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MONOTONE ITERATIVE METHOD FOR RETARDED

EVOLUTION EQUATIONS INVOLVING NONLOCAL

AND IMPULSIVE CONDITIONS

XUPING ZHANG, PENGYU CHEN, YONGXIANG LI

Abstract. In this article, we apply the perturbation technique and monotone
iterative method in the presence of the lower and the upper solutions to dis-

cuss the existence of the minimal and maximal mild solutions to the retarded

evolution equations involving nonlocal and impulsive conditions in an ordered
Banach space X

u′(t) +Au(t) = f(t, u(t), ut), t ∈ [0, a], t 6= tk,

u(t+k ) = u(t−k ) + Ik(u(tk)), k = 1, 2, . . . ,m,

u(s) = g(u)(s) + ϕ(s), s ∈ [−r, 0],

where A : D(A) ⊂ X → X is a closed linear operator and −A generates a

strongly continuous semigroup T (t) (t ≥ 0) on X, a, r > 0 are two constants,

f : [0, a]×X×C0 → X is Carathéodory continuous, 0 < t1 < t2 < · · · < tm < a
are pre-fixed numbers, Ik ∈ C(X,X) for k = 1, 2, . . . ,m, ϕ ∈ C0 is a priori

given history, while the function g : Ca → C0 implicitly defines a comple-

mentary history, chosen by the system itself. Under suitable monotonicity
conditions and noncompactness measure conditions, we obtain the existence

of the minimal and maximal mild solutions, the existence of at least one mild

solutions as well as the uniqueness of mild solution between the lower and
the upper solutions. An example is given to illustrate the feasibility of our

theoretical results.

1. Introduction

Let X be a real Banach space with norm ‖ · ‖, and let a, r > 0 be two constants.
For every t ∈ [0, a], we denote by Ct := C([−r, t], X) the Banach space of all
the continuous functions from [−r, t] into X endowed with the sup-norm ‖u‖Ct

=
sup−r≤s≤t ‖u(s)‖.

In this article, we use the perturbation technique and monotone iterative method
in the presence of the lower and the upper solutions to discuss the existence of the
existence of the minimal and the maximal mild solutions, the existence of at least
one mild solutions as well as the uniqueness of the mild solution to the retarded evo-
lution equations involving nonlocal and impulsive conditions in an ordered Banach
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space X,
u′(t) +Au(t) = f(t, u(t), ut), t ∈ [0, a], t 6= tk,

u(t+k ) = u(t−k ) + Ik(u(tk)), k = 1, 2, . . . ,m,

u(s) = g(u)(s) + ϕ(s), s ∈ [−r, 0],

(1.1)

where state u(·) takes values in the Banach space X endowed with norm ‖ · ‖;
A : D(A) ⊂ X → X is a closed linear operator and −A generates a strongly
continuous semigroup T (t) (t ≥ 0) on X; f : [0, a]×X×C0 → X is a Carathéodory
continuous nonlinear function; 0 < t1 < t2 < · · · < tm < a are pre-fixed numbers,
Ik ∈ C(X,X) is an impulsive function, k = 1, 2, . . . ,m, u(t+k ) and u(t−k ) represent
the right and the left limits of u(t) at t = tk, respectively; ϕ ∈ C0 is a priori given
history, while the function g : Ca → C0 implicitly defines a complementary history,
chosen by the system itself; ut denotes the function in C0 defined as ut(τ) = u(t+τ)
for τ ∈ [−r, 0] and ut(·) represent the time history of the state from the time t− r
up to the present time t.

The study of abstract nonlocal Cauchy problem was initiated by Byszewski [11].
It is demonstrated that the nonlocal problems have better effects in applications
than the traditional Cauchy problems, differential equations with nonlocal condi-
tions were studied by many authors and some basic results on nonlocal problems
have been obtained, see [3, 12, 16, 24, 26, 37, 45, 48, 49] and the references therein.

It is a well-established idea to model the evolution of some physical, biological
and economic systems using delay evolution equations, in which the response of the
system depends not only on the current state of the system, but also on the past
history of the system. The history function g, which defines the initial nonlocal
condition, is in fact a feedback operator which adjusts a part of the past — if the
local initial condition ϕ is present — or even the whole past — if ϕ is absent —
according to some precise future requirements. Namely, if we wish that the system
behavior in the future be described by a function u belonging to a certain class, then
it is left at the system disposal to choose its past wherefrom to start its evolution,
in the nonlocal implicit form u(t) = g(u)(t) + ϕ(t) for each t ∈ [−r, 0]. For more
details on this topic, see for example, the books of Hale and Verduyn Lunel [30],
Kolmanovskii and Myshkis [35] and the papers of Chuong and Ke [18], Kamaljeet
and Bahuguna [34] and Travis and webb [43].

The dynamics of evolving processes is often subjected to abrupt changes at cer-
tain moments such as shocks, harvesting and natural disasters. Often these short
term perturbations are treated as having acted instantaneously or in the form of
impulses. One of the emerging branches of the study associated with impulses is
the theory of impulsive differential equations, which describes processes which ex-
perience a sudden change in their states at certain moments. Processes with such
a character arise naturally and often, especially in phenomena studied in physics,
chemical, biological, population and dynamics, engineering and economics. The
theory of impulsive differential equations has emerged as an important area of re-
search in the previous decades. For more details on differential equations with
impulses, one can see the monographs of Benchohra, Henderson and Ntouyas [9],
Lakshmikantham, Bainov and Simeonov [36] and the papers of Benchohra and
Hammouche [1], Ahmed [2], Abada, Barreira and Valls [8], Bonottoa et al. [10],
Guo and Liu [29], Li and Liu [39] and Qian, Chen and Sun [42], where numer-
ous properties of their solutions are studied and detailed bibliographies are given.
Particularly, there has been a significant development in the theory of impulsive
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evolution equations with nonlocal conditions in Banach spaces. Liang, Liu and Xiao
[37, 38] combined impulsive conditions and nonlocal conditions, and investigated
the nonlocal impulsive evolution equation in Banach spaces. Later, Balachandran,
Kiruthika and Trujillo [5], Chen, Li and Yang [17], Debbouche and Baleanu [19],
Fan and Li [26], Wang and Wei [47], Yan [50] studied the impulsive evolution equa-
tion with nonlocal conditions. Moreover, Abada, Benchohra and Hammouche [1],
Cardindi and Rubbioni [13], Chang, Anguraj and Karthikeyan [14], Chuong and
Ke [18], Fu and Cao [27], Ji and Li [33] studied the impulsive evolution inclusion
with nonlocal conditions.

We mention that in 2012, Chuong and Ke [18] studied the retarded evolution
inclusions involving nonlocal and impulsive conditions

u′(t) +Au(t) ∈ F (t, u(t), ut), t ∈ [0, a], t 6= tk,

u(t+k ) = u(t−k ) + Ik(u(tk)), k = 1, 2, . . . ,m,

u(s) + g(u)(s) = ϕ(s), s ∈ [−r, 0],

(1.2)

where X is a Banach space, F : [0, a] × X × C0 → P (X) is a multivalued map,
P (X) stands for the collection of all nonempty subsets of X. A is a closed linear
operator on X. By using the fixed point theory for multi-valued maps and the
theory of differential inclusions, the authors obtain the existence of mild solutions
for nonlocal problem (1.2). Furthermore, by applying corresponding measure of
noncompactness estimates, they also proved the continuity of the solution map,
which demonstrates that the solution set depends continuously on initial data.

But so far we have not seen relevant papers that study delay evolution equations
involving nonlocal and impulsive conditions by applying the iterative method, per-
turbation technique and the method of lower and upper solutions. It is well known
that the monotone iterative technique in the presence of the lower and the upper
solutions is an important method for seeking solutions of differential equations in
abstract spaces. The most advantage by using the iterative method based on lower
and upper solutions is that it not only provides a method to obtain the existence
of extremal mild solutions, but also yields iterative sequences of lower and upper
approximate solutions that converge to the minimal and maximal mild solutions
between the lower and upper solutions. The iterative sequences are very useful
in numerical calculation, which provide a computing rule in computer simulation.
Early on, Du and Lakshmikantham [21] investigated the existence of extremal solu-
tions to the initial value problem of ordinary differential equations without impulse
by using the method of the lower and the upper solutions coupled with the mono-
tone iterative technique. Latter, Guo and Liu [29], Li and Liu [39] developed the
iterative method for ordinary differential equations with instantaneous impulses
in Banach spaces. Recently, the iterative method has been extended to evolution
equations in ordered Banach spaces, we refer to the papers by EI-Gebeily, O’Regan
and Nieto [23] and Wang and Wang [46] for evolution equations with classical initial
vlaue conditions, and to the paper by Chen and Li [15] and Chen, Li and Yang [17]
for evolution equations with impulses in Banach spaces.

