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POSITIVE SOLUTIONS FOR ASYMPTOTICALLY 3-LINEAR
QUASILINEAR SCHRODINGER EQUATIONS

GUOFA LI, BITAO CHENG, YISHENG HUANG

ABSTRACT. In this article, we study the quasilinear Schréodinger equation

_ _k 2n1/2)_ %

But Vi = GIM1+u) )
where N > 3, k > 0 is a parameter, V : RV — R is a given potential. The
nonlinearity h € C(R,R) is asymptotically 3-linear at infinity. We obtain the
nonexistence of a least energy solution and the existence of a positive solution,
via the Pohozaev manifold and a linking theorem. Our results improve recent
results in [4] 22].

=h(u), =R,

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS
In this article, we study the quasilinear Schrédinger equation

K 2\1/2 U _ N
where N > 3, k > 0 is a parameter, V : RV — R is a given potential and h is
a real function. Solutions of (1.1)) are related to standing waves for the following
quasilinear Schrodinger equation

iz = — Az + W(z)z —al@)n(|z])z — 6[Ap(|21)@ (212, e RY,  (1.2)
where z : R x RY — C, W : RY¥ — R is a given potential and a,¢,n : R — R
are real functions. Note that (1.2)) is a generalized nonlinear Schrédinger equation,
which has been derived as mathematical models of several physical phenomena

corresponding to various types of the nonlinear terms ¢ and 7, see [3}, 8 @], 12}, 24].
Substituting z(t, z) = exp(—iEt)u(x) into (1.2, we obtain the equation
= Au+ V(@)u — w[A(p(lu®)e' ([ul*)u = a@)n(ul*)u, =R, (1.3)
where V(z) := W(z) — E is the new potential function. Setting h(t) := n(t?)t,
then if o(t) = 1+ ¢, a(z) = 1, Equation (L.3)) turns into (1.1} and if ¢(¢) = ¢ and
k =1, Equation (1.3]) becomes the quasilinear problem
— Au+V(z)u — A(w?)u = a(z)h(u), zeRV. (1.4)

Since the behavior of h at infinity plays an important role in searching the weak
solutions of ([1.3]), many authors have studied (L.3|) with particular forms of ¢ via
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variational methods under various conditions on the nonlinearity h; e.g. h hass
superlinear growth [5 [, [15] 17, [I8, 23, 25] or has asymptotically linear growth
[16] at infinity. Moreover, the existence of positive solutions for (1.4)) was obtained
in [, 22] for asymptotically 2-linear growth of the nonlinear term h(t) at infinity,
where h(t) was assumed to satisfy

(H1) h € CH(R*,RT) and lim,_,o+ 28 = 0;

(12t M0 = 1

(H3) If Q(t) = th(t)t—H(t fo s)ds, and thus a constant D > 1 exists

such that O < Q(s) S DQ( ) for 0 < s <t, and lim;_,, Q(t) = +o0.

We note that if h(t) is positive for ¢ > 0, then from (H1) and (H3) it follows that
H(t) > ct?

for some positive constant ¢ and large ¢ > 0, which means that (H2) does not occur
when h(t) satisfies assumptions (H1) and (H3).

The purpose of this article is to investigate the existence of positive solutions
to (1.1]) for the nonlinear term h(t) satisfying the modified assumptions (H1)-(H3).
More precisely, we suppose that h satisfies the following assumptions

(H1)) h e CH(RT,R*) and lim, o+ 28 = 0;
(H2') limy o0 28 = 1;
(H3) Q():4h() — H(t) > 0 for all t > 0, where H(t fo
Also, we assume that the following conditions on the potentlal functlon V(;U)

(H4) V € C%(RY,R);

(H5) lim|gyoo V(#) = Voo < 1, 1/2 < Voo < V(2) for all z € RY;

(H6) (VV(z),z) <0 for all z € RY with the strict inequality holding on a subset

of positive Lebesgue measure of RY:

(H7) NV (z) + (VV(x),z) > NV for all x € RY;

(H8) W +(VV(x),z) <0 for all x € RY, where Hy is the Hessian matrix

of the function V(z).

