Theorem Remark [3.2] and Theorem we obtain the following results.

Corollary 3.4. Solution of (1.1 can be represented in the form
(b(x)a -7 S T S 07

(cos- (As)o(~7)
Y(@) =+ ey JO, s (A(z — 7 — 5))2) () (ds)
+ A (sin, (Az®)) () (1)

+itiray Jo sine(A(x =7 = 9)7)f(s)(ds)>, @ =0,
o(x), —7 < x <0,
(cosy (A(a =~ 1))é(0)
y(z) = mw) 2 sing (A(z — 27 — 5)*)p(s)(ds)
+A™ (sin (A(z — 7)*))8*) (0)
+r(1+a) fo sing(A(z — 7 —5)%) f(s)(ds)*, x=>0.

4. SOLUTIONS OF DIFFERENTIAL EQUATION WITH TWO DELAYS ON A FRACTAL
SET

In this section, we deduce the representation of a solution of system (1.2)) by using
matrix functions U8 (z), VA B () which is counterpart of formulas in Corollary

T1,72 7T T1,T2

Theorem 4.1. Suppose that the matrizv A = (af;)n, B = (bf;)n are permutable
constant matrixz on fractal set with det A # 0, det B # 0. Let 71,7 > 0, 7 :=
max{7y, 72}, (,25 € Co([-T,0l,R*™), and f : [0,00) — R be a given function. Then
the solution y(x) of . ) has the form

o(x), —7 <z <0,
U(z)o(0 )+V( )¢{*)(0)
y(x) = ¢ — A2l 1+a f“ V(z — 11— s)é(s)(ds)® (4.1)
-B? 1+a) f_TZ x — Ty — 8)P(s)(ds)”
+1"(1+o¢) fO - S)f(S)(dS)a, T2 07
where U(z) = UAE (), V(z) = V1B (2).

Proof. The main steps on the proof are as follows:

Stepl: we show that Theorem [£.1] hold by using Lemma [2.12] and Corollary [3.4]
if T1 = T2.

Step2: let 71 < 79, we show that y(x) satisfies the initial value condition on
[—7,0] and y(0) = ¢(0), ¥ (0) = $(*)(0) from the form of y(x) and the calculating
of local fractal derivative of y(z) .

Step3: we show that y(z) is a solution of system from the following three
cases because x > 0: 0<x <7, 71 <2 <7 and x > 5.

The detailed proof process is as below:
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(i) We consider only the case 71 # 72 because if 71 = 79, then one can use Lemma
and Corollary [3.4] to show that Theorem holds.

(ii) We show that y(z) satisfies the initial value condition on [—7,0] and y(0) =
$(0), ¥y (0) = ¢(*)(0). Due to the form of y(x), if x > 0, suppose that = <
min{7, 2}, then we have

T
U@)=1 V@) =gy
07 s € [3'577_1'70]; (:E*S)a
V(l‘—Ti—S):{W s€ -1,z —T7] Viz=s) I(l+a)
T(i+a) * " v

for s € [0, z], imply that x — s € [0,2] C [0, min{7y,72}]. After some calculation,
we obtain

y()

xoe

= 6(0) + 5

: /m_T1 o _n—sf P(s)(ds)”

T4 ).  T(+a)

B TR (r =1 —5)” o 1 T (r—9)™ o
arw ). Tare OO e ), raem e

Calculating local fractal derivative of y(z), from Lemmas we have

@ (g = s@ (o — A T e
V@) =00) - i [ et

32 T—To . 1 - .
F(l—!—a)/ o(s)(ds) +F(1+a)/o f(s)(ds)".

Let x — 0T, then

li =¢(0), lim y@(z) = ¢(*(0).
Jim y(z) =¢(0),  lim y**(z) = ¢*(0)
Obviously, y(z) satisfies the initial condition [—7, 0], which completes the proof for
this case.

(iii) Now we show that y(z) is a solution of system (1.2]). Since 71 # 7o, let
71 < To. Firstly, if 0 < z < 7, then

Y@ (z) = —A%¢(x — 1) — B*p(x — 1) + f(z),

at the sometime, ¢p(z —711) = y(x —11), p(x —72) = y(xr —72) while 0 < z < 71 < 73,
we have . — 1 < 0,2 — 72 < 0. We find that y(z) is a solution of system (|1.2)).

