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NONNEGATIVE CONTROLLABILITY FOR A CLASS OF

NONLINEAR DEGENERATE PARABOLIC EQUATIONS WITH
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Abstract. We consider a nonlinear degenerate reaction-diffusion equation.

First we prove that if the initial state is nonnegative, then the solution re-

mains nonnegative for all time. Then we prove the approximate controllability
between nonnegative states via multiplicative controls, this is done using the

reaction coefficient as control.

1. Introduction

In this article, we study the one-dimensional semilinear reaction-diffusion equa-
tion

ut − (a(x)ux)x = α(x, t)u+ f(x, t, u), (x, t) ∈ QT := (−1, 1)× (0, T ), T > 0,

where a ∈ C([−1, 1]) ∩ C1(−1, 1) is strictly positive on (−1, 1) and a(±1) = 0
(for example a(x) = (1 − x2)η with η > 0), α is a bounded function on QT and
f(·, ·, u) is a suitable non-linearity that will be defined below. The above semilinear
equation is a degenerate parabolic equation since the diffusion coefficient vanishes
at the boundary points of [−1, 1].

Our interest in this degenerate reaction-diffusion equations is motivated by its
applications to the energy balance models in climate science. For example, the
Budyko-Sellers model that is obtained from the above equation when a(x) = 1−x2.
We devote the entire Section 4 to the presentation of applications of degenerate
equations to climate science.

In our mathematical study we need to distinguish two classes of degenerate
problems: weakly degenerate problems (WDeg) (see [14, 36]) when the degenerate

diffusion coefficient is such that 1
a ∈ L

1(−1, 1) (e.g. a(x) =
√

1− x2), and strongly

degenerate problems (SDeg) (see [13, 35]) when 1
a 6∈ L

1(−1, 1) (if a ∈ C1([−1, 1])

follows that 1
a 6∈ L

1(−1, 1), e.g. a(x) = 1 − x2). It is well-known [1] that, in the
(WDeg) case, all functions in the domain of the corresponding differential operator
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possess a trace on the boundary, in spite of the fact that the operator degener-
ates at such points. Thus, in the (WDeg) case we can consider the general Robin
type boundary conditions, in a similar way to the uniformly parabolic case. Con-
versely, in the harder (SDeg) case, one is limited to only the weighted Neumann
type boundary conditions. This preamble allows us to justify the following general
problem formulation.

1.1. Problem formulation. Let us introduce the semilinear degenerate parabolic
Cauchy problems:

ut − (a(x)ux)x = α(x, t)u+ f(x, t, u) in QT := (−1, 1)× (0, T )
{
β0u(−1, t) + β1a(−1)ux(−1, t) = 0 t ∈ (0, T )

γ0 u(1, t) + γ1 a(1)ux(1, t) = 0 t ∈ (0, T )
for (WDeg)

a(x)ux(x, t)|x=±1 = 0 for (SDeg)

u(x, 0) = u0(x) ∈ L2(−1, 1),

(1.1)

where the reaction coefficient α(x, t) ∈ L∞(QT ) will represent the multiplicative
control (that is the variable function through which we can act on the system), and
α is chosen, in this article, as a piecewise static function (in the sense of Definition
1.1). We consider problem (1.1) under the following assumptions:

(A1) The function f : QT × R→ R satisfies:
• (x, t, u) 7→ f(x, t, u) is a Carathéodory function on QT × R, that is
? (x, t) 7→ f(x, t, u) is measurable, for every u ∈ R,
? u 7→ f(x, t, u) is a continuous function, for a.e. (x, t) ∈ QT ;

• t 7→ f(x, t, u) is locally absolutely continuous for a.e. x ∈ (−1, 1), for
every u ∈ R, and ft(x, t, u)u ≥ −νu2 for a.e. t ∈ (0, T );

• there exist constants δ∗ ≥ 0, ϑ ∈ [1, ϑsup), ϑsup ∈ {3, 4}, and ν ≥ 0
such that for a.e. (x, t) ∈ QT and all u, v ∈ R, we have

|f(x, t, u)| ≤ δ∗ |u|ϑ, (1.2)

−ν
(
1 + |u|ϑ−1 + |v|ϑ−1

)
(u− v)2 ≤

(
f(x, t, u)− f(x, t, v)

)
(u− v)

≤ ν(u− v)2,
(1.3)

(A2) The function a ∈ C([−1, 1]) ∩ C1(−1, 1) satisfies

a(x) > 0, ∀x ∈ (−1, 1), a(−1) = a(1) = 0 .

Then, we consider the following two cases:
• case (WDeg): if 1

a ∈ L
1(−1, 1), then ϑsup = 4. In (1.1) we consider the

Robin boundary conditions, where β0, β1, γ0, γ1 ∈ R, with β2
0 +β2

1 > 0
and γ20 + γ21 > 0 satisfy the sign condition:

β0β1 ≤ 0 and γ0γ1 ≥ 0;

• case (SDeg): if 1
a 6∈ L1(−1, 1) and ξa(x) :=

∫ x
0

1
a(s)ds ∈ Lqϑ(−1, 1),

where qϑ = max
{

1+ϑ
3−ϑ , 2ϑ − 1

}
, then ϑsup = 3. In (1.1) we consider

the weighted Neumann boundary conditions.

To clarify the kind of multiplicative controls used, we recall the definition of
piecewise static function.
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Definition 1.1. We say that a function α ∈ L∞(QT ) is piecewise static (or a simple
function with respect to the variable t), if there exist m ∈ N, αk(x) ∈ L∞(−1, 1)
and tk ∈ [0, T ], tk−1 < tk, k = 1, . . . ,m with t0 = 0 and tm = T , such that

α(x, t) = α1(x)χ[t0,t1](t) +

m∑
k=2

αk(x)χ(tk−1,tk](t), (1.4)

where χ[t0,t1] and χ(tk−1,tk] are the indicator function of [t0, t1] and (tk−1, tk], re-
spectively. Sometimes, for clarity purposes, we will call the function α in (1.4) an
m-step piecewise static function

1.2. Main results. In this article, we study the controllability of (1.1) using mul-
tiplicative controls, that is the reaction coefficients α(x, t). First, we find that the
following general nonnegative result holds also for the degenerate PDE of system
(1.1). That is, if the initial state is nonnegative the corresponding strong solution
to (1.1) remains nonnegative for all time. For the notion of strict/strong solutions
of the nonlinear degenerate problem (1.1) see Section 2. The following result is
classic only for the uniformly parabolic (non degenerate) case.

Proposition 1.2. Let u0 ∈ L2(−1, 1) such that u0(x) ≥ 0 a.e. x ∈ (−1, 1). Let u
be the corresponding unique strong solution of (1.1). Then

u(x, t) ≥ 0, for a.e. (x, t) ∈ QT .

A consequence of this result, the solution to (1.1) cannot be steered from a
nonnegative initial state to any target state which is negative on a nonzero measure
set in the space domain, regardless of the choice of the reaction coefficient α(x, t)
as multiplicative control.

In Theorem 1.4 below, we obtain an optimal goal, that is, we approximately
control system (1.1) between nonnegative states via multiplicative controls at any
time.

Definition 1.3. System (1.1) is said to be non-negatively globally approximately
controllable in L2(−1, 1) at any time T > 0, by means of multiplicative controls α,
if for any nonnegative u0, u

∗ ∈ L2(−1, 1) with u0 6= 0, and for every ε > 0 there
exists a piecewise static multiplicative control α = α(ε, u0, u

∗) in L∞(QT ), such
that for the corresponding strong solution u(x, t) of (1.1) we have

‖u(·, T )− u∗‖L2(−1,1) < ε.

Now we can state the main controllability result.

Theorem 1.4. The nonlinear degenerate system (1.1) is non-negatively globally
approximately controllable in L2(−1, 1) at any time T > 0, by means of 2-steps
piecewise static multiplicative controls.

The outline of this article is as follows: The proofs of the main results are
given in Section 3. In Section 2 we recall the well-posedness of (1.1), in particular
we introduce the notions of strict and strong solutions, and we give some useful
estimates and properties for this kind of degenerate PDEs, that we use in Section
3. The proofs of the existence and uniqueness results for strict and strong solutions
are contained in Section 5. In Section 4 we present some motivations for studying
degenerate parabolic problems with the above structure, in particular we introduce
the Budyko-Sellers model, an energy balance model in climate science.
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1.3. State of the art in multiplicative controllability and degenerate par-
abolic equations. Control theory appeared in the second part of the previous
century in the context of linear ordinary differential equations and was motivated
by several engineering, Life sciences and economics applications. Then, it was ex-
tended to various linear partial differential equations (PDEs) governed by additive
locally distributed controls (see [1, 3, 19, 24, 32, 34, 47]), or by boundary con-
trols. Methodologically-speaking, these kind of controllability results for PDEs are
typically obtained using the linear duality pairing technique between the control-
to-state mapping at hand and its dual observation map (see the Hilbert Uniqueness
Method - HUM - introduced in 1988 by J. L. Lions), sometimes using the Carleman
estimates tool (see [1, 15, 17]). If the above map is nonlinear, as it happens in our
case for the multiplicative controllability, in general the aforementioned approach
does not apply.