We want to point out that similar method can be applied to (1.4). Now, we

study the quasilinear Equation ([L.1]). The associated energy functional of the Euler-

Lagrange equation (1.1)) is

1 Ku? 1
I(u) = - 14—t e+ |V *de — | H(u)dz.
(u) 2/RN[ +2(1+u2)]|Vu| x—I—Q/]RN (x)|u|*dx - (u)dz
When V(z) = V, we are led to the limiting problem of (|1.1)),
~ % N
Au+ Voou — 2[A(1+u ) }(1+u2)1/2 =h(u), =zeRY. (1.5)
The associated energy functional of (1.5) is
1 Ku? 1
Io(u) = = 1+ ———|VuPdz+ < | Vluf’de— | H(u)dz.
=g [ g P g [ VipPde— [ s

Making a change of variable, i.e. using the dual approach (cf. [7]), we can reduce
the quasilinear Schrédinger equation into a semilinear equation like the case of
k=0. Let

v==G_G(u) = /Ou g(t)dt (1.6)
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with G satisfying

-~ g(G(t CRIOLE
oG VIt e
for t € [0,400) and G~ (t) = —G~1(—t) for t € (—00,0]. Then, (1.1)) and (L. will
be reduced to the semilinear equation
G lv) _ h(GH(v) N
—Av+V(x = ,r € RY 1.7
W@ T e w) .

and
N G_l(v) :h(G_l(v)) . N
St Vege) T e@w) -

Clearly, weak solutions of ([1.7) and (|1.8)) correspond to critical points of the energy
functional

T(v) = %/RN Vol2dz + %/RN V()| G (v)|2dz — /RN HG (0)dz,  (1.9)

and

Joo(v) = %/RN \Vv|2dx+%/RN ValG )P e~ [ G W)de. (110)

Moreover, for 1 € H*(RY), the derivative of .J in the direction ¢ at v is

o = [ Suveds )-GOy [ MG,
(J'(v), ) = va Vid +/]RN V( )g(G_l(U))wd /RN g(G_l(v))wd :

If v € HY(RY) is a weak solution of (1.7)), then v satisfies the Pohozaev identity
~(v) = 0, where
N -2 N
1) =5 [ IVePde s 5 [ v@leTi )P

2 RN 2 RN

1
+*/ <VV($),$>\G_1(U)|2dJ:—N/ H(G™!

2 RN RN

Furthermore, we defined the Pohozaev manifold associated with (1.7)) by
P = {ve H RY))\{0} : y(v) = 0}.

Motivated by [II], we will employ the minimization methods restricted to the

Pohozaev manifold to obtain the existence of positive solutions for (1.1). Now,
we state our first result.

Theorem 1.1. Assume that (H1’)-(H3’), (H4)-(H8) hold. Then P is a natural

constraint of (1.1), i.e. any critical point of J|p is a critical point of J in H'(RY).
Moreover, p = inf,ep J(v) is not a critical level for the function J.

We define
Too = {£ € C([0,1], H'(RY)) : £(0) = 0 # £(1), Joo (£(1)) < 0},

as well as the mountain pass min-max level

Coo = Inf max (&(t))

where Jo, is defined by (1.10). We will use the linking theorem and the barycenter
function is restricted to the Pohozaev manifold to obtain the existence of weak
solution for (|1.1). Here is our second result.
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Theorem 1.2. Assume that (H1")—-(H3’), (H4)—(H8) and the following conditions
hold:
(1) h € CY(R) NLip(RT,R*);
(2) IV(2) — Volloo is sufficiently small;
(3) the least energy level coo of Joo is an isolated radial critical level or equation
admits a unique positive solution which is radially symmetric about
some point.

Then (1.1) admits a positive solution whose energy is above Coo.

There are functions satisfying (H1’)—(H3’), for example h(t) = 1«1% There
are also functions satisfying (H4)—(HS), for example V(z) = ¢; + Ty Where

1/2 < ¢1 < 1,¢9 > 0. In fact, since N > 3, we know that

2¢o|2|?
(1+[z[?)?
Neco + colz|?(N —2)
(14 [z[*)?
xHy (z)x _ dea(|z]t = |2)?) 2¢o|x|?
N V@D = T T Ot P
2¢o|2|? 2 9 2
= —-——— - — - e < .
(1+|x|2)3[(N 1)\x| (N+1)] <0

In this article: |jull, (1 < ¢ < 00) denotes the standard norm in LI(RY). (-,-)
denotes the duality pairing between a Banach space and its dual space. — and
— denote strong convergence and weak convergence in the related function space,
respectively. 0,(1) denotes the quantities tending to 0 as n — oco. C,Cy,Cy,. ..
denote positive constants. Br(0) denotes a ball centered at the origin with radius
R > 0.