Inspired by the above-mentioned aspects, in the present paper we will combine
these earlier works and extend the study to the retarded evolution equations in-
volving nonlocal and impulsive conditions (1.1), which is more general than those
in many previous publications. By combining the theory of semigroups of linear
operators and the method of the lower and the upper solutions coupled with the
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monotone iterative technique, we construct two monotone iterative sequences, and
prove that the sequences monotonically converge to the minimal and the maximal
mild solutions of problem (1.1), respectively, under the reasonably weak conditions
on the semigroup T (t) (t ≥ 0), nonlinear function f , impulsive function Ik for
k = 1, 2, . . . ,m and nonlocal term g.

The work of this paper has three wedges: firstly, we will extend the study of
impulsive Cauchy problems with nonlocal initial conditions to retarded evolution
equations involving nonlocal and impulsive conditions. Secondly, we will obtain the
existence theorems of minimal and the maximal mild solutions and the uniqueness
theorems of mild solution to the nonlocal problem (1.1) under weaker conditions
on the semigroup T (t) (t ≥ 0), nonlinear function f , impulsive function Ik for
k = 1, 2, . . . ,m and nonlocal term g. Lastly, the perturbation technique and mono-
tone iterative method are extended to study the retarded evolution equations with
nonlocal and impulsive conditions in ordered Banach space. Moreover, even for cor-
responding retarded impulsive Cauchy problems without nonlocal initial conditions,
the results here are new.

Remark 1.1. As the reader can see, the hypotheses on nonlinear function f ,
impulsive function Ik (k = 1, 2, . . . ,m) and nonlocal term g in our theorems are
reasonably weak and different from those in many previous papers such as [5, 19, 26,
47, 50]. Furthermore, the techniques in the proofs of our theorems are essentially
different from those used in [18].

The outline of this paper is as follows. In section 2, notation and preliminaries
are introduced, which are used throughout this paper. In Section 3, we obtained the
existence of extremal mild solutions as well as mild solutions for nonlocal problem
(1.1) under the situation that the semigroup T (t) (t ≥ 0) and the nonlocal function
g are compact. The existence of extremal mild solutions and the uniqueness of
mild solution for nonlocal problem (1.1) are obtained under the situation that the
semigroup T (t) (t ≥ 0) and nonlocal function g are not compact in Section 4.
Finally, an concrete example is given to illustrate the feasibility of our abstract
results.

2. Preliminaries

We begin by giving some notation. Let X be an ordered Banach space with
norm ‖ · ‖ and partial order “ ≤ ” with positive cone P = {u ∈ X | u ≥ θ} (θ is the
zero element of X), which defines a partial ordering in X by u ≤ v if and only if
v − u ∈ P . If u ≤ v and u 6= v, we say u < v. The cone P is called normal if there
exists a positive constant N such that θ ≤ u ≤ v implies ‖u‖ ≤ N‖v‖, in which
N is called normal constant. Evidently, for any t ∈ [0, a], Ct = ([−r, t], X) is also
an ordered Banach space whose partial order “ ≤ ” induced by the positive cone
PCt

:= {u ∈ Ct | u(s) ≥ θ, s ∈ [−r, t]}, and PCt
is also a normal cone with the same

normal constant N . Denote by

PC([−r, a], X) =
{
u : [−r, a]→ X : u is continuous for t 6= tk,

left continuous at t = tk and u(t+k ) exists for k = 1, 2, . . . ,m
}
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be a piecewise continuous function space. It is easy to see that PC([−r, a], X) is a
Banach space endowed with the supremum-norm

‖u‖PC = sup
t∈[−r,a]

‖u(t)‖, ∀u ∈ PC([−r, a], X). (2.1)

Evidently, PC([−r, a], X) is also an ordered Banach space with the partial order
“ ≤ ” induced by the positive cone KPC = {u ∈ PC([−r, a], X) | u(t) ≥ θ, t ∈
[−r, a]}. KPC is also a normal cone with the same normal constant N . For v,
w ∈ PC([−r, a], X) with v ≤ w, we use [v, w] to denote the order interval

{u ∈ PC([−r, a], X) | v ≤ u ≤ w}
in PC([−r, a], X), and [v(t), w(t)] to denote the order interval

{u ∈ PC([−r, a], X) | v(t) ≤ u(t) ≤ w(t), t ∈ [−r, a]}
in X.

In the following, we denote J0 = [−r, 0], J1 = [0, t1], Jk = (tk−1, tk], k = 2, . . . ,
m + 1, tm+1 = a, I ′ = [−r, a]\{t1, t2, . . . , tm} and I ′′ = [−r, a]\{0, t1, t2, . . . , tm},
and useX1 to denote the Banach spaceD(A) with the graph norm ‖·‖1 = ‖·‖+‖A·‖.
An abstract function u ∈ PC([−r, a], X)∩C1(I ′′, X)∩C(I ′, X1) is called a solution
of nonlocal problem (1.1) if u(t) satisfies all the equalities in (1.1).

Definition 2.1. If a function u ∈ PC([−r, a], X) ∩ C1(I ′′, X) ∩ C(I ′, X1) satisfies

u′(t) +Au(t) ≤ f(t, u(t), ut), t ∈ [0, a], t 6= tk,

u(t+k ) ≤ u(t−k ) + Ik(u(tk)), k = 1, 2, . . . ,m,

u(s) ≤ g(u)(s) + ϕ(s), s ∈ [−r, 0],

(2.2)

we call it a lower solution of nonlocal problem (1.1); if all the inequalities in (2.2)
are reversed, we call it an upper solution of nonlocal problem (1.1).

Definition 2.2. A function f : [0, a] × X × C0 → X is said to be Carathéodory
continuous provided that

(i) for all (u, v) ∈ X × C0, f(·, u, v) : [0, a]→ X is measurable,
(ii) for a.e. t ∈ [0, a], f(t, ·, ·) : X × C0 → X is continuous.

Throughout this paper, let A : D(A) ⊂ X → X be a closed linear operator and
let −A generate a strongly continuous semigroup T (t) (t ≥ 0) on ordered Banach
space X. Then there exist constants C1 ≥ 1 and δ ∈ R such that

‖T (t)‖ ≤ C1e
δt, t ≥ 0. (2.3)

Denote L(X) be the Banach space of all bounded linear operators from X to X
equipped with its natural topology. From (2.3) we know that

C := sup
t∈[0,a]

‖T (t)‖L(X) ≥ 1 (2.4)

is a finite number.

Definition 2.3. A function u ∈ PC([−r, a], X) is said to be a mild solution of
nonlocal problem (1.1) if it satisfies the following equation

u(t) =


g(u)(t) + ϕ(t), t ∈ [−r, 0];

T (t)[g(u)(0) + ϕ(0)] +
∫ t
0
T (t− s)f(s, u(s), us)ds,

+
∑

0<tk<t
T (t− tk)Ik(u(tk)), t ∈ [0, a].

(2.5)



6 X. ZHANG, P. CHEN, Y. LI EJDE-2020/68

Definition 2.4. A strongly continuous semigroup T (t) (t ≥ 0) in X is said to be
compact, if T (t) is a compact operator in X for every t > 0.

Definition 2.5. A strongly continuous semigroup T (t) (t ≥ 0) in X is said to be
equicontinuous, if T (t) is continuous in the operator norm for every t > 0.

Definition 2.6. A strongly continuous semigroup T (t) (t ≥ 0) in X is said to be
positive, if order inequality T (t)u ≥ θ holds for each u ≥ θ, u ∈ X and t ≥ 0.

One can easily to see that for any constant M ≥ 0, −(A+MI) also generates a
strongly continuous semigroup S(t) = e−MtT (t) (t ≥ 0) in X, and

sup
t∈[0,a]

‖S(t)‖L(X) = sup
t∈[0,a]

‖e−MtT (t)‖L(X) = C ≥ 1. (2.6)

Therefore, S(t) (t ≥ 0) is a positive strongly continuous semigroup if T (t) (t ≥ 0)
is a positive strongly continuous semigroup, S(t) (t ≥ 0) is a compact semigroup if
T (t) (t ≥ 0) is a compact semigroup, S(t) (t ≥ 0) is an equicontinuous semigroup if
T (t) (t ≥ 0) is an equicontinuous semigroup. For more details about the properties
of the operator semigroups and positive strongly continuous semigroup, we refer to
Banasiak and Arlotti [7], Henry [32], Pazy [41] and Vrabie [44].