From the point of view of applications, the approach based on multiplicative
controls seems more realistic than the other kinds of controllability, since additive
and boundary controls do not model in a realistic way the problems that involve
inputs with high energy levels; such as energy balance models in climate science (see
Section 4), chemical reactions controlled by catalysts, nuclear chain reactions, smart
materials, social science, ecological population dynamic (see [49]) and biomedical
models. An important class of biomedical reaction-diffusion problems consists in the
models of tumor growth (see, e.g. Section 7 “Control problems” of the survey paper
[7] by Bellomo and Preziosi). As regards degenerate reaction-diffusion equations
there are also interesting models in population genetics, in particular we recall the
Fleming-Viot model (see Epstein’s and Mazzeo’s book [30]).

The above considerations motivate our investigation of the multiplicative con-
trollability. As regards the topic of multiplicative controllability of PDEs we recall
the pioneering paper [5] by Ball, Marsden, and Slemrod, and in the framework
of the Schrödinger equation we especially mention [6] by Beauchard and Laurent,
and [22] by Coron, Gagnon and Moranceu. As regards parabolic and hyperbolic
equations we focus on some results by Khapalov contained in the book [41], and in
the references therein.

The main results of this paper deal with approximate multiplicative controllabil-
ity of semilinear degenerate reaction-diffusion equations. This study is motivated
by its applications (see in Section 4 to an energy balance model in climate sci-
ence: the Budyko-Sellers model) and also by the classical results that hold for the
corresponding non-degenerate reaction-diffusion equations, governed via the coeffi-
cient of the reaction term (multiplicative control). For the above class of uniformly
parabolic equations there are some important obstructions to multiplicative con-
trollability due to the strong maximum principle (see the seminal papers by Diaz
[25] and [26], and also the papers [16, 41]), this implies the well-known nonneg-
ative constraint. In Proposition 1.2 we extend the nonnegative constraint to the
semilinear degenerate system (1.1). This motivates our investigations regarding the
nonnegative controllability for the semilinear degenerate system (1.1) with general
weighted Robin/Neumann boundary conditions.

Regarding the nonnegative controllability for reaction-diffusion equations, first,
Khapalov in [41] obtained the nonnegative approximate controllability in large time
of the one dimensional heat equation via multiplicative controls. Thus, the author
and Cannarsa considered the linear degenerate problem associated with (1.1), both
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in the weakly degenerate (WDeg) case, in [14], and in the strongly degenerate
(SDeg) case, in [13]. Then, the author in [35] investigated semilinear strongly de-
generate problems. This article can be seen as the final step of the study started in
[13, 14, 35], where the global nonnegative approximate controllability was obtained
in large time. Indeed, in this article we introduce a new proof, that permits us
to obtain the nonnegative controllability in arbitrary small time and consequently
at any time, instead of large time. Moreover, the proof, contained in [35], of the
nonnegative controllability in large time for the (SDeg) case has the further ob-
struction that permitted to treat only superlinear growth, with respect to u, of
the nonlinearity function f(x, t, u). While the new proof, adopted in this paper,
permits us to control also linear growth of f , with respect to u.

Finally, we mention some recent papers about the approximate multiplicative
controllability for reaction-diffusion equations between sign-changing states: in [16]
by the author with Cannarsa and Khapalov regarding a semilinear uniformly para-
bolic system, and [37] by the author with Nitsch and Trombetti, concerning degen-
erate parabolic equations. Furthermore, some interesting contributions about exact
controllability issues for evolution equations via bilinear controls have recently ap-
peared, in particular we mention [2] by Alabau-Boussouira, Cannarsa and Urbani,
and [29] by Duprez and Lissy.

To complete the discussion regarding the multiplicative controllability, we note
that recently there has been an increasing interest in these topics; many authors
are starting to extend the above results from reaction-diffusion equations to other
operators. In [50], Vancostenoble proved a nonnegative controllability result in
large time for a linear parabolic equation with singular potential, following the
approach of [13] and [14]. An interesting work in progress, using the technique of
this paper, consists of approaching the problem of the approximate controllability
via multiplicative control of nonlocal operators, e.g. the fractional heat equation
studied in [10] by Biccari, Warma and Zuazua. Other interesting open problems
are suggested in [38, 42].

2. Well-posedness

The well-posedness of case (SDeg) in problem (1.1) was introduced in [35], while
the well-posedness of case (WDeg) in problem (1.1) was presented in [36]. To study
the well-posedness of (1.1), it is necessary to introduce in the weighted Sobolev
spaces H1

a(−1, 1) and H2
a(−1, 1), and their main propertie. Also, in Section 2.2 we

introduce the notions of strict and strong solutions semilinear degenerate problems,
and we give the corresponding existence and uniqueness results, that are proved in
Section 5.

2.1. Weighted Sobolev spaces. Let a ∈ C([−1, 1]) ∩ C1(−1, 1) such that the
assumption (A2) holds, we define the following spaces:

H1
a(−1, 1) =

{
{u ∈ L2(−1, 1) ∩AC([−1, 1]) :

√
a ux ∈ L2(−1, 1)} for (WDeg)

{u ∈ L2(−1, 1) ∩ACloc(−1, 1) :
√
a ux ∈ L2(−1, 1)} for (SDeg),

where AC([−1, 1]) denotes the space of the absolutely continuous functions on
[−1, 1], and ACloc(−1, 1) denotes the space of the locally absolutely continuous
functions on (−1, 1).

H2
a(−1, 1) := {u ∈ H1

a(−1, 1) : aux ∈ H1(−1, 1)}.



6 G. FLORIDIA EJDE-2020/59

See [1, 13, 14, 35, 36] for the main properties of the weighted Sobolev spaces. In
particular we note that H1

a(−1, 1) and H2
a(−1, 1) are Hilbert spaces with their

natural scalar products that induce, respectively, the norms:

‖u‖21,a := ‖u‖2L2(−1,1) + |u|21,a, ‖u‖22,a := ‖u‖21,a + ‖(aux)x‖2L2(−1,1),

where |u|21,a := ‖
√
aux‖2L2(−1,1) is a seminorm.

Remark 2.1. The space H1
a(−1, 1) is embedded in L∞(−1, 1) only in the weakly

degenerate case (see [1, 13, 14, 35]).

The following proposition was presented in [18, Proposition 2.1], [35, Appendix],
and [12, Lemma 2.5].

Proposition 2.2. In the (SDeg) case, for every u ∈ H2
a(−1, 1) we have

lim
x→±1

a(x)ux(x) = 0 and au ∈ H1
0 (−1, 1) .

Some spectral properties. Let us define the operator (A0, D(A0)) by

D(A0) =


{
u ∈ H2

a(−1, 1) :

{
β0u(−1) + β1a(−1)ux(−1) = 0

γ0u(1) + γ1a(1)ux(1) = 0

}
for (WDeg)

H2
a(−1, 1) for (SDeg)

A0u = (aux)x , ∀u ∈ D(A0).

(2.1)

Remark 2.3. We note that in the (SDeg) case, for every u ∈ D(A0) Proposition
2.2 guarantees that u satisfies the weighted Neumann boundary conditions.

When α ∈ L∞(−1, 1), we define the operator (A,D(A)) as

D(A) = D(A0)

Au = (aux)x + αu, ∀u ∈ D(A).
(2.2)

We recall some spectral results obtained from [14] for (WDeg), and from [13] for
(SDeg).

Proposition 2.4. (A,D(A0)) is a closed, self-adjoint, dissipative operator with
dense domain in L2(−1, 1). Therefore, A is the infinitesimal generator of a strongly
continuous semigroup of bounded linear operators on L2(−1, 1).

Proposition 2.4 allows us to obtain the following result.

Proposition 2.5. There exists an increasing sequence {λp}p∈N, with λp → +∞ as
p → ∞, such that −λp are the eigenvalues of (A0, D(A0)), and the corresponding
eigenfunctions {ωp}p∈N form a complete orthonormal system in L2(−1, 1).