(VV(2),z) = — <0,

NV (z)+ (VV(z),z) = Ny +

chlzNVOO7

2. PRELIMINARIES

We shall work in the space H*(RY) with the norm
Jull? = [ (Va4 V@),
RN

because of (H4) and (H5), this norm is equivalent to the standard H*(RY) norm.
If u is a solution of (T.1]), then for all p € H*(RY) we have

(' (), ) = / [0 (u) Vg + g(u)g (u) [Vl glde + / V(@)upds
RY RY (2.1)

- h(u)pdr =0, u € HY(RY),
RN

where g(t) = /1 + Q(fi_i‘;g)
On the one hand, if we choose ¢ = ﬁ in (2.1), combining (1.6) and (1.9)), we

obtain

()= [ Vovede s [ V) GO gy

RN 9(G=1(v))

[ oMETw)
/RN g(G1(0) V=0

(2.2)
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On the other hand, let ¢» = g(u)p in (2.2)), we obtain (2.1)). Thus (2.1]) is equivalent
to (2.2). Hence, u is a weak solution of (1.1]) if and only if v is a critical point of

the functional J.
Note that a function v € H*(RY) is a least energy solution if and only if v is a
solution of (1.5)) and J(v) = meo, where

Moo = inf {Jo(v) : v € H(RV)\{0} is a solution of (L.5)}.

To see the smoothness of J, we need the following lemma.

Lemma 2.1. The functions g(t) and G(t) = fgg(s)ds satisfy the following prop-
erties:

)
(2)
< L g (t) < V2024r)—2 > 0.
(3) 0< Jgt) < NEIEETSET forallt >0
(4) /2t < IGTHB < [t] for all t € R.
Proof. From the definition of G(t) we can prove (1) and (2).

(3) Setting Z(t) = ﬁg’(t)7 direct computations show that
Kt?

0= arenraran -~ o)

2

¥r and

Then 0 < Z(t) for k > 0. Moreover, ®(r) attains its maximum at ry =

Zmax<t) = Z(t)‘ﬁ:\/% = J;E;%:;_T_z

Then, (3) holds.
(4) Since g(t) is nondecreasing for ¢t > 0, by the differential mean value theorem,
we know that

t=9(0)t<G(t) = /O g(s)ds = g(&)t < g(t)t < g(oo)t = /1 + gté € [0,2].

Then, 1/2/(2+ k)t < G71(t) < t. When t < 0, it deduce from the oddness of
G71(t) that t < G7'(t) < y/52=t. Thus the proof is complete. O
Now, by Lemma J is well defined and is of C' if h(t) satisfies the conditions

(H1’)-(H3’). Next, we show another property of the change of variable G which
will play important roles in proving our results.

Lemma 2.2. Fort > 0, it holds

LG 9@ (D) <1< G (Dg(G (1)
Proof. Let n(s) = G(s) — 4sg(s), then by Lemma 3)7 we have
ey 1 Lo, 1 sg'(s)
1(s) = 9(s) = 50(5) = 559'(5) = g9(s) [1 = = /7] 2 0

Thus n(s) > n(0), let s = G7(t), we have 3G 1(t)g(G™*(t)) < t for t > 0.
Moreover, we set

0(t) = G~H(t)g(G7 (1) — t.
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Direct computation shows that
1

O]

g(GTH®) + GTH ) (G (1) — 1

=G7(1)

1(t
21+ 3]
>0, Ve>0,t>0.

Then 6(t) > 6(0), which implies that ¢ < G~ (t)g(G1(t)) for t > 0. O

3. POHOZAEV MANIFOLD

In this section, we will show the nonexistence of solution for ([1.1)). First, for the
Pohozaev manifold P, we have the following properties.

Lemma 3.1. The functional v : H'(RY) — R and the Pohozaev manifold P
satisfy:

(1) {v =0} is an isolated point of v~1({0});

(2) P is a closed set;

(3) P is a C' manifold;

(4) there exists o > 0 such that ||v]| > o for all v € P.