Next, we recall some basic definitions and properties about Kuratowski measure
of noncompactness that will be used in the proof of our main results.

Definition 2.7 ([20, 6]). The Kuratowski measure of noncompactness α(·) defined
on bounded set S of Banach space X is

α(S) := inf{δ > 0 : S = ∪mi=1Si with diam(Si) ≤ δ for i = 1, 2, . . . ,m}. (2.7)

It is easy to know from Definition 2.7 that 0 ≤ α(S) < ∞. The following
properties about the Kuratowski measure of noncompactness are well known.

Lemma 2.8 ([6, 20]). Let E be a Banach space and S, U ⊂ E be bounded. The
following properties are satisfied:

(i) α(S) = 0 if and only if S is compact, where S means the closure hull of S;
(ii) α(S) = α(S) = α(convS), where convS means the convex hull of S;
(iii) α(λS) = |λ|α(S) for any λ ∈ R;
(iv) S ⊂ U implies α(S) ≤ α(U);
(v) α(S ∪ U) = max{α(S), α(U)};
(vi) α(S + U) ≤ α(S) + α(U), where S + U = {x | x = y + z, y ∈ S, z ∈ U};

(vii) If the map Q : D(Q) ⊂ E → X is Lipschitz continuous with constant k,
then α(Q(V )) ≤ kα(V ) for any bounded subset V ⊂ D(Q), where X is
another Banach space.

To introduce the useful lemmas which will be used in our argument, we use α(·)
and αPC(·) to denote the Kuratowski measure of noncompactness on the bounded
set of X and PC([−r, a], X), respectively. For any D ⊂ PC([−r, a], X) and t ∈
[0, a], set D(t) = {u(t) | u ∈ D} and Dt = {ut | u ∈ D}, then D(t) ⊂ X and
Dt ⊂ C0. If D ⊂ PC([−r, a], X) is bounded, then for any t ∈ [0, a], D(t) ⊂ X and
Dt ⊂ C0 are bounded, and α(D(t)) ≤ αPC(D). For details about the definition
and properties of the measure of noncompactness, we refer to the monographs by
Ayerbe, Domı́nguez and López [4], Banas̀ and Goebel [6], Deimling [20].

Now, we give the following lemmas about the measure of noncompactness which
are used further in this paper.
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Lemma 2.9 ([29]). Let E be a Banach space. Assume that Ω ⊂ E is a bounded
closed and convex set on E, the operator Q : Ω → Ω is k-set-contractive. Then Q
has at least one fixed point in Ω.

Lemma 2.10 ([31]). Let X be a Banach space, and D = {un}∞n=1 ⊂ PC([0, a], X)
be a bounded and countable set. Then α(D(t)) is Lebesgue integrable on [0, a], and

α
({∫ a

0

un(t)dt | n ∈ N
})
≤ 2

∫ a

0

α(D(t))dt.

Lemma 2.11 ([16]). Let X be a Banach space, and let D ⊂ X be bounded. Then
there exists a countable set D∗ ⊂ D, such that

α(D) ≤ 2α(D∗).

Lemma 2.12 ([28]). Let P be a normal cone of the ordered Banach space X and
v0, w0 ∈ X with v0 ≤ w0. Suppose that Q : [v0, w0] → X is a nondecreasing strict
set-contraction operator such that v0 ≤ Qv0 and Qw0 ≤ w0. Then Q has a minimal
fixed point u and a maximal fixed point u in [v0, w0]; moreover,

vn → u and wn → u as n→∞,
where vn = Qvn−1 and wn = Qwn−1 (n = 1, 2, . . . ) which satisfy

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ u ≤ u ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0.

3. Case g compact

In this section, we discuss the existence of extremal mild solutions as well as
the existence of at least one mild solutions for nonlocal problem (1.1) under the
situation that T (t) (t ≥ 0) is a compact strongly continuous semigroup and the
nonlocal function g : PC([−r, a], X)→ C0 is also compact.

Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is normal,
and let A : D(A) ⊂ X → X be a closed linear operator and the positive strongly
continuous semigroup T (t) (t ≥ 0) generated by −A be compact on X. Assume
that the nonlinear function f : [0, a] × X × C0 → X is Carathéodory continuous,
Ik ∈ C(X,X) for k = 1, 2, . . . ,m and the nonlocal function g : PC([−r, a], X) →
C0 is continuous and compact as well as the nonlocal problem (1.1) has a lower
solution v(0) ∈ PC([−r, a], X)∩C1(I ′′, X)∩C(I ′, X1) and an upper solution w(0) ∈
PC([−r, a], X) ∩ C1(I ′′, X) ∩ C(I ′, X1) with v(0) ≤ w(0). Suppose also that the
following conditions are satisfied:

(H1) There exists a constant M > 0 such that

f(t, u2, v2)− f(t, u1, v1) ≥ −M(u2 − u1),

for ∀ t ∈ [0, a], u1, u2 ∈ X and v1, v2 ∈ C0 with v(0)(t) ≤ u1 ≤ u2 ≤ w(0)(t)
and (v(0))t ≤ v1 ≤ v2 ≤ (w(0))t;

(H2) The impulsive function Ik(·) satisfies

Ik(u1) ≤ Ik(u2), k = 1, 2, . . . ,m,

for any t ∈ [0, a], and v(0)(t) ≤ u1 ≤ u2 ≤ w(0)(t);
(H3) The nonlocal function g(u) is increasing on order interval [v(0), w(0)].

Then nonlocal problem (1.1) has a minimal mild solution u and a maximal mild
solution u between v(0) and w(0), which can be obtained by a monotone iterative
procedure starting from v(0) and w(0), respectively.
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Proof. It is easy to see that nonlocal problem (1.1) is equivalent to the following
retarded evolution equations involving nonlocal and impulsive conditions

u′(t) +Au(t) +Mu(t) = f(t, u(t), ut) +Mu(t), t ∈ [0, a], t 6= tk,

u(t+k ) = u(t−k ) + Ik(u(tk)), k = 1, 2, . . . ,m,

u(s) = g(u)(s) + ϕ(s), s ∈ [−r, 0],

(3.1)

for any constant M > 0. We consider the operatorQ : [v(0), w(0)]→ PC([−r, a], X)
defined by

(Qu)(t) =


g(u)(t) + ϕ(t), t ∈ [−r, 0];

S(t)[g(u)(0) + ϕ(0)]

+
∫ t
0
S(t− s)[f(s, u(s), us) +Mu(s)]ds

+
∑

0<tk<t
S(t− tk)Ik(u(tk)), t ∈ [0, a],

(3.2)

where S(t) = e−MtT (t) (t ≥ 0) is the strongly continuous semigroup generated by
−(A+MI). By Definition 2.3, we know that the mild solution of nonlocal problem
(1.1) is equivalent to the fixed point of operator Q defined by (3.2).

At first, we prove that the operator Q : [v(0), w(0)] → PC([−r, a], X) defined
by (3.2) is continuous. For this purpose, let {u(n)}∞n=1 ⊂ [v(0), w(0)] be a sequence
such that limn→∞ u(n) = u in [v(0), w(0)]. Then limn→∞(u(n))t = ut. If t ∈ [−r, 0],
by (3.2) and the continuity of the nonlocal function g, we have

‖(Qu(n))(t)− (Qu)(t)‖ = ‖g(u(n))(t)− g(u)(t)‖ → 0 textas n→∞, (3.3)

and if t ∈ [0, a], by the Carathéodory continuity of the nonlinear function f , and
the continuity of the impulsive function Ik for k = 1, 2, . . . ,m, we get that for a.e.
s ∈ [0, a],

lim
n→∞

‖f(s, u(n)(s), (u(n))s) +Mu(n)(s)− f(s, u(s), us)−Mu(s)‖ = 0, (3.4)

lim
n→∞

‖Ik(u(n)(tk))− Ik(u(tk))‖ = 0 for k = 1, 2, . . . ,m. (3.5)

Applying the condition (H1), we know that for any u ∈ [v(0), w(0)] and s ∈ [0, t],
t ∈ [0, a],

f(s, v(0)(s), (v(0))s) +Mv(0)(s) ≤ f(s, u(s), us) +Mu(s)

≤ f(s, w(0)(s), (w(0))s) +Mw(0)(s).