Secondly, if 71 < & < 79, then for any s € [x — 72,0], V(z — 752 — s) = 0, and we
have

A2 0
Ya) = U@)ol0) +V(2)o ™ (0) - i [ Vie=m = o(s) (a9

B2 T—T2 o
s /_ V(z — 70— 8)(s)(ds)
1

+F(1+0‘)/0 Vix —s)f(s)(ds)?.
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Calculating the local fractal derivative of y(x), from Lemma and the prop-
erties of U(x) = UAB (1), V(z) = VAE (2), we have

71,72 71,72

y( ()
2 0
:U@@ww+v@mw@w%rdim/:V@m—n—@wﬂﬁf
_372 T—T2 (a)z_T s s Sa
ru+®/Q V@) (2 — 15 — 5)6(s)(ds)

=BV (z — 12— (x = m2))d(z — m)((z — 72))"
+ BV (z — 12 — (—72))p(—72)((—72)")°

1 ¢ (a)l‘—S S sa xr—x X .f/a
+m+a)/o V(2 — 5)f(s)(ds)* + V(z — 2)f(z)(a')
= V(z—0)f(0)(0)"
A2 0
:U@@W@+V@@M@®Vfa:@/lV@@—ﬁ—@dﬂﬁy

- ﬁ /_QC_T2 V) (z — 1y — 8)p(s)(ds)* — B2V (0)p(x — )
+ ﬁ /ow V) (z —s)f(s)(ds)” +V(0)f ()

Clearly, V(0) = 0 from Definition thus
y ()

A2 0
:U@@W@+VW@W®@_FO+®/:un_ﬁ_ﬁﬂﬂﬁf
BQ xr—T2 N o
‘nlww[ﬂ V) (2 — 7 — 5)o(s)(ds)

L @ g s) ) (ds)®
e AAARCERIOILS

2 0
=U®@W@+V®@W®®—rgim/)U@_ﬁ—@ww@w
B2 T—To . 1 " )
“ Tt /Tz Uz — 12— s)p(s)(ds)™ + F(1+a)/0 Uz — s)f(s)(ds)*,

because V() (z) = U(z) follows from Definition Using a method similar to the
calculation of y(®(z), we have

y (@) = U (@)3(0) + VED ()6 (0)

2 0
N F(1A+a)/ U (x =71 — 5)p(s)(ds)®
2 T—To
_Fézﬂiﬁ U (& = 72 = 5)(s)(ds)* — BU(0)(x — 72)

1

- ’ (@) (2 — s)f(s)(ds)® x).
+FG+MK;U (z — 5)£(5)(ds)* + U (0) f ()
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Applying Lemma m to y(?*) () and noticing that U(z — 75) =0, V(z — ) =0
because 2 < 75 and U(0) = 1, V{®)(z) = U(z) from Deﬁnition we have

y?) (z)
= ( — A2U(x —T) — B2U($ — 7'2))(15(0)
+ ( —AW(z—7)-B*V(z— T2))¢(a)(0)

A2 0 2a @
B F(l + Oé) /—7'1 V( )((E o S)¢(S)(d8)

B2 r—T2 20 o
“Fira ), Ve

1 * « «
- Bola =) + e [ VO = 0 f(0)d)” + £

= —A%U(x — 1)$(0) — A2V (z — 7)™ (0)
_ F(1Aja) /_OT1 ( —AV(x—2m —8)—BV(w—7 — 7o — s))¢(8)(d8)a
_mfgj@[igTQ (—AQV(x—Tl S —_—
~ BV (x = 273 — 5)) 6(5)(ds)" — B6(x — )
+Fu1{@[ﬁ(_A%qx_ﬁ_ﬂ)—B%“x—m—SDﬂ@w@a+f@)

Since V(z) = 0 for x < 0, we have V(z — 74 — 2 —s) =0, V(z — 212 — s5) = 0,
V(z—m—s5)=0if 1, < < 79, and we have

y) (x)
= —A%U(z — 11)$(0) — AV (z — 71)6(*) (0)

Al 0 o
+pg+ayﬁﬁvu‘2ﬁ‘@“$”@

A2p? [T a
+ru+m/; V(z—m1— 7 — 5)(s)(ds)

A? B
_ 2 r—To) — ———— r—T1— S S Sa X
Bola 1) - i [ )£(5)(ds)* + £ (x)

= 42 (U(x —m)0(0) + V(z —7)6)(0)