Proof. (1) By (H1’) and (H2’), we can deduce that for any ¢ > 0 and 4 < g < 2*,
there is C. such that

2 qu
[H(s)| < 5 Isl qH, (3.1)

and |h(s)| < e|s| + C:|s]?7! for all s € R. Thanks to (H5), (H7) and Lemma 2),
(4), if we choose € = V/2, then

() = ?/ |Vv|2dac+—/ o) [2de
+%/}R (VV(z),2)|G"(v)[Pdz — N . H(G ' (v))dx
ZN_2/ |V dm+—/ Voo |G~ () |?d
—N/ 2y %|G_l(v)|q]dx
>N . /|V1}|da¢—|— /V|G \d——/ o) 2d
_ NC

/ G (v)|"dz
q RN

N -2 N NC,
> / |Vv|2dx+7/ voo|v\2dx——5/ lo|7dz
2 RN 2(2+I€) RN q RN

. N—=2 N s NC;
> - — .
> min {5, g YOI = = o
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Let [[v]| = p > 0 be small enough such that min { ¥32, Q(T%}CpQ > 2NC’E%,
we obtain

. (N =2 N 5 NC; 1, N-2 N 9
> _ — > I — .
~v(v) mln{ 5 ,2(2 ) }Cp p pt > 2{ > ,2(2 X }Cp >0

(2) The functional v(v) is a C! functional, thus P U {0} = v71(0) is a closed
subset. Moreover, {v = 0} is an isolated point in v~ ({0}) and the assertion follows.
(3) Since v € P, we have

(N —2) /RN IVol2dz + N/RN V()G (v)2da
+/RN<VV(33),30>|G_ (v)|*dx (3.2)
=2N H(G *(v))dz.

RN
Combining (H3’,) (H7), and Lemma we obtain

(' (v),v)
G '(v)

_ _ vl?dax T)—————vdx
~ (N 2)/RN|V 2d +N/RNV( o
G~ 1(v) v de — h(G~1 v))v .
# [ TV@ e =N [ e
= [ V@) + TV @) [C Do (67 )
(

+N [2H(G'(v) —

G_l(’U) -1 —1 _ —1 v 2 T
< [ V@) + (V). [ oG )6 0) = (67 )
1 B h(G_l(U))l “1 NG ()] dae
N [ RHET) - iy 396 )6 @)]de <.

This shows that P is a C! manifold.
(4) Since 0 is an isolated point in y~*({0}), there must be a ball |Jv|| < o which
doesn’t intersect P and the assertion is proved. O

Next, we obtain relations between the Pohozaev manifold P associated with (|1.7)
and the Pohozaev manifold P, associated with limiting problem (1.8). Recall that

P := {v € H'(RY)\ {0} : 700 (v) = 0},

where
N -2 N
Yoo () = 7/ Vol2dz + 7/ Vi |G (0) 2dee
2 RN 2 RN (33)
- N H(G ' (v))da.
RN
Next, we obtain the Lemmas [3:2H3.6] and [3.8] which will be used for proving
Theorem Their proofs can be found in [11] and [14].
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Lemma 3.2. Assume that [y [H(G7'(v)) — 1Ve|G7 (v)|*]dz > 0, then there
exist unique t1 > 0 and ty > 0 such that U( ) € P and v( ) € Pso

If v € P, then there exists 0 < t, <1 such that v( ) € ’P

If w € Py, then there exists t,, > 1 such that w( ) eP.

Lemma 3.3. Assume that
Q= {ve H'(RY)\ {0} : /RN (H(G Y (v) — %VOO|G_1(U)\2]dx > 0}.

Then the function t1 : Q — RT is given by v — t1(v) such that v(t @ )) € P is
continuous.

Lemma 3.4. Assume that v € Ps, then for all y € RY. Then v(- — y) € Ps.
Moreover, there ewists t, > 1 such that

)
v( .

Lemma 3.5. It holds sup,egn t, ;=1 < +oo and t > 1.

)67’ and lim ¢, = 1.

lyl o0 ¥

Lemma 3.6. There exists a real number & > 0 such that inf,cp ||Vo|l2 > 6.

Lemma 3.7. Ifv € H'(RY) satisfies [on [H(G™1(v)) — $Vao|G™1(v)[*)dz > 0 and
t, > 0 are such that U(E) € P, then

x\\ 2
Joo (v(g)) =N o |Voul“dx.