The above inequality combined with the normality of the positive cone P , we know
that there exists a constant M1 > 0, such that

‖f(s, u(s), us) +Mu(s)‖ ≤M1, s ∈ [0, t], t ∈ [0, a]. (3.6)
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Combining with (2.6), (3.2), (3.4)-(3.6) and Lebesgue’s dominated convergence the-
orem, we know that for any t ∈ [0, a],

‖(Qu(n))(t)− (Qu)(t)‖

≤ C‖g(u(n))(0)− g(u)(0)‖

+ C

∫ t

0

‖f(s, u(n)(s), (u(n))s) +Mu(n)(s)− f(s, u(s), us)−Mu(s)‖ds

+ C
∑

0<tk<t

‖Ik(u(n)(tk))− Ik(u(tk))‖

→ 0 as n→∞.

(3.7)

Hence, from (3.3) and (3.7) we obtain

‖Qu(n) −Qu‖PC → 0 (n→∞),

which means that Q : [v(0), w(0)]→ PC([−r, a], X) is a continuous operator.
Secondly, we prove that Q maps [v(0), w(0)] to [v(0), w(0)] is a monotonic increas-

ing operator. Let u, v ∈ [v(0), w(0)] with u ≤ v, then u(t) ≤ v(t) for t ∈ [−r, a] and
ut ≤ vt for t ∈ [0, a]. Since S(t) (t ≥ 0) is a positive C0-semigroup, combining this
fact with the assumptions (H1)–(H3), it is easy to prove that

Qu ≤ Qv,

which means that Q is an increasing operator in [v(0), w(0)]. Next, we show that
v(0) ≤ Qv(0) and Qw(0) ≤ w(0). By the definition of lower solution, we know that
for t ∈ [−r, 0],

v(0)(t) ≤ g(v(0))(t) + ϕ(t) = (Qv(0))(t). (3.8)

Letting h(t) = (v(0))′(t) +Av(0)(t) +Mv(0)(t), t ∈ [0, a], t 6= tk for k = 1, 2, . . . ,m.
By Definition 2.1, we get that h ∈ PC([0, a], X) and h(t) ≤ f(t, v(0)(t), (v(0))t) +
Mv(0)(t) for t ∈ [0, a]. Therefore, by Definitions 2.1 and 2.3 and the positivity of
the strongly continuous semigroup S(t) (t ≥ 0), we have

v(0)(t) = S(t)v(0)(0) +

∫ t

0

S(t− s)h(s)ds+
∑

0<tk<t

S(t− tk)[v(0)(t+k )− v(0)(t−k )]

≤ S(t)[g(v(0))(0) + ϕ(0)] +

∫ t

0

S(t− s)[f(s, v(0)(s), (v(0))s) +Mv(0)(s)]ds

+
∑

0<tk<t

S(t− tk)Ik(v(0)(tk))

= (Qv(0))(t), t ∈ [0, a].

The above inequality together with (3.8) imply v(0) ≤ Qv(0). Similarly, it can be
shown that Qw(0) ≤ w(0). Therefore, Q : [v(0), w(0)] → [v(0), w(0)] is a monotonic
increasing operator.

Now, we define two sequences {v(n)} and {w(n)} in ordered interval [v(0), w(0)]
by the following iterative scheme

v(n) = Qv(n−1), w(n) = Qw(n−1), n = 1, 2, . . . . (3.9)

Then from the fact that Q is a monotonic increasing operator, it follows that

v(0) ≤ v(1) ≤ v(2) ≤ · · · ≤ v(n) ≤ · · · ≤ w(n) ≤ · · · ≤ w(2) ≤ w(1) ≤ w(0). (3.10)
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In what follows, we prove that {v(n)} and {w(n)} are convergent on [−r, a]. For
convenience, let B = {v(n) | n ∈ N} and B∗ = {v(n−1) | n ∈ N}. Then B = Q(B∗).
From the fact that the nonlocal function g : PC([−r, a], X) → C0 is a compact
map, we know that for t ∈ [−r, 0], the set

{(Qv(n−1))(t) | v(n−1) ∈ B∗} = {g(v(n−1))(t) + ϕ(t) | v(n−1) ∈ B∗}

is precompact in X. For 0 < t ≤ a and v(n−1) ∈ B0, let

(Q1v
(n−1))(t) = S(t)[g(v(n−1))(0) + ϕ(0)]

+

∫ t

0

S(t− s)[f(s, v(n−1)(s), v(n−1)s ) +Mv(n−1)(s)]ds,
(3.11)

(Q2v
(n−1))(t) =

∑
0<tk<t

S(t− tk)Ik(v(n−1)(tk)). (3.12)

For any v(n−1) ∈ B∗, s ∈ [0, t], t ∈ [0, a], by the assumption (H1), we have

f(s, v(0)(s), (v(0))s) +Mv(0)(s) ≤ f(s, v(n−1)(s), (v(n−1))s) +Mv(n−1)(s)

≤ f(s, w(0)(s), (w(0))s) +Mw(0)(s).

Above inequality together with the normality of cone P , we know that there exists
a constant M2 > 0 such that for any v(n−1) ∈ B∗,

‖f(s, v(n−1)(s), (v(n−1))s) +Mv(n−1)(s)‖ ≤M2, s ∈ [0, t], t ∈ [0, a]. (3.13)

Hence, for t ∈ (0, a] and 0 < ε < t, the operator

(Qε1vn−1)(t)

= S(t)[g(v(n−1))(0) + ϕ(0)]

+

∫ t−ε

0

S(t− s)[f(s, v(n−1)(s), (v(n−1))s) +Mv(n−1)(s)]ds

= S(t)[g(v(n−1))(0) + ϕ(0)]

+ S(ε)

∫ t−ε

0

S(t− s− ε)[f(s, v(n−1)(s), (v(n−1))s) +Mv(n−1)(s)]ds

(3.14)

is precompact in X since S(t) is compact for t > 0. By (2.6), (3.11), (3.13) and
(3.14), we obtain

‖(Q1v
(n−1))(t)−Qε1v(n−1)(t)‖

=

∫ t

t−ε
‖S(t− s)[f(s, v(n−1)(s), v(n−1)s ) +Mv(n−1)(s)]‖ds

≤ CM2ε,

which means that there exists precompact set {(Qε1v(n−1))(t) | v(n−1) ∈ B∗} suffi-
ciently close to the set {(Q1v

(n−1))(t) | v(n−1) ∈ B∗} for every t ∈ (0, a]. There-
fore, by the total boundedness we know that for t ∈ (0, a], the set {(Q1v

(n−1))(t) |
v(n−1) ∈ B∗} is precompact in X.

On the other hand, for any v(n−1) ∈ B∗ and k = 1, 2, . . . ,m, by the assumption
(H2), we have

Ik(v(0)(tk)) ≤ Ik(v(n−1)(tk)) ≤ Ik(w(0)(tk)). (3.15)



EJDE-2020/68 RETARDED EVOLUTION EQUATIONS 11

By the normality of the cone P and (3.15), there exists a constant M3 > 0 such
that

‖Ik(v(n−1)(tk))‖ ≤M3, v(n−1) ∈ B∗, k = 1, 2, . . . ,m.

Therefore, {(Q2v
(n−1))(t) | v(n−1) ∈ B∗} is precompact in X since the operator

S(t) is compact for t > 0.
Therefore, the set

{v(n)(t)} = {(Qv(n−1))(t) | v(n−1) ∈ B∗}

is precompact in X for any t ∈ [−r, a]. Hence, {v(n)(t)} has a convergent subse-
quence. Combining this with the monotonicity (3.10), we easily prove that {v(n)(t)}
itself is convergent, i.e.,

lim
n→∞

v(n)(t) = u(t) for t ∈ [−r, a].

Similarly, we can prove

lim
n→∞

w(n)(t) = u(t) for t ∈ [−r, a].

Obviously, {vn(t)} ⊂ PC([−r, a], X), and u(t) is bounded integrable when t
belongs to [−r, 0] and [0, a], respectively. For any t ∈ [−r, a], we know from (3.2)
that

v(n)(t) = (Qv(n−1))(t)

=


g(v(n−1))(t) + ϕ(t), t ∈ [−r, 0],

S(t)[g(v(n−1))(0) + ϕ(0)]

+
∫ t
0
S(t− s)[f(s, v(n−1)(s), (v(n−1))s)

+Mv(n−1)(s)]ds+
∑

0<tk<t
S(t− tk)Ik(v(n−1)(tk)), t ∈ [0, a].

Letting n → ∞ in the above inequality, by the Lebesgue’s dominated convergence
theorem, we have that

u(t) =


g(u)(t) + ϕ(t), t ∈ [−r, 0],

S(t)[g(u)(0) + ϕ(0)] +
∫ t
0
S(t− s)[f(s, u(s), us) +Mu(s)]ds

+
∑

0<tk<t
S(t− tk)Ik(u(tk)), t ∈ [0, a].