Remark 2.6. When a(x) = 1 − x2, that is in the case of the Budyko-Sellers
model, the orthonormal eigenfunctions of (A0, D(A0)) are reduced to Legendre’s
polynomials (see [45, Section 5.6] and [35, Remark 3.2]).
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Spaces involving time: B(QT ) and H(QT ). Given T > 0, let us define the Banach
spaces:

B(QT ) := C([0, T ];L2(−1, 1)) ∩ L2(0, T ;H1
a(−1, 1))

with the norm

‖u‖2B(QT ) = sup
t∈[0,T ]

‖u(·, t)‖2L2(−1,1) + 2

∫ T

0

∫ 1

−1
a(x)u2xdx dt ,

and

H(QT ) := L2(0, T ;D(A0)) ∩H1(0, T ;L2(−1, 1)) ∩ C([0, T ];H1
a(−1, 1))

with the norm

‖u‖2H(QT )
= sup

[0,T ]

(
‖u‖2L2(−1,1) + ‖

√
aux‖2L2(−1,1)

)
+

∫ T

0

(
‖ut‖2L2(−1,1) + ‖(aux)x‖2L2(−1,1)

)
dt.

The following embedding lemma was obtained for the space H(QT ): in [35] for
the (SDeg) case, and in [36] for the (WDeg) case.

Lemma 2.7. Let ϑ ≥ 1. Then H(QT ) ⊂ L2ϑ(QT ) and

‖u‖L2ϑ(QT ) ≤ cT
1
2ϑ ‖u‖H(QT ),

where c is a positive constant.

We note that Lemma 2.7 holds in a more general setting than under the assump-
tions (A1) and (A2), where ϑ ∈ [1, ϑsup), with ϑsup ∈ {3, 4}.

2.2. Existence and uniqueness of solutions of semilinear degenerate prob-
lems. To study the well-posedness, we represent the semilinear problem (1.1) using
the following abstract setting in the Hilbert space L2(−1, 1),

u′(t) = (A0 + α(t)I)u(t) + φ(u) , t > 0

u(0) = u0 ∈ L2(−1, 1) ,
(2.3)

where A0 is the operator defined in (2.1), I is the identity operator and, for every
u ∈ B(QT ), the Nemytskii operator associated with the problem (1.1) is defined as

φ(u)(x, t) := f(x, t, u(x, t)), ∀(x, t) ∈ QT . (2.4)

The following proposition was proved in [35], for the (SDeg) case, and in [36], for
the (WDeg) case.

Proposition 2.8. Let 1 ≤ ϑ < ϑsup, let f : QT ×R→ R and assume that (A1) and

(A2) hold. Then φ : B(QT ) → L1+ 1
ϑ (QT ), defined in (2.4), is a locally Lipschitz

continuous map and φ(H(QT )) ⊆ L2(QT ).

The above proposition justifies the introduction of the notions of strict solutions
and strong solutions. Such notions are classical in PDE theory, see, for instance,
the book [8, pp. 62-64] (see also [35, 36]) and the pioneer paper [39] by Friedrichs.
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Strict solutions. In this section we give the notion of solutions of (1.1) with initial
state in H1

a(−1, 1), introduced in [35] for (SDeg) and in [36] for (WDeg).

Definition 2.9. If u0 ∈ H1
a(−1, 1), then u is a strict solution of (1.1), if u ∈ H(QT )

and

ut − (a(x)ux)x = α(x, t)u+ f(x, t, u) a.e. in QT := (−1, 1)× (0, T )
{
β0u(−1, t) + β1a(−1)ux(−1, t) = 0 a.e. t ∈ (0, T )

γ0u(1, t) + γ1a(1)ux(1, t) = 0 a.e. t ∈ (0, T ),
for (WDeg)

a(x)ux(x, t)
∣∣
x=±1 = 0 a.e. t ∈ (0, T ) for (SDeg)

u(x, 0) = u0(x) x ∈ (−1, 1) ,

for almost every t in (0, T ).

Remark 2.10. Since a strict solution u belongs to H(QT ) ⊆ L2(0, T ;D(A0)), we
have

u(·, t) ∈ D(A0), for a.e. t ∈ (0, T ).

Thus, thanks to the definition of the operator (A,D(A)) given in (2.2) and Remark
2.3, we deduce that the associated boundary conditions hold, for almost every
t ∈ (0, T ).

The following existence and uniqueness result for strict solutions is proved in
Section 5 (see also [35, Appendix B] for (SDeg), and [36] for (WDeg)).

Theorem 2.11. For each u0 ∈ H1
a(−1, 1) there exists a unique strict solution

u ∈ H(QT ) to (1.1).

Strong solutions. In this subsection we introduce the notion of solutions when the
initial state belongs to L2(−1, 1). These solutions are called strong solutions and
are defined by approximation sequence of strict solutions.

Definition 2.12. Let u0 ∈ L2(−1, 1). We say that u ∈ B(QT ) is a strong solution
of (1.1), if u(·, 0) = u0 and there exists a sequence {uk}k∈N in H(QT ) such that,
as k → ∞, uk → u in B(QT ) and, for every k ∈ N, uk is the strict solution of the
Cauchy problem

ukt − (a(x)ukx)x = α(x, t)uk + f(x, t, uk) a.e. in QT := (−1, 1)× (0, T )
{
β0uk(−1, t) + β1a(−1)ukx(−1, t) = 0 a.e. t ∈ (0, T )

γ0uk(1, t) + γ1a(1)ukx(1, t) = 0 a.e. t ∈ (0, T )
for (WDeg)

a(x)ukx(x, t)|x=±1 = 0 a.e. t ∈ (0, T ) for (SDeg)

u(x, 0) = u0(x) x ∈ (−1, 1)

with initial datum uk(x, 0).

Remark 2.13. Let us consider the sequence of strict solutions in Definition 2.12,
{uk}k∈N ⊆ H(QT ) such that, as k → ∞, uk → u in B(QT ). Thus, it follows that
uk(·, 0)→ u0 in L2(−1, 1), because of the definition of the B(QT )−norm.

The next proposition, obtained in [35] for (SDeg) and in [36] for (WDeg), will
be very useful in the proof of the main results.
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Proposition 2.14. Let α ∈ L∞(QT ) a piecewise static function and let u0, v0 ∈
L2(−1, 1). Let u, v be the corresponding strong solutions of (1.1), with initial data
u0, v0 respectively. Then,

‖u− v‖B(QT ) ≤ CT ‖u0 − v0‖L2(−1,1), (2.5)

where CT = e(ν+‖α
+‖∞)T and α+ := max{α, 0}.

From Proposition 2.14 trivially we have a corollary.

Corollary 2.15. Let u0 ∈ L2(−1, 1), α ∈ L∞(QT ), α be a piecewise static function
with α(x, t) ≤ 0 in QT , and u be the corresponding strong solution of (1.1). If
T ∈ (0, 1/(4ν)), then

‖u‖C([0,T ],L2(−1,1)) ≤
√

2 ‖u0‖L2(−1,1). (2.6)

The following existence and uniqueness result for strong solutions, was given in
[35] for (SDeg) and in [36] for (WDeg)). It will be proved in Section 5.

Theorem 2.16. For each u0 ∈ L2(−1, 1) and each piecewise static function α ∈
L∞(QT ), there exists a unique strong solution to (1.1).

Further estimates. First, we recall the following Lemma that was obtained in [35,
Lemma B.2] for the (SDeg) case, and in [36], for the (WDeg) case. In the case of
static reaction α ∈ L∞(−1, 1) (a similar argument to that used in Subsection 5.1.4
to prove Theorem 2.11 which permits to extend the following lemma to the case of
α ∈ L∞(QT ) piecewise static function).

Lemma 2.17. Let α ∈ L∞(QT ) be a piecewise static function and u0 ∈ H1
a(−1, 1).

Then the strict solution u ∈ H(QT ) of system (1.1), under the assumptions (A1)
and (A2), satisfies

‖u‖H(QT ) ≤ ce
kT ‖u0‖1,a,

where c = c(‖u0‖1,a) and k are positive constants.

Using Lemma 2.7, Proposition 2.8 and Lemma 2.17 we obtain the following
Proposition.

Proposition 2.18. Let α ∈ L∞(QT ) be a piecewise static function and u0 ∈
H1
a(−1, 1). Let u ∈ H(QT ) be the strict solution of (1.1), under the assumptions

(A1) and (A2). Then, the function (x, t) 7→ f(x, t, u(x, t)) belongs to L2(QT ) and

‖f(·, ·, u)‖L2(QT ) ≤ Ce
kϑT
√
T‖u0‖ϑ1,a ,

where C = C(‖u0‖1,a) and k are positive constants.