Proof. If v(t—) € Poo, by (3.3)), we know that

N*QtUN”/ |Vfu\2dz+ﬁtf)v/ VoG (W))?dz = Nt | H(G'(v))d.
2 RN 2 RN ]RN
Then
x
Joo(v(g))
tN_2 tN
=2 |Vo|2de + -2 Vo |G ()2 dx — tY H(G(v))da
1 N 2\ N 2/ ) :
=(z-—==)t d
(2 2N ) , [Vl
th2 9
=~y - Vol dx.
0

Lemma 3.8. It holds p = inf,ep J(v) > 0 and p = ¢

Proof of Theorem[I.1. Arguing by contradiction, we suppose that there is v €
HY(RY) such that J(v) = p and J'(v) = 0. Then v € P. By Lemma there is
0 < t, <1 such that v( ) € Poo. From and (H6) we obtain
p=Jw) = 1/ |Vol2dz + f/ V(2)|G () Pde — [ H(G '(v))dx
2 RN 2 RN RN
1 N

=G ﬁ%/w |Vol?dz — %/RN<VV(:C),$>|G—1(U)\2dx
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_ 1 2 1 —1(,\]2
=N Lo |Vou|“dx 5N RN<VV(1‘),$>|G (v)|“dx
tN_2
> Vo|?d
~ RN| v|*dx

=Jy (v(t—)) > Coo,

v

which contradicts Lemma Moreover, by [22] Lemma 2.3|, any critical point of
J|p is a critical point of J in H'(R™), then p is not a critical level for the function
J. O

4. EXISTENCE OF A POSITIVE SOLUTION

In this section, we will show the existence of a positive solution for (1.1). Sim-
ilarly to what done in [I1], first, we prove the existence of a positive solution for

limiting problem (1.8)) by a global compactness lemma. Second, we prove the exis-
1)

tence of positive for ( using barycenter constrains and a version of the Linking
Theorem.
Lemma 4.1. (1) There exist p,a > 0 such that J(v) > a, ||v]| = p.

(2) There exists e € HY(RN) with |le|| > p such that J(e) < 0.

Proof. (1) By (3.1), (H5), Lemma (4) and Sobolev embedding, select e = Q‘fﬁ,
we know that

1 1 C
J(v) > f/ |Vo|?de + —— Voo dx — E/ vide — — |v|?dx

2 RN 24+ kK RN 2 RN q JrN
1 ) 1 ,, C

- dz+—— | View2de — = aq
2/RN|VU| x+2(2+n)/RN vidx . RN|U| x

C s O
pp——— ] p— 1T
> s gl = el

Thereby, choosing ||v|| = p is small enough, we have J(v) > %/ﬂ - %pq > 0.

(2) Let w € H'(RY) be a least energy solution of (1.8)), motivated by [10, Lemma
2.2], we define a continuous path o : [0, +00) — H'(RY) by setting a(t)(z) = w(%),
if t > 0 and a(0) = 0. Then Jo(0) = 0 and

1

Jwlalt) = 3 /RN [Vu(2)*de + % /RN Voo G (w(D)) [ da

- /RN H(G’l(w(%)))da:

=507 [ u@Pas+ 30 [ VilG () Pas
—tV H(G H(w(x)))dz.

RN
Taking the derivative, we have

d N2y

N
& Tlalt) =" /RN |Vw|2dx+?tN’1/RN V|G~ (w) 2z

— NtV H(G Y (w))dz.
RN
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Since w is a solution of (1.8)), it satisfies the Pohozaev identity
N -2 N
7/ Vw|2ds + 7/ Vo |G- (w)2dz = N [ H(G(w))da.
2 RN 2 RN RN
Therefore,
d

dt
Since N > 3, the map t — Jy(a(t)) achieves the maximum value at t = 1.
Choosing L > 0 is sufficiently large, we have Jo(a(L)) < 0.

Taking ((t) = a(tL), we have ¢ € I'o. If ¢ (t) = w (57£), by (V2) and Lebesgue
Dominated Convergence Theorem, we know

G =3 [ Ve a3 [ vle ()P
*/RNH<G*<w<t Y)))d
%/}R | | dr + 1/ V(x+y)\G*1(w(%))|2dm

—/RN< N

= TG + / V() - V)G (G 0) Pl

<0, for |y| large.

Jao(a(t)) = %tfv*?’u — ) /RN Vw|?dz.

Choosing e = (,(1), we complete the proof. O

From Lemma the min-max mountain pass level for the function J is

— inf J(E(t
¢ = Inf max (&),

where

I ={¢eC(0,1], H'(RY)) : £(0) = 0 # &(1), J(£(1)) < 0}

Then there is a Cerami sequence {v,} for the functional J at level ¢ such that
J(vp) = ¢ and || J (v,)]|(1 + [|vn]]) — 0.