2 0
_miwlxm—%—W®WP

BZ r—T1—T: .
- m /_7_2 V(e —1 — 12— s)p(s)(ds)

+N;ﬂm4x“v@_n—@ﬂ@wwﬁ

— B*¢(z — 1) + f(z)
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= —42(U(x = 7)6(0) + V(= = 7)6)(0)

2 0
Hﬁw/xm%w@ww

2 0
— ﬁ /_72 V(e —1—72—s)d(s)(ds)®
1 Tr—T1 N
frrrm L Ve n - are@)”)
— B*¢(z — 1) + f()
= —A’y(z — 1) — B*¢(z — 1) + f(2).
Note ¢(x — 13) = y(x — 72) if & < 7. We have x — 75 < 0 and y(z) is a solution of

system (|1.2]).

Finally, if x > 75, then we obtain

A2 0
Ya) = U@)o(0) + V@)o0) = gy [ Ve = = 9)o(s)(as)®

2 0
F(f;/vwc 2 = 5)6(5)(ds)"

), e

Calculating the local fractal derivative of y(x), and using V(®(z) = U(x) and
Lemma [2.12] we obtain

y' ()

= U (2)$(0) + V) (2)¢) (0 @z =71 = 5)¢(s)(ds)"

—T1

2 0
—ﬂﬁﬁﬁx_v@@—m—gawww+

! @) (z — ) f(s)(ds)®
el NGUCER RO

2 0
:U@WW@+v@@w@w%’14@/)V@@—n—@wwwf

L(1+a)
2 0 *
— ﬁ/_ V(Q)(Jc — 72— 8)¢(s)(ds)™ + ﬁ/o Uz — 5)f(s)(ds)".

Then, we have

y@ (z)

2 0
= UB@)o(0) + VE @) 0) = s [ VEIa = s)as)ds)®

I'l+a«

2 0
~miam | Ve = = o)

L T @ 6y i) (ds)® .
FETE U= s + U0 )

= U (2)$(0) + V()6 (0)
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_FdﬁaL[:(_MV@‘2”‘@—B%“$—ﬁ—ﬁ—fﬁwﬁwﬁ“
- mBja) /OT ( —AV(z -1~y —8)— BV(z— 275 — 3)) (s)(ds)®
1

+

¢ (2c) Tr— 8 S S « x
S | U e = ) + @
= ( — AQU(x —1) — BQU(m - T2))¢(0)

(=A@ —m) - BV (e~ 1)) (0)

Al 0 o
+Fﬂ+ayﬁnv@_zn—@M$w@

A2p2 (0 a
+Hyﬂﬂ/ﬁvu—ﬁ—m—ﬁﬂﬂ%)
‘ﬁfatﬁnv — 71— 75— 5)p(s)(ds)”

+ m /72 V xr — 27'2 - S)¢(S)(ds)a

1+Q/Vac—7'1—s s)(ds)®
Fu+00/‘V@ 7 — 5)f(5)(ds) + f()

= 42 (U(x —m)0(0) + V(z — 7)o (0)
A2
W

1+a /T2 V(e =11 — 12 — 5)p(s)(ds)”

*ru+w/‘ V(e — 1 —m)f(s)(ds)")
_B%U@—mw@+vu—mw@m>

0
[ V(z - 2m — 8)o(s)(ds)°

1+al[ﬁv — 7y — 1o — 8)$(s)(ds)”

1—|—a /_TQV — 279 — 5)¢(s)(ds)*
*faizy/ Viw—m—5)f(s)(ds)) + f(z)

= —A%y(x —n) - By(z — 1) + f().

From above, we can see that (4.1) is a solution of system (1.2). The proof is
complete. [
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Concluding remarks. From the delayed cosine and sine type matrix function on
the fractal set R*"(0 < a < 1) corresponding to second order inhomogeneous delay
differential equations with permutable constant matrix coefficients, we provide a
representation of a solution to the second order inhomogeneous delay differential
equations with pure delay and two delays. It is worth mentioning that although
there are many continued contributions in a linear discrete/differential systems with
pure delay with permutable matrices, no results were obtained for such systems
with non permutable matrices on fractal set R*"(0 < a < 1). A representation of
a solution to delay discrete/differential systems with non permutable matrices on
fractal set R*"(0 < a < 1) is open at present, worthy our further study.
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