Proof. Applying (1.2), Lemma 2.7 and Lemma 2.17, we obtain∫ T

0

∫ 1

−1
f2(x, t, u) dx dt ≤ δ2∗

∫ T

0

∫ 1

−1
|u|2ϑ dx dt ≤ cT‖u‖2ϑH(QT )

≤ Ce2kϑTT‖u0‖2ϑ1,a,

where c and C = C(‖u0‖1,a) and k are positive constants. �
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3. Proof of main results

In Proposition 1.2 we showed that the solution to (1.1) remains nonnegative for
all time when the initial state is nonnegative, regardless of the choice of the mul-
tiplicative control α(x, t). In Theorem 1.4 we showed that the global approximate
multiplicative controllability between nonnegative states at any time.

For brevity of notation, we will use ‖ · ‖, ‖ · ‖∞ and 〈·, ·〉 instead of the norms
‖ · ‖L2(−1,1) and ‖ · ‖L∞(QT ), and the inner product 〈·, ·〉L2(−1,1), respectively.

3.1. Nonnegative solutions. Before proving Proposition 1.2 we give a regularity
property of the positive and negative part of a function, that will be used in that
proof. For u : (−1, 1) → R, we consider the positive and negative part functions,
respectively,

u+(x) := max {u(x), 0} , u−(x) := max {0,−u(x)} , x ∈ (−1, 1) .

Then u = u+ − u−. We have the following regularity result in weighted Sobolev
spaces, obtained as trivial consequence of a classical result for the usual Sobolev
spaces, that we can find in [43, Appendix A].

Proposition 3.1. Let u ∈ H1
a(−1, 1), then u+, u− ∈ H1

a(−1, 1). Moreover,

(u+)x =

{
ux(x) if u(x) > 0

0 if u(x) ≤ 0
and (u−)x =

{
−ux(x) if u(x) < 0

0 if u(x) ≥ 0 .

Proof of Proposition 1.2. Case 1: u0 ∈ H1
a(−1, 1). Firstly, we prove Proposition

1.2 under the further assumption that u0 ∈ H1
a(−1, 1). Note that the corresponding

unique solution u(x, t) is a strict solution, that is

u ∈ H(QT ) = L2(0, T ;D(A0)) ∩H1(0, T ;L2(−1, 1)) ∩ C([0, T ];H1
a(−1, 1)).

We denote with u+ and u− the positive and negative part of u, respectively. Since
u = u+ − u−, it sufficies to prove that u−(x, t) = 0, a.e. in QT . Multiplying by u−

both sides of the equation in (1.1) and integrating on (−1, 1) we obtain∫ 1

−1
utu
−dx =

∫ 1

−1
[(a(x)ux)xu

− + αuu− + f(x, t, u)u−]dx. (3.1)

We start by estimating of the second term in (3.1). Integrating by parts, recalling
that u−(·, t) ∈ H1

a(−1, 1) for every t ∈ (0, T ),and using Proposition 3.1 we deduce∫ 1

−1
(a(x)ux)xu

− dx = [a(x)uxu
−]1−1 −

∫ 1

−1
a(x)ux(u−)x dx

= [a(x)uxu
−]1−1 +

∫ 1

−1
a(x)u2x dx .

(3.2)

If β1γ1 6= 0, keeping in mind the boundary conditions, for t ∈ (0, T ) we have

[a(x)uxu
−]1−1

= a(1)ux(1, t)u−(1, t)− a(−1)ux(−1, t)u−(−1, t)

= −γ0
γ1

(u+(1, t)− u−(1, t))u−(1, t) +
β0
β1

(u+(−1, t)− u−(−1, t))u−(−1, t)

=
γ0
γ1

(u−(1, t))2 − β0
β1

(u−(−1, t))2 ≥ 0.

(3.3)
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Thus, including the simple case β1γ1 = 0, from (3.2) and (3.3) we obtain∫ 1

−1
(a(x)ux)xu

− dx ≥ 0. (3.4)

We also have the equality∫ 1

−1
αuu−dx = −

∫ 1

−1
α(u−)2dx, (3.5)

moreover, using (1.3) we have∫ 1

−1
f(x, t, u)u− dx =

∫ 1

−1
f(x, t, u+ − u−)u− dx =

∫ 1

−1
f(x, t,−u−)u− dx

= −
∫ 1

−1
f(x, t,−u−)(−u−) dx

≥ −
∫ 1

−1
ν(−u−)2 dx = −

∫ 1

−1
ν(u−)2 dx .

(3.6)

We can compute the first term in (3.1) the following way∫ 1

−1
utu
−dx =

∫ 1

−1
(u+ − u−)tu

−dx = −
∫ 1

−1
(u−)tu

−dx = −1

2

d

dt

∫
(u−)2dx .

Applying to (3.1) the above equality and (3.4)-(3.6), we have

1

2

d

dt

∫ 1

−1
(u−)2dx ≤

∫ 1

−1
(α(x, t) + ν) (u−)2dx ≤ (‖α‖∞ + ν)

∫ 1

−1
(u−)2dx,

so by Gronwall’s Lemma, since u−0 (x) ≡ 0, we obtain∫ 1

−1
(u−(x, t))2dx ≤ e2(ν+‖α‖∞)T

∫ 1

−1
(u−(x, 0))2dx = 0, ∀t ∈ (0, T ).

Therefore,

u−(x, t) = 0 ∀(x, t) ∈ QT , (3.7)

that proves Proposition 1.2 in the case u0 ∈ H1
a(−1, 1).

Case 2: u0 ∈ L2(−1, 1). If u0 ∈ L2(−1, 1), u0 ≥ 0 a.e. x ∈ (−1, 1), then there
exists {u0k}k∈N ⊆ C∞([−1, 1]), such that u0k ≥ 0 on (−1, 1) for every k ∈ N, and
u0k → u0 in L2(−1, 1), as k → ∞. For every k ∈ N, we consider uk ∈ H(QT ) the
strict solution to (1.1) with initial state u0k. For the well-posedness there exists
u ∈ B(QT ) such that uk → u in B(QT ), as k →∞. This convergence implies that
there exists {ukp}p∈N ⊆ {uk}k∈N such that, as p→∞,

ukp(x, t)→ u(x, t), a.e. (x, t) ∈ QT . (3.8)

For every p ∈ N, we can apply the Case 1 to the system (1.1) with initial datum
u0kp , so by (3.7) we deduce

ukp(x, t) ≥ 0, a.e. (x, t) ∈ QT ,

thus from the convergence (3.8) it follows that

u(x, t) ≥ 0, a.e. (x, t) ∈ QT .

�
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3.2. Nonnegative controllability.

Proof of Theorem 1.4. Let us fix ε > 0. Since u0, u
∗ ∈ L2(−1, 1), there exist

uε0, u
∗
ε ∈ C1([−1, 1]) such that

uε0, u
∗
ε > 0 on [−1, 1], ‖u∗ε − u∗‖ <

ε

4
, ‖uε0 − u0‖ <

√
2

36Sεeν
ε , (3.9)

where ν is the nonnegative constant in assumption (A1) and

Sε := max
x∈[−1,1]

{u∗ε(x)

uε0(x)

}
+ 1 . (3.10)

From (3.9) and (3.10) it follows that there exists η∗ > 0 such that

η∗ ≤ u∗ε(x)

Sεuε0(x)
≤ 1, ∀x ∈ [−1, 1] . (3.11)

The strategy of the proof consists of using two control actions: in the first step
we steer the system from the initial state u0 to the intermediate state Sεu

ε
0, then in

the second step we drive the system from this to u∗ε. In the second step, condition
(3.11) will be crucial, that is justify the choice of the intermediate state Sεu

ε
0.

Step 1: Steering the system from u0 to Sεu
ε
0. Let us choose the positive constant

bilinear control

α(x, t) = α1 :=
logSε
T1

> 0, (x, t) ∈ (−1, 1)× (0, T1), for some T1 > 0.

Let us denote by uε(x, t) and u(x, t) the strict and strong solution of (1.1) with
initial state uε0 and u0, respectively. So, keeping in mind the abstract formulation
(2.3) for problem (1.1), the Duhamel’s principle and the Proposition (2.8), the strict
solution uε(x, t) is given in terms of a Fourier series approach, by

uε(x, T1) = eα1T1

∞∑
p=1

e−λpT1〈uε0, ωp〉ωp(x) +Rε(x, T1) , (3.12)

with

Rε(x, T1) :=

∞∑
p=1

[ ∫ T1

0

e(α1−λp)(T1−t)〈f(·, t, uε(·, t)), ωp〉dt
]
ωp(x),

where {−λp}p∈N are the eigenvalues of the operator (A0, D(A0)), defined in (2.1),
and {ωp}p∈N are the corresponding eigenfunctions, that form a complete orthonor-
mal system in L2(−1, 1), see Proposition 2.5. We recall that the eigenvalues of the
operator (A,D(A)), with Au = A0u+α1u (defined in (2.2)) are obtained from the
eigenvalues of the operator (A0, D(A0)) by shift, that is we have {−λp + α1}p∈N,
and the corresponding orthonormal system in L2(−1, 1) of eigenfunctions is the
same as (A0, D(A0)), that is {ωp}p∈N.