Therefore, u ∈ PC([−r, a], X) and u = Qu. Similarly, we can prove that u(t)
belongs to PC([−r, a], X) and u = Qu. Combining this fact with the monotonicity
(3.10), we can prove that u, u ∈ [v(0), w(0)] are fixed points of operator Q and
u ≤ u.

Next, we show that u and u are the minimal and maximal fixed points of Q
in [v(0), w(0)], respectively. In fact, for any u ∈ [v(0), w(0)], Qu = u, we have
v(0) ≤ u ≤ w(0), and v(1) = Qv(0) ≤ Qu = u ≤ Qw(0) = w(1). Continuing such a
progress, we get v(n) ≤ u ≤ w(n). Letting n → ∞, we get u ≤ u ≤ u. Therefore,
u and u are minimal and maximal mild solutions of nonlocal problem (1.1) in
[v(0), w(0)], and u and u can be obtained by the iterative scheme (3.9) starting from
v(0) and w(0), respectively. This completes the proof of Theorem 3.1. �

From the proof of Theorem 3.1, we can easily obtain the following result.
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Theorem 3.2. Let X be an ordered Banach space, whose positive cone P is normal,
and let A : D(A) ⊂ X → X be a closed linear operator and the positive strongly
continuous semigroup T (t) (t ≥ 0) generated by −A be compact on X. Assume
that the nonlinear function f : [0, a] × X × C0 → X is Carathéodory continuous,
Ik ∈ C(X,X) for k = 1, 2, . . . ,m and the nonlocal function g : PC([−r, a], X)→ C0

is continuous and map a monotonic set into a precompact set. Assume that the
nonlocal problem (1.1) has a lower solution v(0) ∈ PC([−r, a], X) ∩ C1(I ′′, X) ∩
C(I ′, X1) and an upper solution w(0) ∈ PC([−r, a], X)∩C1(I ′′, X)∩C(I ′, X1) with
v(0) ≤ w(0), and the conditions (H1)–(H3) are satisfied. Then nonlocal problem
(1.1) has a minimal mild solution u and a maximal mild solution u between v(0)

and w(0), which can be obtained by a monotone iterative procedure starting from
v(0) and w(0), respectively.

Applying the famous Schauder’s fixed point theorem, we can also obtain the
following existence result.

Theorem 3.3. Let X be an ordered Banach space, whose positive cone P is normal,
and let A : D(A) ⊂ X → X be a closed linear operator and the positive strongly
continuous semigroup T (t) (t ≥ 0) generated by −A be compact on X. Assume
that the nonlinear function f : [0, a] × X × C0 → X is Carathéodory continuous,
Ik ∈ C(X,X) for k = 1, 2, . . . ,m and the nonlocal function g : PC([−r, a], X)→ C0

is continuous and compact. If nonlocal problem (1.1) has a lower solution v(0) ∈
PC([−r, a], X)∩C1(I ′′, X)∩C(I ′, X1) and an upper solution w(0) ∈ PC([−r, a], X)∩
C1(I ′′, X)∩C(I ′, X1) with v(0) ≤ w(0), and the conditions (H1)–(H3) are satisfied.
Then nonlocal problem (1.1) exists at least one mild solution in ordered interval
[v(0), w(0)].

Proof. In accordance with the proof of Theorem 3.1, we know that Q defined by
(3.2) is a continuous mapping from [v(0), w(0)] to [v(0), w(0)]. Therefore, in order
to apply Schauder’s fixed point theorem to obtain a fixed point, we need to prove
that Q : [v(0), w(0)]→ [v(0), w(0)] is a compact operator. For this purpose, let

Π1 = {g(u)(·) + ϕ(·) : · ∈ [−r, 0], u ∈ [v(0), w(0)]},

Π2 =
{
S(·)[g(u)(0) + ϕ(0)] +

∫ ·
0

S(· − s)[f(s, u(s), us) +Mu(s)]ds] :

· ∈ [0, a], u ∈ [v(0), w(0)]
}
,

Π3 =
{ ∑

0<tk<·
S(· − tk)Ik(u(tk)) : · ∈ [0, a], u ∈ [v(0), w(0)]

}
.

By the compactness of the nonlocal function g, we know that the set Π1 is precom-
pact in C0. In what follows, we prove that Π2 is a precompact set. For t ∈ [0, a],
by the fact that the semigroup T (t) (t ≥ 0) is compact and therefore S(t) (t ≥ 0)
is also compact for every t > 0 as well as the compactness of nonlocal function g,
we get that the set

{S(t)[g(u)(0) + ϕ(0)] : u ∈ [v(0), w(0)]}
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is precompact in X. For t ∈ (0, a] and 0 < ε < t, the set{∫ t−ε

0

S(t− s)[f(s, u(s), us) +Mu(s)]ds : u ∈ [v(0), w(0)]
}

=
{
S(ε)

∫ t−ε

0

S(t− s− ε)[f(s, u(s), us) +Mu(s)]ds : u ∈ [v(0), w(0)]
} (3.16)

is precompact in X since S(t) is compact for t > 0. Furthermore, we know that for
every u ∈ [v(0), w(0)],∫ t−ε

0

S(t− s)[f(s, u(s), us) +Mu(s)]ds

→
∫ t

0

S(t− s)[f(s, u(s), us) +Mu(s)]ds as ε→ 0.

(3.17)

Combining (3.16) and (3.17) with the total boundedness, we know that the set{∫ t

0

S(t− s)[f(s, u(s), us) +Mu(s)]ds : u ∈ [v(0), w(0)]
}

is precompact in X. Therefore, for each t ∈ [0, a], Π2(t) is precompact in X.
Next, we prove the equicontinuity of Π2. For any u ∈ [v(0), w(0)] and s ∈ [0, t],

t ∈ [0, a], by the assumption (H1), we have

f(s, v(0)(s), (v(0))s) +Mv(0)(s) ≤ f(s, u(s), us) +Mu(s)

≤ f(s, w(0)(s), (w(0))s) +Mw(0)(s).

By the normality of the cone P , there exists M4 > 0 such that

‖f(s, u(s), us) +Mu(s)‖ ≤M4, s ∈ [0, t], t ∈ [0, a], u ∈ [v(0), w(0)]. (3.18)

Therefore, by (2.6), (3.18) and the definition of the set Π2, we obtain that for
0 ≤ t′ < t′′ ≤ a and u ∈ [v(0), w(0)],∥∥∥S(t′′)[g(u)(0) + ϕ(0)]− S(t′)[g(u)(0) + ϕ(0)]

+

∫ t′

0

[S(t′′ − s)− S(t′ − s)] · [f(s, u(s), us) +Mu(s)]ds

+

∫ t′′

t′
S(t′′ − s)[f(s, u(s), us) +Mu(s)]ds

∥∥∥
≤ C‖S(t′′ − t′)[g(u)(0) + ϕ(0)]− [g(u)(0) + ϕ(0)]‖

+M4

∫ t′

0

‖S(t′′ − s)− S(t′ − s)‖ds+ CM4(t′′ − t′)

≤ C‖S(t′′ − t′)[g(u)(0) + ϕ(0)]− [g(u)(0) + ϕ(0)]‖

+M4

∫ t′

0

‖S(t′′ − t′ + s)− S(s)‖ds+ CM4(t′′ − t′).

(3.19)

Since the semigroup S(t) (t ≥ 0) is strongly continuous for t ≥ 0 and is continuous
in the uniform operator topology for t > 0, then it is easy to see that the right
hand of (3.19) tends to zero independently of u ∈ [v(0), w(0)] as t′′ − t′ → 0, which
means that the functions in Π2 are equicontinuous. Therefore, by the Arzela-Ascoli
theorem one can easily to justify that the set Π2 is precompact.
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Now, we are in the position to prove the precompactness of Π3. From the
definition of the set Π3 combined with the fact that the interval [0, a] is divided
into finite subintervals by tk, k = 1, 2, . . . ,m, we only need to prove that the set

{S(· − t1)I1(u(t1)) : · ∈ [t1, t2], u ∈ [v(0), w(0)]}

is precompact in C([t1, t2], X), as the cases for other subintervals are the same. By
the fact that the semigroup S(t) (t ≥ 0) is compact for every t > 0 we know that
for each t ∈ [t1, t2], the set

{S(t− t1)I1(u(t1)) : t ∈ [t1, t2], u ∈ [v(0), w(0)]}

is precompact in X. For t1 ≤ t′ < t′′ ≤ t2 and u ∈ [v(0), w(0)], by (2.6) we obtain

‖S(t′′ − t1)I1(u(t1))− S(t′ − t1)I1(u(t1))‖
= ‖S(t′ − t1)[S(t′′ − t′)− S(0)]I1(u(t1))‖
≤ C‖[S(t′′ − t′)− S(0)]I1(u(t1))‖.