Now, we state the following Lemma, the proof is similar to the proof of [I1l Lemmas
4.1 and 4.2], we omit it.

Lemma 4.2. It holds ¢ = coo = p.
Lemma 4.3. For all £ € T, there is s € (0,1) such that £(s) € P

Proof. Since

() = ¥ /RN Vol2dz + % /RN V(2)|G(v)2da
+ % / (VV(2),2)|G" (v)|?dz — N H(G (v))dx
RN RN

=NJ(v) — /]RN |Vo|2dx + % /]RN (VV(z),z) |G (v)|*d,
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by (H6), we have y(v) < NJ(v), for every v € HY(RN). If ¢ € T', we have
~v(£(0)) = 0 and ~(£(1)) < NJ(&(1)) < 0. Now, there is s € (0,1) such that
Y(E(5)) = 0 for [IE(s)]) > p- Then &(s) € P. 0

Lemma 4.4. If {v,} ¢ H'RY) is a (Ce). sequence with ¢ > 0, then {v,} is
bounded.

Proof. Since G~ (v,)g9(GY(v,)) € HY(RY), we have
1

T =5 [ IVonPdet g [ Vi@le wPde— [ (G @)

=c+o,(1),

and

(J'(vn), G (vn)g(G™ (vn)))

_ G 'va) oy v o 12dx
= [ I e g (67 )] 9 P

+ /]RN V(2)|G™ (vp)|?dx — /]RN h(G™(v,) G (v d

= 0,(1).
Then, by (H3’) and Lemma[2.1] (3), we obtain
¢+ on(1)

= J(vn) = 2(J"(0n), G (va)g(G ™ (vp)))

e~ =

_1 B G—l(vn) 11 " v 2 " 1 T -1 v 2 T
= [ e G P g [ VEIG )R

]RN
—/ [H(G_l(vn))—ih(G_l(vn))G_l(vn)]dx
RN

1 2(2+/<;)72/ ) 1 )
> 11— Vou,|*de + —— Vi(x)|lv,|7dx
74{ \/2(2+K)+2} ]RN| | 22+ k) Jrw (@)l

4 1
> i TL27
> min { rzmwz’z@m}”” [

hence, {v,,} is bounded in H*(RY). O

Lemma 4.5 (Splitting). Let {v,} C H*(RY) be a bounded sequence such that
J(vp) = c¢>0 and (1+ |lon|)||J (vn)| = 0.

Replacing {v,} by a subsequence, if necessary, there exists a solution T of ,
a number k € NUU{0}, k functions v*,v% ..., v* and k sequence of points {y)} €
RN, 1 < j <k, satisfying

) vy — 0 in HYRYN) or

) vJ are nontrivial solutions of .,

) |yl = oo and |yj, — yy| = 00,0 # j;
) v
)

(1
(2
3
(4 Z?:l v (1' - yn) — 75

(5) J0,) = J(0) + Ty T
Proof. The proof is a version of concentration compactness of Lions in [I3] 19], one
can mimic the proof of [2I, Theorem 8.4]. O
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Corollary 4.6. If J(v,) — ¢ and ||J'(vn)||(1 + |Jvn]l) — 0, then either {v,} is
relatively compact or the splitting lemmal[{.5] holds with k =1 and v = 0.

Let
¢y := inf{c > ¢ : ¢ is a radial critical value of J} .

Then we have the following lemma.

Lemma 4.7. Assume that c is an isolated radial critical level for Js. Then
¢4 > Coo and J satisfies condition (Ce) at level d € (coo, min{cy, 2¢}). Assume
now that the limiting problem admits a unique positive radial solution. Then
J satisfies condition (Ce) at level d € (¢o0,2¢Cs0)-

The proof of the above lemma is analogous to the proof of [I1, Lemma 5.9], we
omit it.

Lemma 4.8. Let J(v;) — d > 0 and {v;} C P, then {v;} is bounded in H'(RY).
Proof. Since {v;} C P, by (H6) and (3.2), we obtain

d+1> J(v;)

=5 [ VPt [ V@IET 0P~ [ G @)

RN

N/ |V, d:vf—/ (VV (x),2)|G (v;)[*dx

> N/RN |V, |2dz.