By the strong continuity of the semigroup, see Proposition 2.4, we have that
∞∑
p=1

e−λpT1〈uε0, ωp〉ωp(x)→ uε0 in L2(−1, 1) as T1 → 0.

So, there exists a small time T 1 ∈ (0, 1) such that∥∥Sε ∞∑
p=1

e−λpT1〈uε0, ωp〉ωp(·)− Sεuε0(·)
∥∥ < ε

8
, ∀T1 ∈ (0, T 1]. (3.13)
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Since uε is a strict solution, by Proposition 2.18 we have f(·, ·, uε(·, ·)) ∈ L2(QT ),
then using also Hölder’s inequality and Parseval’s identity we deduce that

‖Rε(x, T1)‖2 =

∞∑
p=1

∣∣∣ ∫ T1

0

e(α1−λp)(T1−t)〈f(·, t, uε(·, t)), ωp〉dt
∣∣∣2

≤
∞∑
p=1

(∫ T1

0

e2(α1−λp)(T1−t)dt
)∫ T1

0

|〈f(·, t, uε(·, t)), ωp〉|2dt

≤ e2α1T1T1

∫ T1

0

∞∑
p=1

|〈f(·, t, uε(·, t)), ωp〉|2dt

= S2
εT1

∫ T1

0

‖f(·, t, uε(·, t))‖2dt ≤ CS2
εe

2kϑT1T 2
1 ‖uε0‖2ϑ1,a ,

(3.14)

where C = C(‖uε0‖1,a) and k are the positive constants introduced in the statement

of Proposition 2.18. Then there exists T ∗1 ∈ (0, T 1] such that

√
CSεe

kϑT1T1‖uε0‖ϑ1,a <
√

2

36
ε, ∀T1 ∈ (0, T ∗1 ]. (3.15)

Using Proposition 2.14, by (3.12)-(3.15) and keeping in mind (3.9), for every T1 ∈
(0, T ∗1 ], we have

‖u(·, T1)− Sεuε0(·)‖
≤ ‖u(·, T1)− uε(·, T1)‖+ ‖uε(·, T1)− Sεuε0(·)‖

≤ e(ν+‖α
+
1 ‖∞)T1‖u0 − uε0‖

+
∥∥Sε ∞∑

p=1

e−λpT1〈uε0, ωp〉ωp(·)− Sεuε0(·)
∥∥+ ‖Rε(·, T1)‖

≤ e(ν+‖α
+
1 ‖∞)

√
2

36Sεeν
ε+

√
2

36
ε+
√
CSεe

kϑT1T1‖uε0‖ϑ1,a

<

√
2

12
ε,

(3.16)

where ν ≥ 0 is given in assumption (A1). Let us set

σε0(x) := u(x, T1)− Sεuε0(x), (3.17)

we note that by (3.16), we have

‖σε0‖ <
√

2

12
ε . (3.18)

Step 2: Steering the system from Sεu
ε
0 + σε0 to u∗ at T ∈ (0, T ∗], for some T ∗ > 0.

In this step let us restart at time T1 from the initial state Sεu
ε
0 + σε0 and our goal

is to steer the system arbitrarily close to u∗. Let us consider

αε(x) :=

{
log
( u∗ε(x)
Sεuε0(x)

)
for x 6= ±1,

0 for x = ±1;
(3.19)
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thus by (3.11) we deduce that αε ∈ L∞(−1, 1) and αε(x) ≤ 0 for a.e. x ∈ [−1, 1].
So, there exists a sequence {αεj}j∈N ⊂ C2([−1, 1]) such that

αεj(x) ≤ 0 ∀x ∈ [−1, 1], αεj(±1) = 0,

αεj → αε in L2(−1, 1) as j →∞,
(3.20)

and

lim
x→±1

α′εj(x)

a(x)
= 0, lim

x→±1
α′εj(x)a′(x) = 0. (3.21)

From (3.20) we deduce

eαεj(x)Sεu
ε
0(x)→ eαε(x)Sεu

ε
0(x) = u∗ε(x) in L2(−1, 1) as j →∞;

then there exists j∗ ∈ N such that

‖eαεjSεuε0 − u∗ε‖ <
ε

12
, ∀j ∈ N with j ≥ j∗ . (3.22)

Let us fix an arbitrary j ∈ N with j ≥ j∗, and let us choose as control the static
multiplicative function

α(x, t) :=
1

T − T1
αεj(x) ≤ 0 ∀(x, t) ∈ Q̃T := (−1, 1)× (T1, T ), (3.23)

and call uσ(x, t) the unique strong solution that solves problem (1.1) with the
following changes:

• time interval (T1, T ) instead of (0, T );
• multiplicative control given by (3.23);
• initial condition uσ(x, T1) = Sεu

ε
0(x) + σε0(x).

Let us also denote by u(x, t) the unique strict solution of the problem

ut − (a(x)ux)x =
αεj(x)

T − T1
u+ f(x, t, u) in Q̃T := (−1, 1)× (T1, T )

B. C.

u(x, T1) = Sεu
ε
0(x), x ∈ (−1, 1) .

(3.24)

For a.e. x ∈ (−1, 1), from the equation

ut(·, t) =
αεj(·)
T − T1

u(·, t) + ((a(·)ux(·, t))x + f(·, t, u)) t ∈ (T1, T ),

by the classical variation constants technique, we obtain a representation formula
of the solution u(x, t) of (3.24), that computed at time T , for x ∈ (−1, 1), becomes

u(x, T ) = eαεj(x)Sεu
ε
0(x) +

∫ T

T1

eαεj(x)
(T−τ)
T

(
(a(x)ux)x(x, τ) + f(x, τ, u(x, τ))

)
dτ .

Let us show that u(·, T ) → u∗ε in L2(−1, 1), as T → T1
+. Since αεj(x) ≤ 0 from

that by the above formula, using Hölder’s inequality and (3.22), we deduce that

‖u(·, T )− u∗ε(·)‖2

≤ 2‖eαεj(x)Sεuε0(x)− u∗ε‖2

+ 2

∫ 1

−1

(∫ T

T1

eαεj(x)
(T−τ)
T ((a(x)ux)x(x, τ) + f(x, τ, u(x, τ)))dτ

)2
dx

≤ ε2

72
+ (T − T1)‖

(
a(·)ux

)
x

+ f(·, ·, u)‖2
L2(Q̃T )

.

(3.25)
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In Step 3 below, as an appendix to this proof, we will prove that the norm at
right-hand side of (3.25) is bounded as T → T1

+. More precisely, we will find that

‖
(
a(·)ux

)
x

+ f(·, ·, u)‖L2(Q̃T )
≤ K, for a.e. T ∈ (T1, T1 + 1), (3.26)

where K = K(uε0, u
∗
ε, ‖uε0‖1,a) is a positive constant.

Thus, from (3.25) and (3.26) there exists T2 ∈ (T1, T1 + 1) such that for every
T ∈ (T1, T2) we have

‖u(·, T )− u∗ε(·)‖ <
ε

6
. (3.27)

Then, using Corollary 2.15, from (3.9), (3.27) and (3.18), there exists T ∗ in the
interval (T1,min{T2, T1 + 1

4ν }) such that for every T ∈ (T1, T
∗] we have

‖uσ(·, T )− u∗(·)‖ ≤ ‖uσ(·, T )− u(·, T )‖+ ‖u(·, T )− u∗ε(·)‖+ ‖u∗ε − u∗‖

≤
√

2‖Sεuε0 + σε0 − Sεuε0‖+
ε

6
+
ε

6
<
ε

2
,

from which it follows the approximate controllability at any T ∈ (0, T ∗], since
T1 > 0 was arbitrarily small. Moreover, if T > T ∗ using the above argument we
first obtain the approximate controllability at time T ∗. Then, we restart at time
T ∗ close to u∗, and we stabilize the system into the neighborhood of u∗, applying
the above strategy n times, for some n ∈ N, on n small time interval by measure
T−T∗
n , steering the system in every interval from a suitable approximation of u∗ to

u∗.

Step 3: Evaluation of ‖
(
a(·)ux

)
x

+ f(·, ·, u)‖2
L2(Q̃T )

: Proof of the inequality (3.26).