The above inequality combined with the strong continuity of the operator S(t) for
t > 0 imply that the functions in

{S(· − t1)I1(u(t1)) : · ∈ [t1, t2], u ∈ [v(0), w(0)]}

are equicontinuous. Therefore, an application of the Arzela-Ascoli theorem justifies
the precompactness of the set

{S(· − t1)I1(u(t1)) : · ∈ [t1, t2], u ∈ [v(0), w(0)]}

in C([t1, t2], X). Hence, using a completely similar method for the case k =
2, 3, . . . ,m, one can prove that the set Π3 is precompact.

Hence, by the above discuss we know that Q : [v(0), w(0)] → [v(0), w(0)] is a
compact operator, and therefore a completely continuous operator. Therefore, the
famous Schauder’s fixed point theorem implies that the operator Q has at least
one fixed point in ordered interval [v(0), w(0)], which gives rise to a mild solution of
problem (1.1). This completes the proof. �

Remark 3.4. In Theorems 3.1 and 3.2, we obtained the existence of minimal
mild solution and maximal mild solution (two mild solutions) for nonlocal problem
(1.1) by using the monotone iterative method. In Theorems 3.3, we obtained the
existence of at least one mild solution by utilizing Schauder’s fixed point theorem.
The results as well as the proof method used are all different.

4. Case g not compact

In this section, we discuss the existence of extremal mild solutions and the
uniqueness of mild solution for nonlocal problem (1.1) under the situation that
the nonlocal function g : PC([−r, a], X) → C0 is not compact. Furthermore, the
strongly continuous semigroup T (t) (t ≥ 0) generated by −A does not have to be
compact.

From the definition of regular cone in ordered Banach spaces and the proof of
Theorem 3.1, we can easily obtain the following result in a general ordered Banach
space whose positive cone is regular.
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Theorem 4.1. Let X be an ordered Banach space, whose positive cone P is regular,
and let A : D(A) ⊂ X → X be a closed linear operator and −A generates a positive
strongly continuous semigroup T (t) (t ≥ 0) on X. Assume that the nonlinear
function f : [0, a] × X × C0 → X is Carathéodory continuous, Ik ∈ C(X,X) for
k = 1, 2, . . . ,m and the nonlocal function g : PC([−r, a], X)→ C0 is continuous. If
the nonlocal problem (1.1) has a lower solution v(0) ∈ PC([−r, a], X)∩C1(I ′′, X)∩
C(I ′, X1) and an upper solution w(0) ∈ PC([−r, a], X)∩C1(I ′′, X)∩C(I ′, X1) with
v(0) ≤ w(0), and the conditions (H1)–(H3) are satisfied. Then nonlocal problem
(1.1) has a minimal mild solution u and a maximal mild solution u between v(0)

and w(0), which can be obtained by a monotone iterative procedure starting from
v(0) and w(0), respectively.

In the application of differential equations, we often choose Hilbert space, reflex-
ive space and Lp(Ω) space for 1 ≤ p < ∞ as working spaces, which are all weakly
sequentially complete spaces. Therefore, it is interesting to discuss the existence of
extremal mild solutions for nonlocal problem (1.1) in weakly sequentially complete
space.

Theorem 4.2. Let X be an ordered Banach space, whose positive cone P is regular,
and let A : D(A) ⊂ X → X be a closed linear operator and −A generates a positive
strongly continuous semigroup T (t) (t ≥ 0) on X. Assume that the nonlinear
function f : [0, a] × X × C0 → X is Carathéodory continuous, Ik ∈ C(X,X) for
k = 1, 2, . . . ,m and the nonlocal function g : PC([−r, a], X)→ C0 is continuous. If
the nonlocal problem (1.1) has a lower solution v(0) ∈ PC([−r, a], X)∩C1(I ′′, X)∩
C(I ′, X1) and an upper solution w(0) ∈ PC([−r, a], X)∩C1(I ′′, X)∩C(I ′, X1) with
v(0) ≤ w(0), and the conditions (H1)–(H3) are satisfied. Then nonlocal problem
(1.1) has a minimal mild solution u and a maximal mild solution u between v(0)

and w(0), which can be obtained by a monotone iterative procedure starting from
v(0) and w(0), respectively.

Proof. By the proof of Theorem 3.1, we know that the operator Q defined by (3.2)
maps ordered interval [v(0), w(0)] to [v(0), w(0)] is continuous and monotone increas-
ing. Furthermore, if the conditions (H1)–(H3) are satisfied, then the sequences
{v(n)} and {w(n)} defined by (3.9) satisfying the monotonicity (3.10). Therefore,
for any t ∈ [−r, 0], the sequences {v(n)(t)} and {w(n)(t)} are monotone and order-
bounded sequences in X. Noticing that X is a weakly sequentially complete Banach
space, from [22, Theorem 2.2] we know that {v(n)(t)} and {w(n)(t)} are precompact
in X. Combining this fact with the monotonicity (3.10), it follows that {v(n)(t)}
and {w(n)(t)} are convergent in X. Denote

lim
n→∞

v(n)(t) = u(t) for t ∈ [−r, a].

Similarly, we can prove that

lim
n→∞

w(n)(t) = u(t) for t ∈ [−r, a].

Using a completely similar method to the one we used to prove Theorem 3.1 we can
easily to prove that u and u are minimal and maximal mild solutions of nonlocal
problem (1.1) in [v(0), w(0)], and u and u can be obtained by the iterative scheme
(3.10) starting from v(0) and w(0), respectively. This completes the proof. �
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Remark 4.3. In Theorems 4.1 and 4.2, we only assume that positive semigroup
T (t) (t ≥ 0) is strongly continuous, the nonlinear function f , the impulsive function
Ik and the nonlocal term g are continuous and satisfy some monotonicity conditions,
which are more easily to satisfied. Therefore, Theorem 4.1 and Theorem 4.2 in this
paper essentially extends the main results of the previous research in several ways,
as far as the mild solution of the retarded evolution equations involving nonlocal and
impulsive conditions (1.1) is concerned, by dropping the compactness and Lipschitz
continuity of the impulsive item from the hypotheses. This distinguishes the present
paper from earlier works on impulsive Cauchy problems.

Theorem 4.4. Let X be an ordered Banach space, whose positive cone P is normal,
and let A : D(A) ⊂ X → X be a closed linear operator and −A generates a positive
and equicontinuous strongly continuous semigroup T (t) (t ≥ 0) on X. Assume that
the nonlinear function f : [0, a] × X × C0 → X is Carathéodory continuous, Ik ∈
C(X,X) for k = 1, 2, . . . ,m and the nonlocal function g : PC([−r, a], X) → C0 is
continuous. If the nonlocal problem (1.1) has a lower solution v(0) ∈ PC([−r, a], X)∩
C1(I ′′, X) ∩ C(I ′, X1) and an upper solution w(0) ∈ PC([−r, a], X) ∩ C1(I ′′, X) ∩
C(I ′, X1) with v(0) ≤ w(0), and the conditions (H1)–(H2) and the condition

(H4) There exist positive constants Lf , Lg and Lk (k = 1, 2, . . . ,m) satisfying

4aC(2Lf +M) + C
(

2

M∑
k=1

Lk + Lg

)
< 1

such that

‖g(u)− g(v)‖C0
≤ Lg‖u− v‖PC , u, v ∈ [v(0), w(0)],

α
({
f(t, u(n)(t), (u(n))t)

})
≤ Lf

[
α
({
u(n)(t)

})
+ sup
−r≤τ≤0

α
({
u(n)(t+ τ)

})]
, ∀t ∈ [0, a]

α
({
Ik(u(n)(tk))

})
≤ Lkα

({
u(n)(tk)

})
, k = 1, 2, . . . ,m,

where {u(n)} ⊂ [v(0), w(0)] is countable and increasing or decreasing mono-
tonic set and {(u(n))t} ⊂ C0,

are satisfied. Then nonlocal problem (1.1) has a minimal mild solution u and a
maximal mild solution u between v(0) and w(0); moreover,

v(n)(t)→ u(t), w(n)(t)→ u(t) uniformly for t ∈ [−r, a] as n→∞,

where

v(n)(t) = (Qv(n−1))(t), w(n)(t) = (Qw(n−1))(t),

which satisfy

v(0)(t) ≤ v(1)(t) ≤ · · · ≤ v(n)(t) ≤ · · · ≤ u(t) ≤ u(t) ≤ . . .