Then, [|Vvj||2 is bounded. By Sobolev inequality, the sequence ||v;|/2- is also
bounded. Setting ¢ = V. /2, combining this with (H1’) and (H2’), (H5), Lemma
(4), we have

d+1=J(v;) = %/RN Vo, Pda + %/ V()G (v)|Pda — /RN H(G (v)))da

1

> f/ Vo] dm+—/ o dw-f/ G (0,2
2 2 Jon
——/ L) dz

1 Ve € C .
Zi/ﬂa |V, 2 dm—|—2+ \vj|2da:—§/RN |vj|2da:—?5/RN lv;|* d
1 Vo C. .
25/ |V, dm+2(2+ )/ \Uﬂ%x—j/RN lv;|* dz.
If ||lvj]]2 — oo, we obtain a contradiction. O

Next, we introduce the barycenter function, see [II, [20], which is crucial for
proving the existence of a solution for (1.1).

Definition 4.9. The barycenter function of a function u € H'(R™)\{0} is defined
by
1

() (@) = 1

|u(y)|dy.
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It follows that u(u) € L= (RY) N C(RY). Subsequently, take

i(e) = [p(w) (@) — 5 max ()]

we know that 4 € Co(RY). Now we define the barycenter of u by

B(u) ! /wﬁ(x)dx

~ llall

Since p(u) has compact support, by definition, S(u) is well defined. S satisfies the
following properties

(1) B is a continuous function in H*(R™)\{0}.
(2) If w is radially symmetric, then S(u) = 0.
(3) Given y € RY and setting u,(z) := u(z — y), we have B(uy) = 8(u) + y.

Lemma 4.10. Let {u,}, {v,} C H'(RY) be such that ||u, —v,|| — 0 and J'(v,) —
0 as n — oo. Then J'(u,) — 0 as n — co.

Proof. For each ¢ € H'(RY), we have

<J/(un) - J/(Un)a ®)
Gil(un) Gil(vn)

= o ¥t T 0] Vipder / VoG @ 1wy P
[ G ) MG ),
Lo G ~ eyl
From ||u, — vy| — 0, we have

V(tp — vp)Veodr < (/

RN

1/2 1/2
Vi —on)de) ([ VePiz) 0,
RN

RN
as n — oo. Since the function g(GC;_ill((?)) is continuous for s, by (H5), when w, is
sufficiently close to v,, we can conclude that

G_l(un) G_l(vn)
V(x { — :|(pdl‘ — 0.
fvelieTiy - sein
Moreover, by the assumption h € Lip(RT,RT), we deduce from Lemma (2), (4)
that

9(GH(un))  9(G1(vn))
|G (un))g(G™ (0n)) = MG~ (00))g(G ™" (un))]
9(G~H(un))g(G~H(vn))
< MG (wn)) = MG (wa))g(G ™! (vn))
9(G~H(un))g(G~1(vn))
|G~ (va))l9(GH(vn)) — 9(G ™ (un))]
9(G~H(un))g(G~*(vn))

< WCIGIW) — G (vn)]

+ C|G_1(Un) —0llg" (vn + 01 (upn — Un))HG_l(Un) - G_l(un”

< 1+ ZONG (n + Ol = 00))) | = v

‘h(G‘l(un)) h(Gil(vn))‘
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+ Clon|CUG™ vy + O2(up — v2)))[|ttn — vn
K ~ 1
_ (1 f1+Zc+ CC|vn|) o Nome
K ~
< (,/1 + §c+00|vn|)|un — v,

Kt

g'(t) = < C,01,0, € (0,1).

1+ 5y (14 12)?

where

By the Holder’s inequality,

1/2 1/2
/ |(wr, — vp)pldz < (/ [t — vn|2dx> (/ |cp|2dx> —0
RN RN RN
1/2 1/2
/ |U7l‘|(un - Un)<ﬂ|d1‘ < (/ ‘un - Un|2dx> (/ |Un(,0|2d.13> —0
RN RN RN

as n — 0o. Therefore,

/ ‘ [h(G‘l(un)) G (v,
v

— )) X as n 0
G gy Hlde 20 asn o

Then J'(u,) — 0 as n — oo. O

and

Now, we define
b:=inf{J(v):veP,p(v) =0}
From Lemma similarly to the proof of [22, Lemma 4.11], we have the following
result.

Lemma 4.11. b > c..

Let us consider a positive, radially symmetric, ground state solution w € H*(RY)
to the autonomous problem at infinity. We define the operator II : RY — P by
r—y
) = w(*5Y),
y
where 6, projects w(- —y) onto P. II is continuous as §,, is unique and 6, (w(- —y))

is a continuous function of w(- —y). The following lemma describes some properties
of I, its proof can be founded in [I0], [IT].