Multiplying by
(
a(x)ux

)
x

the equation in (3.24), integrating over Q̃T = (−1, 1) ×
(T1, T ) and applying Young’s inequality we have

‖
(
a(·)ux

)
x
‖2
L2(Q̃T )

≤
∫ T

T1

∫ 1

−1
ut
(
a(x)ux

)
x
dx dt− 1

T − T1

∫ T

T1

∫ 1

−1
αεj(x)u

(
a(x)ux

)
x
dx dt

+
1

2

∫ T

T1

∫ 1

−1
f2(x, t, u) dx dt+

1

2

∫ T

T1

∫ 1

−1

∣∣(a(x)ux
)
x

∣∣2 dx dt .
(3.28)

Thus, by (3.28) using Proposition (2.18) we obtain

‖
(
a(·)ux

)
x

+ f(·, ·, u)‖2
L2(Q̃T )

≤ 2
(
‖
(
a(·)ux

)
x
‖2
L2(Q̃T )

+ ‖f(·, ·, u)‖2
L2(Q̃T )

)
≤ 4

∫ T

T1

∫ 1

−1
ut
(
a(x)ux

)
x
dx dt− 4

T − T1

∫ T

T1

∫ 1

−1
αεj(x)u

(
a(x)ux

)
x
dx dt

+ 4C2S2ϑ
ε e2kϑ(T−T1)(T − T1)‖uε0‖2ϑ1,a,

(3.29)

where C = C(‖uε0‖1,a) and k are the positive constants given by Proposition 2.18.
Let us estimate the first two terms of the right-hand side of (3.28). Without loss
of generality, let us consider the (WDeg) problem with β0γ0 6= 0. Integrating by
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parts and using the sign condition β0β1 ≤ 0 and γ0γ1 ≥ 0 we have∫ T

T1

∫ 1

−1
ut
(
a(x)ux

)
x
dx dt

=

∫ T

T1

[ut
(
a(x)ux

)
]1−1dt−

1

2

∫ T

T1

∫ 1

−1
a(x)

(
u2x
)
t
dx dt

≤ Sε
2

γ1
γ0
a2(1)(uε0x(1))2 − Sε

2

β1
β0
a2(−1)(uε0x(−1))2

+
S2
ε

2

∫ 1

−1
a(x)(uε0x)2 dx dt

= c1(Sε, u
ε
0) + c2(Sε)|uε0|21,a,

(3.30)

where c1(Sε, u
ε
0) ≥ 0 and c2(Sε) > 0 are two constants. Let us note that in the

(SDeg) case or in the (WDeg) problem with β0γ0 = 0, we obtain a similar estimate,
but in the third line of (3.30) at least one of the two boundary contributions is
zero. Furthermore, using (3.21) and Proposition 2.14 we obtain∫ T

T1

∫ 1

−1
αεj(x)u

(
a(x)ux

)
x
dx dt

= −
∫ T

T1

∫ 1

−1
αεj(x)a(x)u2x dx dt−

1

2

∫ T

T1

∫ 1

−1
α′εj(x)a(x)

(
u2
)
x
dx dt

≥ −1

2

∫ T

T1

[
α′εj(x)a(x)u2

]1
−1 dt

+
1

2

∫ T

T1

∫ 1

−1

(
α′′εj(x)a(x) + α′εj(x)a′(x)

)
u2 dx dt

≥ −1

2
sup

x∈[−1,1]

∣∣α′′εj(x)a(x) + α′εj(x)a′(x)
∣∣ ∫ T

T1

∫ 1

−1
u2 dx dt

≥ −(T − T1)c(α′εj , α
′′
εj)e

ν(T−T1)S2
ε‖uε0‖2 .

(3.31)

Finally, using (3.29)-(3.31), we prove (3.26), that is for almost every T ∈ (T1, T1+1)
we have

‖
(
a(·)ux

)
x

+ f(·, ·, u)‖2
L2(Q̃T )

≤ k1(Sε, u
ε
0) + k2(Sε)|uε0|21,a + k3(ν, Sε, α

′
εj , α

′′
εj)‖uε0‖2 + k4(Sε, ‖uε0‖1,a)‖uε0‖2ϑ1,a

≤ k1(Sε, u
ε
0) +K2(ν, Sε, α

′
εj , α

′′
εj , ‖uε0‖1,a)‖uε0‖21,a,

where k1 ≥ 0 and k2, k3, k4,K2 > 0 are constants. �

4. Energy balance models in climate science

Climate depends on several variables and parameters such as temperature, hu-
midity, wind intensity, the effect of greenhouse gases, and so on. It is also affected
by a complex set of interactions in the atmosphere, oceans and continents, that
involve physical, chemical, geological and biological processes. One of the first at-
tempts to model the effects of the interaction between large ice masses and solar
radiation on climate is the one done, independently, by Budyko [11] and Sellers
[48]. A complete treatment of the mathematical formulation of the Budyko-Sellers
model has been obtained by Diaz and collaborators in [23]–[28] and [9]; see also the
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interesting recent monograph [45] on “Energy Balance Climate Models” by North
and Kim, and some papers by Cannarsa and coauthors [13, 19]. The Budyko-Sellers
model is an energy balance model, which studies the role played by continental and
oceanic areas of ice on the evolution of the climate. The effect of solar radiation on
climate can be summarized in Figure 1.

Figure 1. Copyrighted by ASR

We have the energy balance:

Heat variation = Ra −Re +D,

where Ra is the absorbed energy, Re is the emitted energy and D is the diffusion
part. If we represent the Earth by a compact two-dimensional manifold without
boundary M, the general formulation of the Budyko-Sellers model is as follows

c(X, t)ut(X, t)−∆Mu(X, t) = Ra(X, t, u)−Re(u), (4.1)

where c(X, t) is a positive function (the heat capacity of the Earth), u(X, t) is
the annually (or seasonally) averaged Earth surface temperature, and ∆M is the
classical Laplace-Beltrami operator. To simplify (4.1), we assume that the thermal
capacity is c ≡ 1. Re(u) denotes the Earth radiation, that is, the mean emitted
energy flux, that depends on the amount of greenhouse gases, clouds and water
vapor in the atmosphere and may be affected by anthropo-generated changes. In the
literature there are different empiric expressions of Re(u). In [48], Sellers proposes
a Stefan-Boltzman type radiation law:

Re(u) = ε(u)u4,

where u is measured in Kelvin degrees (and thus u > 0), the positive function

ε(u) = σ
(
1 −m tanh( 19u6

106 )
)

represents the emissivity, σ is the emissivity constant
and m > 0 is the atmospheric opacity. In its place, in [11] Budyko considers a
Newtonian linear type radiation, that is, Re(u) = A + Bu, with suitable A ∈ R,
B > 0, which is a linear approximation of the above law near the actual mean
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temperature of the Earth, u = 288.15◦ K (15◦ C). Ra(X, t, u) denotes the fraction
of the solar energy absorbed by the Earth and is assumed to be of the form

Ra(X, t, u) = QS(X, t)β(u),

in both the models. In the above relation, Q is the Solar constant, S(X, t) is the
distribution of solar radiation over the Earth, in seasonal models (when the time
scale is smaller) S is a positive “almost periodic” function in time (in particular, it
is constant in time, S = S(X), in annually averaged models, that is, when the time
scale is long enough), and β(u) is the planetary coalbedo representing the fraction
absorbed according the average temperature (β(u) ∈ [0, 1]) The coalbedo function
is equal to 1-albedo function. In climate science the albedo (see Figure 2) is more
used and well-known than the coalbedo, and is the reflecting power of a surface. It
is defined as the ratio of reflected radiation from the surface to incident radiation
upon it. It may also be expressed as a percentage, and is measured on a scale from
0, for no reflecting power of a perfectly black surface, to 1, for perfect reflection
of a white surface. The coalbedo is assumed to be a non-decreasing function of
u, that is, over ice-free zones (like oceans) the coalbedo is greater than over ice-
covered regions. Denoted with us = 263.15◦ K (−10◦ C) the critical value of the
temperature at which ice becomes white (the “snow line”), given two experimental
values ai and af , such that 0 < ai < af < 1. Budyko [11] proposed the following
coalbedo function, discontinuous at us,

β(u) =

{
ai, over ice-covered {X ∈M : u(X, t) < us},
af , over ice-free {X ∈M : u(X, t) > us} .

Sellers[48] proposed a more regular (at most Lipschitz continuous) function of u.
Indeed, Sellers represents β(u) as a continuous piecewise linear function (between
ai and af ) with greatly increasing rate near u = us, such that β(u) = ai, if
u(X, t) < us − η and β(u) = af , if u(X, t) > us + η, for some small η > 0. If we
assume that M is the unit sphere of R3, the Laplace-Beltrami operator becomes

∆Mu =
1

sinφ

{ ∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

sinφ

∂2u

∂λ2

}
,

where φ is the colatitude and λ is the longitude.