≤ w(n)(t) ≤ · · · ≤ w(1)(t) ≤ w(0)(t), ∀t ∈ [−r, a].

Proof. By the proof of Theorem 3.1, we know that the operator Q defined by
(3.2) maps [v(0), w(0)] to [v(0), w(0)] is continuous and monotone increasing. In the
following, we will prove that the operator Q : [v(0), w(0)] → [v(0), w(0)] is strict
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set-contraction. For this purpose, denote by

(Q1u)(t) =

{
g(u)(t) + ϕ(t), t ∈ [−r, 0];

S(t)[g(u)(0) + ϕ(0)], t ∈ [0, a],

(Q2u)(t) =


0, t ∈ [−r, 0];∫ t
0
S(t− s)[f(s, u(s), us) +Mu(s)]ds

+
∑

0<tk<t
S(t− tk)Ik(u(tk)), t ∈ [0, a].

Then it is easily to see that

(Qu)(t) = (Q1u)(t) + (Q2u)(t), t ∈ [−r, a].

Firstly, we prove that the operator Q1 : [v(0), w(0)] → [v(0), w(0)] is Lipschitz
continuous. For u, v ∈ [v(0), w(0)], by (2.6), the definition of operator Q1 and the
condition (H4), we have

‖(Q1u)(t)− (Q1v)(t)‖ = ‖g(u)(t)− g(v)(t)‖ ≤ ‖g(u)− g(v)‖C0

≤ Lg‖u− v‖PC for t ∈ [−r, 0]
(4.1)

and

‖(Q1u)(t)− (Q1v)(t)‖ = ‖S(t)‖ · ‖g(u)(0)− g(v)(0)‖
≤ C‖g(u)− g(v)‖C0

≤ CLg‖u− v‖PC for t ∈ [0, a].

(4.2)

From (4.1), (4.2), (2.1) and the fact that C ≥ 1, we know that

‖Q1u−Q1v‖PC ≤ CLg‖u− v‖PC . (4.3)

Therefore, by Lemma 2.8 (vii) and (4.3) we get that for any bounded set D ⊂
[v(0), w(0)],

αPC(Q1(D)) ≤ CLgαPC(D). (4.4)

Secondly, we estimate the measure of noncompactness to the operator Q2. From
the proof of Theorem 3.3, one can easily to prove that the operatorQ2 : [v(0), w(0)]→
[v(0), w(0)] is equicontinuous on each Jk (k = 1, 2, . . . ,m+ 1). For any bounded set
D ⊂ [v(0), w(0)], by Lemma 2.11, there exists a countable set D∗ = {u(n)} ⊂ D,
such that

αPC(Q2(D)) ≤ 2αPC(Q2(D∗)). (4.5)

Since Q2(D∗) ⊂ Q2(D) is equicontinuous on each Jk (k = 1, 2, . . . ,m+ 1), we have
by the definition of operator Q2 and Lemma 2.9

αPC(Q2(D∗)) = sup
t∈[−r,a]

α(Q2(D∗)(t)) = sup
t∈[0,a]

α(Q2(D∗)(t)). (4.6)
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For every t ∈ [0, a], by (2.6), the definition of operator Q2, the condition (H4) and
Lemma 2.10, we arrive at

α((Q2D
∗)(t))

= α
({∫ t

0

S(t− s)[f(s, u(n)(s), (u(n))s) +Mu(n)(s)]

+
∑

0<tk<t

S(t− tk)Ik(u(n)(tk))ds
})

≤ 2C

∫ t

0

α
({
f(s, u(n)(s), u(n)s ) +Mu(n)(s)

})
ds

+ C
∑

0<tk<t

α
({
Ik(u(n)(tk))

})
≤ 2C

∫ t

0

[
Lfα(D∗(s)) + Lf sup

−r≤τ≤0
α(D∗(s+ τ)) +Mα(D∗(s))

]
ds

+ C
∑

0<tk<t

Lkα(D∗(tk))

≤
[
2aC(2Lf +M) + C

m∑
k=1

Lk

]
αPC(D).

(4.7)

Combining this with (4.5), (4.6) and (4.7), we have

αPC(Q2(D)) ≤ 2
[
2aC(2Lf +M) + C

m∑
k=1

Lk

]
αPC(D). (4.8)

Therefore, by (4.4), (4.8), Lemma 2.8 (vi) and the assumption (H4), we know
that

αPC(Q(D)) ≤ αPC(Q1(D)) + α(Q2(D))PC ≤ µPCα(D), (4.9)

where

µ = 4aC(2Lf +M) + C
(

2

m∑
k=1

Lk + Lg

)
< 1. (4.10)

Hence, from (4.9) and (4.10) we know that Q : [v(0), w(0)] → [v(0), w(0)] is a strict
set-contraction operator. Therefore, our conclusion follows from Lemma 2.12. This
completes the proof. �

Remark 4.5. Analytic semigroup and differentiable semigroup are equicontinuous
semigroup [41]. In the application of partial differential equations, such as parabolic
and strongly damped wave equations, the corresponding solution semigroup are
analytic semigroup. Therefore, Theorem 4.4 in this paper has broad applicability.

Now we discuss the uniqueness of the mild solution to nonlocal problem (1.1).
If we replace the assumption (H4) by the following assumption:

(H5) There exist positive constants Lf , Mf , Lg and Lk (k = 1, 2, . . . ,m) satis-
fying

NC
(
Lg +

m∑
k=1

Lk + a(M +Mf + Lf )
)
< 1
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such that for any u, v ∈ [v(0), w(0)],

g(u)(t)− g(v)(t) ≤ Lg(u(t)− v(t)), t ∈ [−r, 0],

f(t, u(t), ut)− f(t, v(t), vt)

≤Mf (v(t)− v(t)) + Lf (u(t+ τ)− v(t+ τ)), ∀t ∈ [0, a], τ ∈ [−r, 0]

Ik(u(tk))− Ik(v(tk)) ≤ Lk(u(tk)− v(tk)), k = 1, 2, . . . ,m,

we have the following unique existence results:

Theorem 4.6. Let X be an ordered Banach space, whose positive cone P is normal,
and let A : D(A) ⊂ X → X be a closed linear operator and −A generates a positive
and equicontinuous strongly continuous semigroup T (t) (t ≥ 0) on X. Assume that
the nonlinear function f : [0, a] × X × C0 → X is Carathéodory continuous, Ik ∈
C(X,X) for k = 1, 2, . . . ,m and the nonlocal function g : PC([−r, a], X) → C0 is
continuous. If the nonlocal problem (1.1) has a lower solution v(0) ∈ PC([−r, a], X)∩
C1(I ′′, X) ∩ C(I ′, X1) and an upper solution w(0) ∈ PC([−r, a], X) ∩ C1(I ′′, X) ∩
C(I ′, X1) with v(0) ≤ w(0), such that (H1)–(H3), (H5) hold, then nonlocal problem
(1.1) has a unique mild solution between v(0) and w(0), which can be obtained by a
monotone iterative procedure starting from v(0) or w(0).

Proof. We first prove that (H1)–(H3) and (H5) imply (H4). For t ∈ [−r, 0], let
u, v ∈ [v(0), w(0)] such that u > v. In accordance with (H3) and (H5), we arrive at

θ ≤ g(u)(t)− g(v)(t) ≤ Lg(u(t)− v(t)), t ∈ [−r, 0].

By this and the normality of cone P , we have

‖g(u)(t)− g(v)(t)‖ ≤ NLg‖u(t)− v(t)‖ ≤ NLg‖u− v‖PC , t ∈ [−r, 0].

Hence

‖g(u)− g(v)‖C0 ≤ Lg‖u− v‖PC ,

where Lg = NLg.

On the other hand, for t ∈ [0, a], let {u(n)} ⊂ [v(0), w(0)] be an increasing se-
quences. For m,n ∈ N with m > n, from the conditions (H1), (H2) and (H5), we
obtain

θ ≤ f(t, u(m)(t), (u(m))t)− f(t, u(n)(t), (u(n))t)

+M [u(m)(t)− u(n)(t)]

≤ (M +Mf )[u(m)(t)− u(n)(t)]

+ Lf [u(m)(t+ τ)− u(n)(t+ τ)], t ∈ [0, a], τ ∈ [−r, 0]

and

θ ≤ Ik(u(m)(tk))− Ik(u(n)(tk)) ≤ Lk(u(m)(tk)− u(n)(tk)), k = 1, 2, . . . ,m.