Lemma 4.12. [t holds that S(I[y](x)) =y and J(I1[y]) = coo, |[y| = 0.

Lemma 4.13. Assume that
(HO) [V — V] < 2minlggdin)ocn) g up, o6,

oNTwli3

Then J(I1[y]) < min{cy, 2¢oc }.

Proof. Since Jo is translation invariant, the maximum of 8 — Jy(w(-/8)) is attained
at @ =1 and 6, > 1. It follows from (H9) and Lemma[2.1] (4) that

J(I[y]) = Joo (I[y]) + J(I1[y]) — Joo (I[y])
1

=T + 5 [ (Vi) = Va6 () P
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min{cy, 2¢0 } — €0 / 5
< Coo + ~ [My]|“dz
ON|wli3 RN

min{cy, 2¢0 } — €0 / T —y, 2
= Coo + - d
‘ I S

_ min{c£,2000} — Coo oY ]2

~ ON w3 v
< min{c, 2¢ }

O
Remark 4.14. Replacing (H9) with
2Co0
Voo = Voo < 7
~ =N |wl3

yields J(II[y]) < 2¢oo.

We recall a version of the Linking Theorem with Cerami condition by [2, Theorem
2.3], which we state here for the sake of completeness.

Definition 4.15. Let S be a closed subset of a Banach space X and @ be a
submanifold of X with relative boundary 0Q. We say that S and 0Q link if the
following facts hold

(1) SnoQ = 0;

(2) for any f € C%(X,X) with f|ag = id, then f(Q)NS # 0.

Moreover, if S and @ are as above and B is a subset of C°(X, X), then S and
0Q link with respect to B if (1) and (2) hold for any f € B.

Lemma 4.16. Suppose that J € C*(X,R) is a functional satisfying (Ce). con-
dition. Consider a closed subset S C X and a submanifold Q C X with relative
boundary 0Q are such that

(1) S and 0Q link;

(2) a=infyesJ(v) > sup,esq J(v) = ao;

(3) sup,eq J(v) < +o00.
If B={f e CUX,X) : flag = id}, then T = infyepsup,cq J(f(v)) > a is a
critical value of J.

Proof of Theorem[I.4 By Lemmas and we have b > ¢o and J(II[y]) —
Coos |Yy| = 00, there is p > 0 such that

Coo < ‘mla)g J(IJy]) < b. (4.1)
yl=p
To apply the Linking Theorem |4.16} we take

Q ::H(Bﬁ(O)), S:={ve HRY):v eP,p(v) =0},

and we show that dQ and S link with respect to H = {f € C(Q,P) : flog = id}.
Since B(Il[y)(z)) = y from Lemma we have that 90Q NS = 0, as if v € 5,
then B(v) = 0, and if v € 9Q,v = II[y] for some y € RN with |y| = p and then
B(v) =y # 0. Now we show that f(Q)N S # 0 for any f € H. Given f € H, let
T : B;(0) — RY is defined by T'(y) = Bo foll[y]. Then the function T is continuous.
Moreover, for |y| = p, we have that II[y] € 0Q, thus f o II[y] = II[y] as flag = id,

and hence T(y) = y by Lemma m By Brouwer Fixed Point Theorem there is
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y € B;(0) with T'(g) = 0, which implies that f(II[g]) € S. Then f(Q) NS # 0 and
S and 9@ link. Now, from (4.1), we may write

b=infJ > maxJ.
S aQ

Let us define

b= inf max J(f(v).

Then k& > b. In fact, if f € H, there exists w € S with w = f(u) for some
u € TI(B;(0)). Therefore,

max J(f(0)) > J(f(u) = J(w) > inf J(v) = b,

vEQR ve
and hence k > b, which implies that & > c,. Furthermore, if f = id, by Lemma

[413] we have

k = inf maxJ < max J(v) < min{cs, 2co0 }.
Jnf max J(f(v)) < max J(v) < min{ey, 2o}

Then k € (¢oo, min{cy, 2¢5 }) and it deduces from Lemma [4.7| that the (Ce). con-
dition at level k is satisfied. Then, by the linking theorem, k is a critical level of
J. O

Remark 4.17. Theorems and (1.2 hold for (1.4)) with a(z) = 1 under assump-
tions (H1’)-(H3’) and (H4)—(H9).
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