Figure 2. Copyrighted by ABC Columbia

Thus, if we take the average of the temperature at x = cosφ (see in Figure 3,
that the distribution of the temperature at the same colatitude can be considered
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approximately uniform). In such a model, the sea level mean zonally averaged
temperature u(x, t) on the Earth, where t still denotes time, satisfies a Cauchy-
Neumann strongly degenerate problem, in the bounded domain (−1, 1), of the type

ut −
(
(1− x2)ux

)
x

= α(x, t)β(u) + f(x, t, u), x ∈ (−1, 1),

lim
x→±1

(1− x2)ux(x, t) = 0, t ∈ (0, T ) .

Then, the uniformly parabolic equation (4.1) has been transformed into a 1-D
degenerate parabolic equation. So, we have showed that our degenerate reaction-
diffusion system (1.1) reduces to the 1-D Budyko-Sellers model when a(x) = 1−x2.

Environmental aspects. We remark that the Budyko-Sellers model studies the ef-
fect of solar radiation on climate, so it takes into consideration the influence of
“greenhouse gases” on climate. These cause “global warming” which, consequently,
provokes the increase in the average temperature of the Earth’s atmosphere and of
oceans. This process consists of a warming of the Planet Earth by the action of
greenhouse gases, compounds present in the air in a relatively low concentration
(carbon dioxide, water vapour, methane, etc.). Greenhouse gases allow solar radia-
tion to pass through the atmosphere while obstructing the passage towards space of
a part of the infrared radiation from the Earth’s surface and from the lower atmo-
sphere. The majority of climatologists believe that Earth’s climate is destined to
change, because human activities are altering atmosphere’s chemical composition.
In fact, the enormous anthropogenic emissions of greenhouse gases are causing an
increase in the Earth’s temperature, consequently, provoking profound changes in
the Planetary climate. One of the aims of this kind of research is to estimate the
possibility of controlling the variation of the temperature over decades and cen-
turies and it proposes to provide a study of the possibility of slowing down global
warming.

Related open problems. Keeping in mind the meaning of the multiplicative control
α in the climate framework, since in the main control result of this paper, Theorem
1.4, the action must be realized over any latitude x in [−1, 1], it would be more
realistic follow up in future papers the formulation that was already proposed by
Von Neumann in 1955 (See Diaz [27] for a comprehensive presentation), that is,
by using a localized control defined merely for some set of latitudes. From the

Figure 3. Copyrighted by Edu-Arctic.eu
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multiplicative controllability point of view, that problem is hard but it is under
research by Diaz and the author; one possible approach consists in following some
ideas introduced in [33], in the case of uniformly parabolic equations.

5. Appendix: Proofs of existence and uniqueness results

In the first subsection we prove Theorem 2.11, which shows that for all α ∈
L∞(QT ) piecewise static functions, there exists a unique strict solution u ∈ H(QT )
to (1.1), for all initial state u0 ∈ H1

a(−1, 1). Then in subsection 5.2 we can prove
Theorem 2.12, that is by an approximation argument we obtain the existence and
uniqueness of the strong solution to (1.1), for all initial state u0 ∈ L2(−1, 1).

5.1. Existence and uniqueness of the strict solution to (1.1). The aim is to
prove Theorem 2.11. For this purpose, we will follow the following strategy:

• in Subsection 5.1.1 we present a maximal regularity result for abstract non-
homogeneous linear evolution equations in Hilbert spaces;
• in Subsection 5.1.2 we introduce the notion of mild solutions and we give

an existence and uniqueness result for mild solutions;
• in Subsection 5.1.3 we prove the existence and uniqueness of strict solutions

for static coefficient α ∈ L∞(−1, 1);
• in Subsection 5.1.4, finally we prove that if u0 ∈ H1

a(−1, 1) then the mild
solution is also a strict solution, for all α ∈ L∞(QT ) piecewise static func-
tion.

5.1.1. A maximal regularity result for linear problems. Let us consider the following
linear problem in the Hilbert space L2(−1, 1),

u′(t) = Au(t) + g(t), t > 0

u(0) = u0 ,
(5.1)

where A is the operator in (2.2), g ∈ L1(0, T ;L2(−1, 1)), u0 ∈ L2(−1, 1).
First, let us recall the notion of “weak solution” introduced by Ball [4] for the

linear problem (5.1) (see also [12, 1, 35, 36]).

Definition 5.1. Aweak solution of (5.1) is a function u ∈ C([0, T ];L2(−1, 1)) such
that for every v ∈ D(A∗) (A∗ denotes the adjoint of A) the function 〈u(t), v〉 is
absolutely continuous on [0, T ] and

d

dt
〈u(t), v〉 = 〈u(t), A∗v〉 + 〈g(t), v〉,

for almost all t ∈ [0, T ].

Then, we recall the following existence and uniqueness result obtained by Ball
[4] (see also [13, 14, 35, 36]).

Proposition 5.2. For every u0 ∈ L2(−1, 1) there exists a unique weak solution u
of (5.1), which is given by the following representation formula

u(t) = etAu0 +

∫ t

0

e(t−s)Ag(s) ds, t ∈ [0, T ].

Now, we are able to present Proposition 5.3, a maximal regularity result that
holds in the Hilbert space L2(−1, 1). Before giving the statement of Proposition
5.3 we recall that by maximal regularity for (5.1) we mean that u′ and Au have the
same regularity of g.
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Proposition 5.3. Let T > 0 and g ∈ L2(0, T ;L2(−1, 1)). For each u0 ∈ H1
a(−1, 1),

there exists a unique solution of (5.1),

u ∈ H(QT ) = L2(0, T ;D(A0)) ∩H1(0, T ;L2(−1, 1)) ∩ C([0, T ];H1
a(−1, 1)) .

Moreover, there exists a positive constant C0(T ) (nondecreasing in T ), such that

‖u‖H(QT ) ≤ C0(T )[‖u0‖1,a + ‖g‖L2(QT )].

Proof. It is a direct consequence of [8, Theorem 3.1, Section 3.6.3 ] (see also [21, 35]),
keeping in mind the following three crucial issues related to the abstract setting in
[8, Section 3.6.3]:

• g ∈ L2(0, T ;X), where X is the Hilbert space L2(−1, 1);
• A is the infinitesimal generator of an analytic semigroup (see [20]);
• u0 ∈ H1

a(−1, 1), where H1
a(−1, 1) is an interpolation space between the

domain D(A0) and L2(−1, 1).

�

5.1.2. Existence and uniqueness of the mild solution to (1.1). Before introducing
the notion of mild solutions, we consider the following abstract representation of
the semilinear problem (1.1) in the Hilbert space L2(−1, 1),

u′(t) = A0 u(t) + ψ(t, u(t)) , t > 0

u(0) = u0 ∈ L2(−1, 1) ,
(5.2)

where A0 is the operator defined in (2.1) and, for every u ∈ B(QT ),

ψ(t, u) := ψ(x, t, u(x, t)) = α(x, t)u(x, t) + f(x, t, u(x, t)), ∀(x, t) ∈ QT , (5.3)

with α ∈ L∞(QT ), piecewise static, given in (1.1).
We note that, since from (1.3), for a.e. (x, t) ∈ QT , ∀u, v ∈ R, it follows that

|f(x, t, u)− f(x, t, v)| ≤ ν
(
1 + |u|ϑ−1 + |v|ϑ−1

)
|u− v|,

we deduce that

|ψ(t, u)− ψ(t, v)| ≤ |α(x, t)u− α(x, t)v|+ |f(x, t, u)− f(x, t, v)|

≤ ‖α‖∞|u− v|+ ν
(
1 + |u|ϑ−1 + |v|ϑ−1

)
|u− v|.

Therefore,

|ψ(t, u)− ψ(t, v)| ≤ L|u− v|, for a.e. (x, t) ∈ QT , ∀u, v ∈ L2(−1, 1), (5.4)

where L = L(u, v) = ‖α‖∞ + ν
(
1 + |u|ϑ−1 + |v|ϑ−1

)
which does not depend on t.

Definition 5.4. Let u0 ∈ L2(−1, 1). We say that u ∈ C([0, T ];L2(−1, 1)) is a mild
solution of (1.1), if u is a solution of the integral equation

u(t) = etA0u0 +

∫ t

0

eA0(t−s)ψ(s, u(s)) ds, t ∈ [0, T ].

The existence and the uniqueness of the mild solution of (1.1) follows from
Proposition 5.5 below, that is a consequence of a result by Li and Yong [44, Propo-
sition 5.3 in Chapt. 2]. For the next proposition the following assumptions are
introduced:
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(A3) for each ū ∈ L2(−1, 1), ψ(·, ū) : [0, T ] → L2(−1, 1) is strongly measur-
able, that is there exists a sequence of simple functions (piecewise static
functions) ψk(·, ū) : [0, T ]→ L2(−1, 1) such that

lim
k→∞

|ψk(t, ū)− ψ(t, ū)| = 0, a.e. t ∈ [0, T ];

(A4) there exists a function L(t) ∈ L1(0, T ) such that

|ψ(t, u)− ψ(t, v)| ≤ L(t)|u− v|, a.e. t ∈ [0, T ], ∀u, v ∈ L2(−1, 1),

|ψ(t, 0)| ≤ L(t), a.e. t ∈ [0, T ].