From the above inequalities and the normality of cone P , it follows that for any
t ∈ [0, a], τ ∈ [−r, 0],

‖f(t, u(m)(t), (u(m))t)− f(t, u(n)(t), (u(n))t)‖

≤ N(M +Mf )‖u(m)(t)− u(n)(t)‖

+NLf‖u(m)(t+ τ)− u(n)(t+ τ)‖+M‖u(m)(t)− u(n)(t)‖
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≤ [N(M +Mf ) +M ]‖u(m)(t)− u(n)(t)‖

+NLf sup
−r≤τ≤0

‖u(m)(t+ τ)− u(n)(t+ τ)‖

and

‖Ik(u(m)(tk))− Ik(u(n)(tk))‖ ≤ NLk‖u(m)(tk)− u(n)(tk)‖, k = 1, 2, . . . ,m.

From these inequalities and the definition of the measure of noncompactness, we
have

α
({
f(t, u(n)(t), (u(n))t)

})
≤ Lf

[
α
({
u(n)(t)

})
+ sup
−r≤τ≤0

α
({
u(n)(t+ τ)

})]
, ∀t ∈ [0, a]

and

α
({
Ik(u(n)(tk))

})
≤ Lkα

({
u(n)(tk)

})
, k = 1, 2, . . . ,m,

where

Lf = max
{
N(M +Mf ) +M,NLf

}
, Lk = NLk, k = 1, 2, . . . ,m.

If {u(n)} ⊂ [v(0), w(0)] is a decreasing sequence, then above inequality is also valid.
Therefore, the condition (H4) holds.

Hence, by Theorem 4.4, the nonlocal problem (1.1) has a minimal mild solution
u and a maximal mild solution u between v(0) and w(0). By the proof Theorem
4.4, (3.2), (3.10) are valid. In what follows, we show that u = u. For t ∈ [−r, 0], by
(3.2) and (3.10) and the assumption (H5), we have

θ ≤ u(t)− u(t) = Au(t)−Au(t) = g(u)(t)− g(u)(t) ≤ Lg(u(t)− u(t)).

From this and the normality of cone P it follows that

‖u(t)− u(t)‖ ≤ NLg‖u(t)− u(t)‖ ≤ NLg‖u− u‖PC , t ∈ [−r, 0]. (4.11)

For t ∈ [0, a], by (3.2) and (3.10) and the assumption (H5), we obtain

θ ≤ u(t)− u(t) = Au(t)−Au(t)

= S(t)[g(u)(0)− g(u)(0)] +
∑

0<tk<t

S(t− tk)[Ik(u(tk))− Ik(u(tk))]

+

∫ t

0

S(t− s)[f(s, u(s), us)− f(s, u(s), us) +M(u(s)− u(s))]ds

≤ LgS(t)(u(t)− u(t)) +
∑

0<tk<t

LkS(t− tk)(u(tk)− u(tk))

+

∫ t

0

S(t− s)[(M +Mf )(u(s)− u(s)) + Lf (u(s+ τ)− u(s+ τ))]ds,
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where τ ∈ [−r, 0]. In accordance with (2.6), this inequality and the normality of
cone P , we get that for any t ∈ [0, a] and τ ∈ [−r, 0],

‖u(t)− u(t)‖

≤ NCLg‖u(t)− u(t)‖+NC

m∑
k=1

Lk‖u(tk)− u(tk)‖

+NC

∫ t

0

[(M +Mf )‖u(s)− u(s)‖+ Lf‖u(s+ τ)− u(s+ τ)‖]ds

≤ NC
(
Lg +

m∑
k=1

Lk + a(M +Mf + Lf )
)
‖u− u‖PC .

(4.12)

Since C ≥ 1, by (4.11) and (4.12), we know that

‖u− u‖PC ≤ ρ‖u− u‖PC ,

where

ρ = NC
(
Lg +

m∑
k=1

Lk + a(M +Mf + Lf )
)
.

Noting that ρ < 1 yields u = u. Hence, ũ := u = u is unique mild solution
of nonlocal problem (1.1) in [v(0), w(0)], which can be obtained by the monotone
iterative procedure (3.9) starting from v(0) or w(0). This completes the proof. �

5. An example

In this section, we give an example to illustrate the feasibility of our abstract
results. We consider the retarded parabolic partial differential equation involving
nonlocal and impulsive conditions

∂

∂t
u(x, t)− ∂2

∂x2
u(x, t) = sin

u(x, t)√
2

+

∫ 0

−r
γ(s)ut(x, s)ds,

x ∈ [0, 1], t ∈ [0, a], t 6= tk,

u(x, t+k ) = u(x, t−k ) +

√
|u(x, tk)|

1 + |u(x, tk)|
, x ∈ [0, 1], k = 1, 2, . . . ,m,

u(0, t) = u(1, t) = 0, t ∈ [0, a],

u(x, s) =

∫ a

0

ρ(s, t) lg(1 + |u(x, t)|)dt+ ϕ(x, s), x ∈ [0, 1], s ∈ [−r, 0],

(5.1)

where a, r > 0 are two constants, 0 < t1 < t2 < · · · < tm < a, ut(x, s) = u(t+ s, x)
for s ∈ [−r, 0] and x ∈ [0, 1], γ ∈ L([−r, 0],R+), ρ(s, t) is a continuous function
from [−r, 0]× [0, a] to R+, ϕ ∈ C([0, 1]× [−r, 0],R+).

Let X = L2([0, 1],R) with the norm ‖·‖2, and let P = {u ∈ L2([0, 1],R) | u(x) ≥
0a.e. x ∈ [0, 1]}. Then X is a Banach space and P is a regular cone of X. Define
an operator A : D(A) ⊂ X → X by

Au = − ∂2

∂x2
u, u ∈ D(A),

with domain

D(A) = {u ∈ L2([0, 1],R) : u′, u′′ ∈ L2([0, 1],R), u(0) = u(1) = 0}.
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It is well known that −A generates a uniformly bounded strongly continuous semi-
group T (t) (t ≥ 0) which is positive, compact, and analytic. Furthermore, A has
discrete spectrum with eigenvalues λn = n2π2 for n ∈ N associated normalized
eigenvectors en(x) =

√
2 sin(nπx), the set {en : n ∈ N} is an orthonormal basis of

X.
For t ∈ [0, a] and s ∈ [−r, 0], we denote

u(t) = u(·, t), f(t, u(t), ut) = sin
u(·, t)√

2
+

∫ 0

−r
γ(s)ut(·, s) ds,

Ik(u(tk)) =

√
|u(·, tk)|

1 + |u(·, tk)|
, k = 1, 2, . . . ,m,

g(u)(s) =

∫ a

0

ρ(s, t) lg(1 + |u(·, t)|)dt, ϕ(s) = ϕ(·, s).

Then the retarded parabolic partial differential equation involving nonlocal and
impulsive conditions (5.1) can be transformed into the abstract form of nonlocal
problem (1.1).

Theorem 5.1. Assume that there exists a function w = w(x, t) ∈ PC([0, 1] ×
[−r, a],R) ∩ C1([0, 1]× I ′′,R) such that

∂

∂t
w(x, t)− ∂2

∂x2
w(x, t) ≥ sin

w(x, t)√
2

+

∫ 0

−r
γ(s)wt(x, s)ds,

x ∈ [0, 1], t ∈ [0, a], t 6= tk,

w(x, t+k ) ≥ w(x, t−k ) +

√
|w(x, tk)|

1 + |w(x, tk)|
, x ∈ [0, 1], k = 1, 2, . . . ,m,

w(0, t) = w(1, t) = 0, t ∈ [0, a],

w(x, s) ≥
∫ a

0

ρ(s, t) lg(1 + |w(x, t)|)dt+ ϕ(x, s), x ∈ [0, 1], s ∈ [−r, 0].

Then the retarded parabolic partial differential equation involving nonlocal and im-
pulsive conditions (5.1) exist a minimal mild solution and a maximal mild solution
between 0 and w(x, t), which can be obtained by a monotone iterative procedure
starting from 0 and w(x, t), respectively.

Proof. From the assumption and the definition of nonlinear term f , impulsive func-
tion Ik for k = 1, 2, . . . ,m and nonlocal function g, we can verify that that v(0) = 0
and w(0) = w(x, t) are the lower and the upper solutions of the the retarded para-
bolic partial differential equation involving nonlocal and impulsive conditions (5.1)
respectively, nonlocal term g is continuous and compact as well as the conditions

(H1)–(H3) are satisfied with M =
√
2
2 . Therefore, our conclusion follows from

Theorem 3.1. This completes the proof. �
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