Proposition 5.5. Under assumptions (A3) and (A4), There exists a unique mild
solution to (5.2).

5.1.3. Existence and uniqueness of strict solutions for static coefficient α ∈ L∞(−1, 1).
In this subsection we prove Theorem 2.11 by showing that if the initial state belongs
to H1

a(−1, 1), then the mild solution is also a strict solution.

Lemma 5.6. For every M > 0, there exists TM > 0 such that for all α ∈
L∞(−1, 1), and all u0 ∈ H1

a(−1, 1) with ‖u0‖1,a ≤ M there is a unique strict
solution u ∈ H(QTM ) to (1.1).

Proof. Let us fix M > 0, u0 ∈ H1
a(−1, 1) such that ‖u0‖1,a ≤ M . Let 0 < T ≤ 1,

we define

HM (QT ) := {u ∈ H(QT ) : ‖u‖H(QT ) ≤ 2C0(1)M},
where C0(1) is the constant C0(T ) (nondecreasing in T ) defined in Proposition 5.3
and valued in T = 1. Then, let us consider the map Φ : HM (QT ) → HM (QT ),
defined by

Φ(u)(t) := etA0u0 +

∫ t

0

e(t−s)A0 (αu(s) + f(s, u(s))) ds ∀u ∈ H(QT ).

Step 1. We prove that the map Φ is well defined for some T . Fix u ∈ HM (QT ),
and consider y(t) := Φ(u)(t), then, keeping in mind Proposition 5.2, we can see the
function y as the solution of the problem

y′(t) = A0y(t) + (αu(t) + f(t, u(t))) , t ∈ [0, T ]

y(0) = u0 ∈ H1
a(−1, 1)

(5.5)

By Proposition 2.18 we deduce that f(·, ·, u) ∈ L2(QT ), thus

g(t) := ψ(t, u(t)) ∈ L2(0, T ;L2(−1, 1)).

Then, applying Proposition 5.3 there exists a unique solution y ∈ H(QT ) of (5.5)
such that

‖y‖H(QT ) ≤ C0(T )
(
‖u0‖1,a + ‖ψ(·, u(·))‖L2(QT )

)
.

Thus, keeping in mind Proposition 5.3, we have C0(T ) ≤ C0(1) since T ≤ 1.
Applying Lemma 2.7 and Proposition 2.18 there exists T0(M) ∈ (0, 1) such that

‖Φ(u)‖H(QT ) = ‖y‖H(QT )

≤ C0(1)
(
‖α‖∞‖u‖L2(QT ) + ‖f(·, ·, u)‖L2(QT ) + ‖u0‖1,a

)
≤ 2C0(1)M, ∀T ∈ [0, T0(M)].

Then Φu ∈ HM (QT ) for all T ∈ [0, T0(M)].
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Step 2.; We prove that there exists TM such that the map Φ is a contraction. Let
T ∈ (0, T0(M)]. Fix u, v ∈ HM (QT ) and set

w := Φ(u)− Φ(v) =

∫ t

0

e(t−s)A0 [α (u(s)− v(s)) + (f(s, u(s))− f(s, v(s)))] ds .

Then, keeping in mind Proposition 5.2, w is solution of the problem

wt − (awx)x = ψ(t, u)− ψ(t, v) in QT

B. C.

w(x, 0) = 0 .

(5.6)

By Lemma 2.18 f(·, u) ∈ L2(QT ), and applying Proposition 5.3 we deduce that
there exists a unique solution w ∈ H(QT ) of (5.6), and

‖Φ(u)− Φ(v)‖H(QT ) = ‖w‖H(QT ) ≤ C0(1)‖ψ(·, u)− ψ(·, v)‖L2(QT ). (5.7)

From (5.7), using (5.4), Lemma 2.7 and Proposition 2.18 (for similar estimates
see [35, Lemma B.1]), there exists TM ∈ (0, T0(M)) such that Φ is a contraction
map. Therefore, Φ has a unique fix point in HM (QTM ), from which the conclusion
follows. �

Remark 5.7. Using a classical “semigroup” result (see [46]), applying Lemma
5.6 and the “a priori estimate” contained in Lemma 2.17, we directly obtain the
existence of the global strict solution to (1.1). That is, following the proof of
Lemma 5.6 the unique mild solution, given by Proposition 5.5, is also a strict
solution. Thus, we obtain the proof of Theorem 2.11 in the case of a static reaction
coefficient α ∈ L∞(−1, 1).

5.1.4. Regularity of the mild solution to (1.1) with initial data in H1
a(−1, 1). Now,

we can give the complete proof of Theorem 2.11 in the general case when α ∈
L∞(QT ) is a piecewise static function.

Proof of Theorem 2.11. Let us consider (1.1) under assumptions (A1) and (A2).
Let us assume that u0 ∈ H1

a(−1, 1) and α ∈ L∞(QT ) is a piecewise static function
(or a simple function with respect to the variable t), in the sense of Definition 1.1,
that is, there exist m ∈ N, αk(x) ∈ L∞(−1, 1) and tk ∈ [0, T ], tk−1 < tk, k =
1, . . . ,m with t0 = 0 and tm = T , such that

α(x, t) = α1(x)χ[t0,t1](t) +
m∑
k=2

αk(x)χ(tk−1,tk](t),

where χ[t0,t1] and χ(tk−1,tk] are the indicator function of [t0, t1] and (tk−1, tk], re-

spectively. Let u ∈ C([0, T ];L2(−1, 1)) the unique mild solution of (1.1) with initial
state u0 ∈ H1

a(−1, 1), given by Proposition 5.5,

u(t) := etA0u0 +

∫ t

0

e(t−s)A0 (α(s)u(s) + f(s, u(s))) ds , ∀t ∈ [0, T ].

Then u, for k = 1, · · · ,m, is the solution of the following m problems:

U ′(t) = A0 U(t) + αkU(t) + f(t, U(t)) , t ∈ [tk−1, tk]

U(tk) = u(tk) k = 1, . . . ,m .
(5.8)

Since u0 ∈ H1
a(−1, 1) and αk ∈ L∞(−1, 1) (k ∈ {1, · · · ,m}) is static on [tk−1, tk],

then applying m times Remark 5.7 we obtain that the unique mild solution u is also
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strict on [tk−1, tk], then the “new” initial condition u(tk) will belong to H1
a(−1, 1).

Thus, by iteration from [0, t1] to [tm−1, tm] we can complete the proof and we obtain
that the mild solution u ∈ H(QT ) and it is also a strict solution on [0, T ]. �

Remark 5.8. Keeping in mind Proposition 5.5 it follows that we can extend The-
orem 2.11 to the general case α ∈ L∞(QT ). Namely, in that case α is strongly
measurable, in the sense of the condition (A4), moreover we can generalize the
proof of Theorem 2.11 from α piecewise static function to α strongly measurable.

Remark 5.9. To prove Theorem 2.11 one can also follow the approach developed
by Kato [40] and Evans [31] (see also Pazy’s book [46]). This approach considers
in (5.2) directly as operator A(t) := A0 + α(t)I, in which the dependence on t is
discontinuous, instead of the simple operator A0 that is constant in t.

5.2. Existence and uniqueness of the strong solution to (1.1). In this section
we recall the proof of Theorem 2.16, given in [35] for the (SDeg) case, and in [36]
for the (WDeg).

Proof of Theorem 2.16. Since u0 ∈ L2(−1, 1), there exists {u0k}k∈N ⊆ H1
a(−1, 1)

such that limk→∞ u0k = u0 in L2(−1, 1). For every k ∈ N, we consider the problem

ukt − (a(x)ukx)x = α(x, t)uk + f(x, t, uk) a.e. in QT

B. C.

uk(x, 0) = u0k(x) x ∈ (−1, 1) .

(5.9)

For every k ∈ N, by Theorem 2.11 there exists a unique uk ∈ H(QT ) strict solution
to (5.9). Then, we consider the sequence {uk}k∈N ⊆ H(QT ) and by direct applica-
tion of Proposition 2.14 we prove that {uk}k∈N is a Cauchy sequence in the Banach
space B(QT ). Then, there exists u ∈ B(QT ) such that, as k →∞, uk → u in B(QT )
and u(·, 0) = limk→∞ uk(·, 0) = u0 in the L2 sense. So, u ∈ B(QT ) is a strong so-
lution. The uniqueness of the strong solution to (1.1) is a direct consequence of
Proposition 2.14. �
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